ECE311: Linear Systems Analysis I, Fall 2021

--

Time and Location:
TR 12:30 PM -- 1:45 PM, Clark A206

--

Instructor:
Ali Pezeshki

Contact Information: <Ali.Pezeshki@colostate.edu>, Tel. 970-491-3242, Engr. C103F

--

Pezeshki's Office Hours:

Tuesdays: 5:30 PM -- 6:30 PM on Zoom

Wednesdays: 3:00 PM -- 4:00 PM on Zoom

Zoom Link for Pezeshki's office hours (https://us02web.zoom.us/j/85108601785?pwd=VTNaQUw3OHhaZ0FmeFJZc1hsMXBvQT09)
Meeting ID: 851 0860 1785
Password: Fourier

--

Teaching Assistant (TA):

Yifan (Robert) Yang: <Yifan.Yang@colostate.edu>

TA's Office Hours: MW 2:30pm-4:00pm, BC In-fill

(https://teams.microsoft.com/l/meetup-join/19%3ameeting_NmJkOTI2ZWQtMWlyMS00MWFkLTkzZGljMTRjOTQxZmY0ODZm%40thread.v2/0?context=%7b%22Tid%22%3a%22af8b58802-ff7a-4bb1-ab21-367ff2ecfc8b%22%2c%22Oid%22%3a%22c85a9f8b-f2a1-4077-b6c8-92194289f49b%22%7d)

--

Textbook:

Additional References (not required)

Logout
Close your browser to end your session.

(http://www.acns.colostate.edu/single-sign-on-using-shibboleth/#1471272725675-5603b487-ebab)
Additional Reference (not required):

--

Exam Calendar:

- Assessment 1 (Exam 1): Sep. 30, 2021; Covers LSM1, LSM2, and KI1
- Assessment 2 (Exam 2): Nov. 11, 2021; Covers LSM3, LSM4, and KI2
- Assessment 3 (Exam 3): Dec. 15, 2021, 9:40 am - 11:40 am; Comprehensive: Covers all LSMs and KIs.

Grading:

- Knowledge Integration (KI): 8%
- Homework: 18%
- Assessment 1 (Exam 1): 22%
- Assessment 2 (Exam 2): 22%
- Assessment 3 (Exam 3): 30%
- Math Foundation: 2% (Extra Credit)

Note 1: Regular attendance in class is required.

Note 2: KI grade consists of several components, including prework, question/discussion contributions, video presentations, and social responsibility case studies. Please see the KI Canvas course for details. The teaching assistant in charge of KI Canvas course is Aaron Murphy <Aaron.Murphy@rams.colostate.edu>.

Note 3: Late homework submissions will not receive credit.

Note 4: Demonstrating competency in each Learning Studio Module (LSM) of the course is required. Competency is assessed through Assessment 1 (for LSM 1 and LSM 2), Assessment 2 (for LSM 3 and LSM 4), and Assessment 3 (for LSM 5). Students who do not demonstrate competency in an LSM will be notified after the corresponding assessment and will be given the opportunity to gain competency by completing remedial course-related work, assigned by the instructor. Completing the remedial work in a satisfactory fashion establishes the student's competency in the corresponding LSM, but does not affect the student's grade. However, if the remedial work is not completed in a satisfactory fashion the student will automatically receive the grade F in the course.

Note 5: Math foundation extra credit consists of two components: attending lectures and solving problems sets.
- 1% extra credit for any student who attends at least seven math foundation lectures,
- 1% extra credit for any student who receives an average grade of 85% or more on math foundation problem sets.

--

Course Topics and Tentative Schedule
LSM1. Transient and Complex Exponential Signals (Chapter 1) [8/24-9/7]

- Continuous-time and discrete-time Signals (1.1)
- Signal energy and power (1.1)
- Periodic signals (1.2)
- Even and odd signals (1.2)
- Continuous-time complex exponential and sinusoidal signals (1.3)
- Discrete-time complex exponential and sinusoidal signals (1.3)
- Discrete-time unit impulse and unit step sequences (1.4)
- Continuous-time unit impulse and unit step functions (1.4)

LSM2. Linear Time-Invariant Systems (Chapters 1 and 2) [9/9-9/21]

- Continuous-time and discrete-time systems (1.4)
- Linearity (1.6)
- Time-invariance (1.6)
- Discrete-time LTI systems: Convolution sum (2.1)
- Continuous-time LTI systems: Convolution integral (2.2)
- Properties of LTI systems: Memory, causality, invertibility, stability, and unit step response (2.3)
- Causal LTI systems described by differential and difference equations (2.4)

KI1: First Knowledge Integration (KI) with ECE 331 and ECE 341 [9/23-9/24]

Assessment 1 (Exam 1) [9/30]

- Covers LSM1, LSM2, and KI1

LSM3. Spectrum Analysis of Continuous-Time Signals (Chapters 3 and 4) [9/28-10/19]

- Continuous-time Fourier series (3.3)
- Convergence of the Fourier series and Gibbs phenomenon (3.4)
- Properties of continuous-time Fourier series: Linearity, time shifting, frequency Shifting, differencing, symmetries, multiplication-convolution, and Parseval's identity (3.5)
- Continuous-time Fourier transform of aperiodic signals (4.1)
- Continuous-time Fourier transform of periodic signals (4.2)
- Properties of continuous-time Fourier transform: Linearity, time and frequency shifting, differentiation, symmetries, multiplication-convolution, and Parseval's identity (4.3)

LSM4. Spectrum Analysis of Discrete-Time Signals (Chapters 3 and 5) [10/21-11/2]

- Discrete-time Fourier series (3.6)
- Properties of discrete-time Fourier series: Linearity, time and frequency shifting, differencing, symmetries, multiplication-convolution, and Parseval's identity (3.7)
- Discrete-time Fourier transform of aperiodic signals (5.1)
- Discrete-time Fourier transform of periodic signals (5.2)
- Properties of discrete-time Fourier transform: Linearity, time and frequency Shifting, differentiation, symmetries, multiplication-convolution, and Parseval's identity (5.3)
- Duality between Fourier transform and Fourier series (5.7)
Duality between Fourier transform and Fourier series (5.7)

KI2: Second Knowledge Integration with ECE 331 and ECE 341 [11/3-11/4]

Assessment 2 (Exam 2) [11/11]

- Covers LSM3, LSM4, and KI2

LSM5. Frequency Response of LTI systems and Sampling (Chapters 6 and 7) [11/9-11/18 and 11/30-12/7]

- Sinusoids and complex exponentials as eigenfunctions of LTI systems (notes)
- Frequency response of LTI systems: Magnitude and phase responses (6.1 and 6.2)
- Linear phase systems, group delays, and Bode plots (6.2)
- Ideal Lowpass, bandpass, and highpass filters (6.3)
- First-order and second-order systems (6.5 and 6.6)
- Shannon-Nyquist sampling theorem (7.1)
- Aliasing effect and antialiasing filters (7.3)
- Discrete-time processing of continuous-time signals (7.4)

KI3: Third Knowledge Integration with ECE 331 and ECE 341 [12/8-12/9]

Assessment 3 (Exam 3) [12/15]

- Comprehensive; Covers all LSMs and KIs.

--

Use of Online Homework Helper Sites:

Online “homework helper” sites including, but not limited to Chegg, NoteHall, Quizlet, and Course Hero, Koofers, are meant as study resources to help students better understand basic concepts covered in their courses. They are not intended to do homework/exams from this course for you. The use of such online resources is not permitted for solving homework and exam problems in this course. Your homework and exam submissions must be your independent work. In addition, you are not allowed to post or share homework problems and or exams (in full or in part) from this course to such websites.

--

Important Information on COVID-19 Required Reporting

All students are required to report any COVID-19 symptoms to the University immediately, as well as exposures or positive tests from a non-CSU testing location. If you suspect you have symptoms, or if you have been exposed to a positive person or have tested positive for COVID, you are required to fill out the COVID Reporter (https://covid.colostate.edu/reporter/) . Do not ask your instructor to report for you. If you do not have internet access to fill out the online COVID-19 Reporter, please call (970) 491-4600. For the latest information about the University’s COVID resources and information, please visit the CSU COVID-19 site: https://covid.colostate.edu/ .