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Manifold-Based Classification of Underwater
Unexploded Ordnance in Low-Frequency Sonar

Nick H. Klausner, Member, IEEE, and Mahmood R. Azimi-Sadjadi , Life Member, IEEE

Abstract—This paper addresses the problem of discriminating
underwater unexploded ordnance (UXO) from non-UXO objects
using manifold learning principles when applied to data collected
from low-frequency sonar. Our classification hypothesis is that the
sequence of measurements collected from an object lie in some low-
dimensional subspace which is locally linear but globally nonlinear.
These low-dimensional features and their behavior on the manifold
can then be used to discriminate among various UXO and non-
UXO objects that may be encountered in shallow water environ-
ments. With this goal in mind, techniques are developed to not only
learn the manifold but also to provide an out-of-sample embedding
for newly acquired data. The manifold features from the training
set are then used to construct local linear subspaces for represent-
ing each newly embedded testing feature vector. A statistical-based
technique is then used to select the most likely class label by finding
the class which best represents the data. The ability of the classifier
to discriminate among multiple object types is then demonstrated
using a sonar data set collected from underwater objects in a con-
trolled setting. Classification results are presented and compared
with an alternative method that also relies on a set of features ex-
tracted using manifold learning principles.

Index Terms—Manifold learning, nonlinear dimensionality re-
duction, subspace classification, underwater munition classifica-
tion.

I. INTRODUCTION

D ETECTION, classification, and remediation of military
munitions and unexploded ordnance (UXO) in shallow

water are of utmost importance to many Department of Defense
(DoD) agencies owing to the severity of threats they pose to
humans and the environment. The problem is challenging due
to variability in environmental conditions as well as obscuration
of the munitions. Thus, new technologies are needed to rapidly
and reliably assess large areas that are potentially contaminated
with munitions and detect, localize, and identify each individual
threat with a high degree of accuracy.
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Present systems employed to search for underwater munitions
in shallow water are typically based upon low frequency broad-
band sonar that offer longer detection range and wider survey-
ing area while at the same time provide good penetration into
the sediment for detecting partially or fully buried munitions.
Moreover, the use of transmitted signals with a wider bandwidth
provides high range resolution for detailed surveys with greater
localization capability as well as better ability to excite those dis-
criminatory structural modes of the proud and/or buried targets
for unambiguous target classification. The theme of this paper
is the development of dedicated methods for feature extraction
and classification of military munitions that remain robust to
operating and environmental changes using data collected from
low-frequency sonar systems.

Extracting low-dimensional features that are representative of
the properties of the original high-dimensional data is an impor-
tant topic in pattern recognition, information retrieval, and data
mining. These dimensionality reduction algorithms can be typi-
cally categorized into linear versus nonlinear. Among the linear
methods are principal component analysis (PCA) and Fisher
discriminant analysis (FDA) [1], which attempt to find a low-
dimensional linear subspace that best characterizes the struc-
ture of the data. Among the popular nonlinear dimensionality
reduction methods are manifold learning algorithms including
isometric feature mapping (ISOMAP) [2], [3], locally linear em-
bedding (LLE) [4], [5], maximum variance unfolding (MVU),
or semidefinite embedding [6], and Laplacian eigenmaps (LE)
[7]. Unlike ISOMAP [2], which is global in nature, i.e., pre-
serves geometry at all scales, LLE and LE are local approaches
in which they attempt to only preserve the local geometry of the
data by mapping nearby points in the ambient space to nearby
points on the low-dimensional manifold. Similar to LLE, MVU
[6] also belongs to the class of spectral embedding, though it is
based on estimating and preserving local distances and angles.
These methods exhibit several problems including inability to
deal with highly curved manifolds and out-of-sample extension
for nonisometric manifolds. The latter implies that they fail to
provide a feature mapping (explicit or implicit) to map new data
points that are not included in the original training set.

Although most work has involved exploiting manifold struc-
ture for dimensionality reduction, not much attention has been
paid to its use in feature extraction for classification purposes. In
[8], the authors discussed exploiting manifold structure for the
purposes of enhancing classification performance. Given a set
of explicit generative models, one for each signal manifold, the
authors devise a maximum likelihood (ML) approach to signal
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classification. Under a signal-plus-noise representation with a
spherically symmetric noise model, the classification problem
is cast as one of finding the signal manifold that is closest to the
test sample, an approach similar to the one adopted here. In [9],
the authors exploited a manifold-based classification method by
assuming that the data from all classes lie on the same sub-
manifold. Low-dimensional features are subsequently extracted
using the LE algorithm. Using these low-dimensional features,
a linear classification strategy was employed to distinguish one
class from another.

The goal of this paper is to develop and test a new feature ex-
traction and classification framework for discriminating among
various UXO and non-UXO objects using low-frequency sonar.
The underlying hypothesis motivating the methods developed in
this paper is that the set of sonar returns collected from an object
as the platform is translated along a certain path produces a se-
quence of aspect-dependent observations which inherently lie on
some low-dimensional manifold [10]. These low-dimensional
features and their dynamic behavior on the manifold can then
be used to discriminate one type of object from another. With this
objective in mind, a manifold is trained using the LE algorithm
[7], which is extended to include previously unseen testing data
to yield an out-of-sample embedding. Once these manifold fea-
tures are extracted, the training features from each object type are
used to construct linear subspaces for locally representing each
extracted feature. A statistically inspired classification strategy
is then proposed based on ML principles which selects the class
best representing the data. The performance of the proposed fea-
ture extraction and classification methods are then demonstrated
by applying them to a data set collected in a freshwater pond con-
sisting of a rail system collecting sonar backscatter from multiple
object types at different range and orientation. The algorithm’s
classification performance is benchmarked against that in [9],
which also relies on the LE algorithm for feature extraction,
using metrics such as probability of correct classification and
receiver operating characteristic (ROC) curve.

This paper is organized as follows. Section II gives a review of
the methods used to train and embed newly acquired data points
on the manifold. Using these extracted features, Section III then
describes the technique introduced to perform classification on
the trained manifold. Section IV-C gives the test results of the
proposed classifier when trained on simulated data and then ap-
plied to two low-frequency sonar data sets containing various
UXO and non-UXO objects. Finally, Section V gives conclud-
ing remarks on this paper.

II. FEATURE EXTRACTION USING MANIFOLD LEARNING

The first step in the proposed classification algorithm [11] is
to perform feature extraction and dimensionality reduction using
manifold learning. Here, it is assumed that we are given a set ofN
labeled training patterns {xi}Ni=1 with each xi ∈ RD belonging
to one ofL different models or classes. Given this set of data, we
wish to define a mapping f : RD → Rd (d � D) such that the
feature vector yi = f (xi) ∈ Rd captures the general behavior
of the data over a low-dimensional manifold.

LE [7] is an algorithm that attempts to achieve this mapping
by defining features such that if the data points xi and xj are

near one another in the original high-dimensional ambient space
then their corresponding feature representations yi and yj will
be near one another in the low-dimensional space as well. The
algorithm begins by defining a weighted graph whose edges are
set by selecting the K nearest neighbors to each point. Each
edge relating the data point xi to xj is then weighted using

wij =

{
k(xi,xj), if nodes i and j are connected

0, otherwise

for some symmetric continuous function k(·, ·), typically chosen
to be the Gaussian k(xi,xj) = exp{−(||xi − xj ||2)/σ2} with
smoothing parameterσ2. Given this graph connecting each point
to its nearest neighbors, we then wish to find the set of coordi-
nates Y = [y1 · · · yN ] ∈ Rd×N that minimizes the objective
function

J(Y) =

N∑
i=1

N∑
j=1

wij ||yi − yj ||2. (1)

That is, to produce a set of coordinates that are near one an-
other if their corresponding data points are near one another in
the original ambient space. Enforcing additional constraints that
remove several trivial solutions associated with minimizing (1)
yields the optimization problem [7]

min
Y

tr
(
YLYT

)

s.t.
YDYT = I
YD1 = 0

(2)

where L = D−W is the graph Laplacian, W is a symmetric
matrix with elements [W]ij = wij , D = diag{∑j wj1, . . . ,∑

j wjN}, and 1 = [1 · · · 1]T ∈ RN . The solution to this opti-
mization problem can be found by solving the generalized eigen-
value problem Ly = λDy and extracting eigenvectors associ-
ated with the smallest d nonzero eigenvalues [7]. This process
then embeds each data point in Rd.

Although the LE method gives one the ability to learn the
structure of an underlying manifold in the training data, the the-
ory described above does not directly allow one to extract low-
dimensional features for novel testing data. That is, the method
does not allow one to embed unforeseen data on the manifold.
One could simply attempt to achieve this by adding new rows
and columns to the weight matrix W corresponding to the new
data points. However, this would change the solution to (2) at-
tained during training, i.e., adding new data would modify the
structure of the manifold. Moreover, the algorithm is not directly
capable of synthesizing data in the original ambient space based
on its corresponding location on the manifold. Therefore, we
seek a method that is able to embed test data on the manifold
without modifying its structure for the purposes of extracting
features from newly acquired data.

To embed novel testing data onto the manifold, we employ
the use of a latent variable approach [12] which combines the
advantages of the original LE method with those of latent vari-
able models. For this method we assume that there exist a pair
of data matrices Xs ∈ RD×N and Xu ∈ RD×M representing
data previously seen during the training process and the unseen
novel testing data, respectively. With these two data matrices,
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we then wish to find an embedding Yu ∈ Rd×M for the unseen
data while leaving the embedding Ys ∈ Rd×N for the training
data unchanged. The most natural way to accomplish this is to
extend the problem in (2) by modifying the objective function
as

J(Yu) = tr

(
[Ys Yu]

[
Lss Lsu

Lus Luu

] [
YT

s

YT
u

])

= tr
(
YsLssY

T
s

)
+ 2tr

(
YsLsuY

T
u

)
+ tr

(
YuLuuY

T
u

)
(3)

where Lss and Luu are the graph Laplacians for Xs and Xu,
respectively, and Lsu = LT

us is the graph Laplacian shared be-
tween them. Note that the constraints used in (2) are not required
in this case since they are already imposed on the solution for
Xs [12]. Taking the derivative of (3) with respect to the un-
known feature matrix Yu while imposing the constraint that Ys

remains fixed yields the solution

Yu = −YsLsuL
−1
uu. (4)

If we now consider a single novel testing sample (i.e.,M = 1)
so that xu = Xu ∈ RD and yu = Yu ∈ Rd, then the two graph
Laplacian used in embedding this data point on the manifold are
simply given by

Lsu = −wsu = −[k(xu,x1) · · · k(xu,xN )]T ∈ RN

and

Luu = �uu = 1Twsu =

N∑
i=1

k(xu,xi).

Substituting these expressions into the solution given in (4)
yields the feature vector

yu = f(xu) = − 1

�uu
YsLsu =

Yswsu

1Twsu

=

N∑
i=1

k(xu,xi)∑N
j=1 k(xu,xj)

yi. (5)

Using these results for the purposes of both embedding (analy-
sis) and reconstructing (synthesis) data points on the manifold
finally suggests the pair of relationships [12]

f(xu) =
N∑
i=1

k(xu,xi)∑N
j=1 k(xu,xj)

yi (6)

g(yu) =

N∑
i=1

k(yu,yi)∑N
j=1 k(yu,yj)

xi. (7)

Thus, new data points are embedded onto the low-dimensional
manifold and reconstructed using a convex combination of the
samples used in the training set.

III. MANIFOLD-BASED CLASSIFICATION USING LOCAL

LINEAR REPRESENTATIONS

As discussed before, the guiding principle behind many mani-
fold learning algorithms is that the data lie on a low-dimensional
manifold which parameterizes the inherently nonlinear proper-
ties of the data. However, it is often assumed that the manifold

is locally linear so that, at least on small enough scales, one may
measure distances between neighboring points using Euclidean
means. In keeping with this same philosophy, we develop a clas-
sification method that relies on local measures when deciding
the class label of an object [11]. This is achieved by construct-
ing local linear subspaces using the training data for each object
type and selecting the one that is best capable of representing
the data. Thus, unlike traditional template matching which per-
forms replica correlation or the matched subspace classification
[13], [14] which uses energy of the signal in a subspace to make
decisions, the proposed method exploits locally adaptive aspect-
dependent subspace using manifold features.

Fig. 1 gives a block diagram of the proposed classification
system. The first step in the process involves extracting a set of
low-dimensional features by embedding them onto the manifold.
Let the matrix Ys = [Y1 · · · YL] denote the set of training
features found by solving (2) using labeled training data where
Yj ∈ Rd×Nj denotes those feature vectors associated with class
(or object type) j ∈ [1, L]. Also, let

Xu =
[
x
(u)
1 · · · x(u)

M

]
∈ RD×M

denote a sequence ofM newly observed testing data vectors with
M ≤ Nj . It is assumed that the columns of matrix Xu form a
naturally ordered sequence (according to the vehicle path) and
that every column within this matrix corresponds to the same
class. In this specific application, this sequence of vectors is
formed by measuring an object’s acoustic response in a linear
survey path leading to a sequence of M aspects from the same
object. Feature extraction is subsequently performed by individ-
ually applying each vector x(u)

i in Xu to the analysis equation
given in (6) using the training features in Ys to produce the set
of feature vectors Yu ∈ Rd×M in an unsupervised fashion.

A. Sequence Matching

Once this set of low-dimensional feature vectors has been ex-
tracted, the next step in the classification procedure shown in
Fig. 1 involves finding the subset of features in each training
data matrix Yj , j ∈ [1, L] that best matches the sequence of
extracted features in Yu. Since in this application the columns
of data matrixXu form a naturally ordered sequence of observa-
tions from an object over a range of aspect angles, it makes sense
in this case to find the corresponding range of aspect angles in
the training data that best matches the extracted features. In this
way, one may define each point’s nearest neighbors by finding
where the data matrix Yu as a whole best matches the training
data for each class as opposed to relying on point-wise estimates
of proximity through Euclidean distance. Fig. 2(a) gives a depic-
tion of the idea behind this process for two sequences of features
lying on a low-dimensional manifold.

Finding the set of training features that provides the best match
is accomplished by taking a length-M sliding window of the fea-
ture vectors (i.e., for M aspects) in Yj and computing the nor-
malized inner product (or matching index) between the features
in that window and the extracted sequence of features in Yu.
That is, if we let Y(m)

j ∈ Rd×M denote the subset of features
corresponding to the mth window, the match between these two
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Fig. 1. Block diagram of the entire classification system. Low-dimensional manifold features are extracted from the frequency-dependent acoustic response of
an unknown object. Sequence matching determines candidate aspect sequences with high similarity indices. Aspect-class dependent subspace classifier decides
the class membership of the unknown object.

(a) (b)

Fig. 2. Performing classification on the manifold using the extracted sequence
of featuresYu. (a) Finding the sequence of features inYj that best matchesYu.
(b) Constructing local linear subspaces {Hi,j} from the training data nearest

each sample y
(u)
i .

sets of features is measured by finding the index m∗ that gives

m∗ = argmax
m

Cj(m) =

∣∣∣〈Y(m)
j ,Yu〉

∣∣∣2
||Y(m)

j ||2F ||Yu||2F
. (8)

In this equation, the expression 〈A,B〉 = tr(BTA) represents
the Frobenius inner product between matrices A and B and
||A||F =

√
tr(ATA) is the Frobenius norm of matrix A. Note

that this matching index takes the value 1 whenY(m)
j = Yu and

zero when columns ofY(m)
j are orthogonal to the corresponding

columns of Yu.
Fig. 3 illustrates the plots of the matching index Cj(m) pro-

duced by the manifold features of the measured response from
an aluminum UXO object when applied to those of the model-
generated [13], [15] training data from an aluminum UXO and
aluminum cylinder. The top image in Fig. 3 displays the portion
of the frequency-aspect acoustic color response around 20◦ as-
pect angle for the actual UXO object. The top image in each sub-
plot shows the acoustic color templates of the model-generated
data at all aspects for each of these two objects while the bottom
graphs give the plot of feature space matching index given in
(8) as m is varied. The vertical dashed line in each plot denotes
the point where the matching index reaches its maximum value
and the corresponding window is shown above it in the acoustic
color template using a red box. From this figure, one can see that
aluminum UXO class produces a much higher level of match.
More importantly, one can see that the matching index in (8)
for the aluminum UXO indeed correctly estimates the object’s
aspect angle as the graph achieves its maximum value near 20◦.
Note that the fact that there are two distinct maxima points in this
plot is due to the rotational symmetry exhibited by a cylindrical
object.

It must be pointed out that although in this example this aspect-
dependent sequence matching resulted in higher matching for
the correct object class, it lacks robustness to object orientation,
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Fig. 3. Sequence matching results of an actual aluminum UXO around a 20◦
aspect angle (top) with those extracted from simulated aluminum UXO and
cylinder. The red box shows the corresponding window of aspect angles where
the matching index reached its maximum value.

range, and variation in seafloor properties. That is, it is possible
that for a certain range of aspects two objects of different classes
exhibit similar matching results at some object orientations.

B. Class Determination Using Local Linear Representations

Once it is determined where the sequence of feature vectors
Yu best fits (with respect to aspect sequence) with the training
sequence from each class in Yj , the final stage of our classi-
fication process [11] in Fig. 1 involves building locally linear
representations and selecting the class that best represents the
data. This is accomplished by expressing each feature vector in
Yu as a linear combination of its P nearest neighbors in Y

(m∗)
j

found by applying (8), measuring the error in each representa-
tion, and selecting the class that yields the least error. Fig. 2(b)
gives a depiction of this process where each point is connected
to its P = 5 nearest neighbors using a dashed line.

For each y
(u)
i in Yu for i = 1, . . . ,M , let Hi,j ∈ Rd×P be

the local linear subspace formed from the P vectors in Y
(m∗)
j

nearest in aspect to y
(u)
i . That is, for each object type j ∈ [1, L]

and for every sample i ∈ [1,M ], a linear subspace is constructed
using the training data that provides the best match with the
extracted features. Note that there can and will be some overlap
in the feature vectors used to construct each subspace for nearby
samples, i.e., many of the feature vectors used to build Hi,j will
also be used to buildHi+1,j , and so on. Then, each feature vector

y
(u)
i is represented using the linear model

y
(u)
i = Hi,jθi + ni (9)

where θi ∈ RP is a vector of deterministic but unknown pa-
rameters and ni ∈ Rd is a vector containing elements that are
independent identically distributed realizations of a zero-mean
normal random variable with unknown varianceσ2. Thus, in this
model the unknown vector θi describes the coordinates in the
local linear subspace Hi,j for y(u)

i and the unknown variance
σ2 in some sense measures the inaccuracy in representation be-
tween measurement and model. Under these assumptions, the
data matrix Yu has the likelihood function

�j(Yu) =
1

(2πσ2)dM/2
exp

{
− 1

2σ2

M∑
i=1

∣∣∣
∣∣∣y(u)

i −Hi,jθi

∣∣∣
∣∣∣2
2

}

(10)
where ||x||2 denotes the �2 norm of vector x. Replacing the
unknown parameters θi and σ2 in (10) with their ML estimates

θ̂i =
(
HT

i,jHi,j

)−1
HT

i,jy
(u)
i (11)

σ̂2 =
1

dM

M∑
i=1

∣∣∣
∣∣∣y(u)

i −PHi,j
y
(u)
i

∣∣∣
∣∣∣2
2

(12)

results in the likelihood function

�j(Yu) =
1

(2πσ̂2)dM/2
exp

{
− 1

2σ̂2

M∑
i=1

∣∣∣
∣∣∣y(u)

i −Hi,j θ̂i

∣∣∣
∣∣∣2
2

}

= e−dM/2

(
2π

dM

M∑
i=1

∣∣∣
∣∣∣y(u)

i −PHi,j
y
(u)
i

∣∣∣
∣∣∣2
2

)− dM
2

.

(13)

In expressions (12) and (13), the matrix

PHi,j
= Hi,j

(
HT

i,jHi,j

)−1
HT

i,j

is the orthogonal projection matrix onto the P -dimensional sub-
space spanned by the columns (training vectors) of matrix Hi,j .
Ignoring all constants that are not dependent on the data, one
can see from (13) that finding the class index j that maximizes
likelihood is equivalent to finding the class which solves the
optimization problem

j∗ = argmin
j

εj(Yu) (14)
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Fig. 4. Training data and corresponding manifold features for an aluminum cylinder object. (a) Acoustic color training template. (b) Manifold features in three
dimensions.

with the objective function

εj(Yu) =

M∑
i=1

∣∣∣
∣∣∣y(u)

i −PHi,j
y
(u)
i

∣∣∣
∣∣∣2
2
. (15)

Thus, by projecting the observation (manifold feature vectors)
onto the local linear subspace Hi,j through the projection oper-
ator PHi,j

, the minimization problem in (14) selects the class
which best models the data in the sense of minimizing the er-
ror in representing the data. This representation indeed captures
the object-dependent dynamical behaviors on the manifold by
employing the local features that are used to build the subspace
matrices Hi,j .

IV. RESULTS AND DISCUSSION

A. Training Data Set and Manifold Learning

The target-in-the-environment-response model [15], which
combines an acoustic ray model for propagation and a free-
field target scattering model was utilized to generate raw sonar
returns for different simulated runs. Using this model and pro-
cedures described in [13] and [16], raw sonar runs for four (out
of five) different objects, two “replica UXO” objects (aluminum
and steel UXO) and two non-UXO objects (aluminum cylinder
and pipe), used in the PondEX experiments were modeled. The
real UXO object in the PondEX experiments was not included to
test the generalization ability of the overall classification system.
The modeled runs were designed to mimic a circular path with
the object at the center 10 m from the sonar. The sonar eleva-
tion was 3.8 m above the sediment. The synthetic sonar data sets
were generated for two different environments with water sound
speeds matching those conditions in PondEx experiments, how-
ever, one used the sediment sound speed of sand and the other
used that of a slightly denser material like a sand-clay mixture.
These raw synthetic sonar returns were then processed to create
acoustic color data [13], [16]. All acoustic color data from these
experiments are on a calibrated absolute target strength scale.

The acoustic color data for each object are subsequently
used as training data set to build the low-dimensional manifold.
Thus, the original data vector xi ∈ RD referred to throughout

Section II represents the acoustic color response of a particular
object at a given aspect angle. That is, each element of the vector
xi represents the magnitude of the frequency response over the
25 kHz bandwidth of the sonar system with a 50 Hz resolution
resulting in a D = 501 dimensional data vector at each aspect.
As mentioned before, for all of the object types in the test set ex-
cept for the real UXO, model-generated acoustic color templates
containing the spectral information for that object over the entire
360◦ range in aspect were used to train the manifold mapping
process. Figs. 4(a) and 5(a) give two examples of the training
acoustic color data for an aluminum cylinder and a UXO object,
respectively. The training acoustic color data from all objects
included in the training set are then used together to form the
weight matrix W and graph Laplacian L used in (2). Here, the
weighted graph was constructed by finding the K = 64 nearest
neighbors to each training point and weighting them with the
Gaussian

k(xi,xj) = exp

{
−||xi − xj ||

σ2

}

with smoothing parameter σ2 = 2.5. Using the smallest d = 48
eigenvectors of the graph Laplacian L, the set of coordinates
Y associated with each object type are then used as training
features to represent that particular object. Figs. 4(b) and 5(b)
give examples of the first three (out of 48) manifold coordinates
for an aluminum cylinder and aluminum UXO objects corre-
sponding to their acoustic color data given in Figs. 4(a) and 5(a),
respectively. From these two figures one can see that, although
the manifold for each object does indeed form a definitive track
as one moves from one aspect to another, that track is very
complicated and somewhat erratic at least in three dimensions.

B. Testing Data Set and Procedure

To test the ability of the proposed method for discriminating
UXO from non-UXO objects, the classification method in
Section III was applied to the experimental PondEx09 and
PondEx10 data sets [15] collected at Naval Surface Warfare
Center Panama (NSWC), Panama City, FL, USA. The pond
facility used in these experiments was designed to collect sonar

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on September 13,2021 at 20:53:07 UTC from IEEE Xplore.  Restrictions apply. 



1040 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 45, NO. 3, JULY 2020

Fig. 5. Training data and corresponding manifold features for an aluminum UXO object. (a) Acoustic color training template. (b) Manifold features in three
dimensions.

Fig. 6. Layout of the target fields for PondEx experiments.

data from underwater objects in a relatively controlled and
clutter-free environment. Fig. 6 shows the layout of the test setup
for PondEx10 experiments including the relative locations of
the rail-mounted sonar system and the objects in the target field.
Note that for the PondEx09 data set, the set up was the same but
the objects were placed one at a time. As can be seen from Fig. 6,
both experiments consisted of a 20-m rail system collecting
sonar returns from one or more objects with varying shapes,
sizes, and compositions located at a certain range from the rail.
In most cases, the object was placed at a range of 10 m but there
were several experiments where the object was located only
5 m from the rail. There were a total of nine object orientations
ranging from −80◦ to +80◦ in 20◦ increments where a 0◦ object
orientation designates a configuration where the object’s major
axis is parallel to the rail system. The sonar transmit signal was a
6-ms linear frequency modulated (LFM) pulse over 0.5–30
kHz with a 10% taper between the leading and trailing edges
to minimize ringing in the transmitted signals. For the studies
conducted here, five different object types were used. Table I
gives a list of the object types used in this study which consists
of three UXO objects of different material properties as well as
two non-UXO objects, namely an aluminum cylinder and pipe.

Each run of data consists of 800 pings in which the sonar
platform moved along the fixed rail in increments of 0.025 m,
transmitting and receiving once for each fixed position. Sonar
backscatter was received with six hydrophone elements that are
arranged in a linear array that is approximately normal to the

TABLE I
OBJECTS IN THE PONDEX09-10 TESTING DATA SET

seafloor, though only data collected by the hydrophone closest
to the seafloor were used in this study. The data were sampled
at 1 MHz and the sonar platform was tilted at a fixed 20◦ angle
for all runs (angle of the sonar main response axis with respect
to the horizontal plane). Since the objects in the PondEx10
experiments are relatively close to one another and moreover
presence of reverberation and other artifacts are inevitable,
a postprocessing filter [16] was applied to the collected data
to isolate the response of each individual object of interest
while removing all the interference. This processing utilizes a
reversible SAS imaging process, a spatial filtering process using
a 2-D Tukey window, and a pseudo-inverse filtering [17]. This
inverse filter maps the SAS image back to the pulse-compressed
version, which is subsequently transformed to the acoustic
color data vectors x(u)

i for i = 1, . . . ,M using FFT. Thus, each

element of the data vector x(u)
i gives the magnitude response for

the ith aspect at a particular frequency. Given the ping rate and
beamwidth of the sonar system used here, a total of M = 40 as-
pects are used to classify the object corresponding to a window
spanning a range of approximately 20◦ in aspect angle. Fig. 7(a)
and (b) gives an example of the filtered time series and measured
acoustic color for an aluminum UXO at a 20◦ orientation angle,
respectively. This acoustic color data is then applied to the syn-
thesis equation given in (7) to extract the manifold features for
this UXO object as shown in Fig. 7(c) for the first two features.

As described in Section III, the first step in the classification
process depicted in Fig. 1 involves identifying the sequence of
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Fig. 7. Filtered time series, target strength, and manifold features for
an aluminum UXO at a 20◦ orientation angle. (a) Filtered time series. (b)
Associated target strength. (c) Extracted manifold features (first two) versus
training features.

training features for each object type that best matches the ex-
tracted feature vectors using the matching index in (8). As men-
tioned before, this ordered sequence corresponds to the range of
aspect angles observed for a given target so that finding the se-
quence that best matches the data corresponds to estimating the
aspect angle of the target. Fig. 3 once again gives an illustration
of this process when the features from an aluminum UXO are ap-
plied to the training data from an aluminum UXO and aluminum
cylinder. Once the aspect is estimated for each object type, the
final step in the classification algorithm involves representing
each observed feature vector y(u)

i for i = 1, . . . ,M using train-
ing feature vectors local to that observation. To accomplish this,
the P = 10 training manifold feature vectors corresponding
to the jth object that are nearest in aspect to y

(u)
i are used to

construct the dictionary matrix Hi,j used in the linear model

(9). More specifically, if we let
{
y
(i,j)
k

}P

k=1
be the P training

feature vectors from object type j nearest to the extracted
feature vector y(u)

i , then this dictionary matrix is constructed
as

Hi,j =
[
y
(i,j)
1 · · · y(i,j)

P

]
∈ Rd×P .

Fig. 8(a) and (b) plots the first two features of y
(u)
i for an

aluminum cylinder at an 80◦ orientation angle with each green
dot in both of these figures corresponding to single aspect angle.
The blue dots in each of these plots denote the subset of the
trained manifold for two different objects that best matches the
extracted features using sequence matching index (8): Fig. 8(a)
shows the manifold for an aluminum cylinder while Fig. 8(b)
shows that for an aluminum UXO. Given the extracted features
as well as the trained manifold for each of these two objects,

Fig. 8. Comparing the extracted features from an aluminum cylinder to its

least-squares estimate ŷ
(u)
i,j = Hi,j θ̂i for two objects. (a) Aluminum cylinder

manifold. (b) Aluminum UXO manifold.

each red dot in these figures plots the estimated feature vector

ŷ
(u)
i,j = Hi,j θ̂i = PHi,j

y
(u)
i

where θ̂i is the least-squares estimate of the unknown vector
θi in (11). The vector ŷ

(u)
i,j provides the best estimate of the

observation y
(u)
i in the linear subspace Hi,j by orthogonally

projecting the observation into that subspace. Note that, given
this definition, the objective function in (15) can be rewritten as

εj(Yu) =
M∑
i=1

∣∣∣
∣∣∣y(u)

i − ŷ
(u)
i,j

∣∣∣
∣∣∣2
2
. (16)

That is, the classifier selects the object that produces the closest
(in the sum-squared sense) estimates to the measured data.
Looking at Fig. 8 for the first two manifold features, it appears
that the manifold corresponding to the aluminum cylinder does a
much better job of producing estimates that reflect the extracted
features than those produced by the manifold corresponding
the aluminum UXO.
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C. Classification Results

This section presents classification results for the test data
sets described in Section IV-B. Two experiments were con-
ducted using data collected from objects at different ranges from
the sonar. For both experiments, the training data set included
model-generated data as described in Section IV-A for four ob-
ject types at a 10-m range to construct the manifold features. The
trained classifier was then applied to all the test objects listed in
Table I from both PondEx09 and PondEx10 data sets. However,
in the first experiment test data sets for only 10-m range were
used while for the second experiment data collected from an
aluminum UXO at a 5-m range were also included. The intent
of the first study was to demonstrate the algorithm’s ability to
discriminate among UXO and non-UXO objects and also study
whether the manifold features of the training objects can ad-
equately represent those of the previously unseen objects i.e.,
the real UXO. However, the goal of the second study was to
determine the effects of target range on the manifold features.

The results of the proposed classification method for both ex-
periments were then compared to those of an alternative method
in [9] which also relies on the same set of manifold features
found by solving (2). Given the set of labeled training features
Ys ∈ Rd×N described in Section II with each feature vector
ys
i ∈ Rd assigned the binary label ci ∈ {+1,−1} (in this case

used to differentiate between UXO and non-UXO objects), the
alternative method in [9] performs linear classification in the
manifold domain by finding the vector a ∈ Rd that solves

min
a∈Rd

∣∣∣∣c−YT
s a

∣∣∣∣2 (17)

wherec = [c1 c2 · · · cN ]T ∈ RN . Solving (17) yields the least-
squares solution a =

(
YsY

T
s

)−1
Ysc. Upon extracting a new

test sample y ∈ Rd using the synthesis equation in (6), the esti-
mated class label ĉ is assigned using the following rule

ĉ =

{
+1, if aTy > 0
−1, if aTy ≤ 0.

(18)

Thus, one can see that the classifier in (18) relies on the same
set of features but, rather than building local linear subspaces
that are matched to the aspect of the object, a simple linear
combination of the features is taken to perform classification.
When applied to the PondEx data sets used here, the class label
in (18) is computed for each of the M = 40 aspect angles and a
majority rule is enforced to assign an overall label to that object.

Fig. 9 displays the ROC curve for both the proposed classifier
in (14) (plotted with a dark shaded line) as well as that of the
method in (18) (plotted with a lighter shaded line). This figure
plots the probability of correct UXO classification Pcc versus
the probability of false alarm Pfa. The knee-point of the ROC
curve (the point at which Pcc + Pfa = 1) denoted by a circle in
these plots indicates an approximate 10% improvement for the
proposed method over the alternative in [9].

Table II gives the overall correct classification rates for
each object in the PondEx data set and for both classification
methods. Comparing the results in this table, one can see that
with the exception of the aluminum pipe, the proposed classifier

Fig. 9. ROC curve for the PondEx data set.

TABLE II
PONDEX DATA SET CORRECT CLASSIFICATION RATES

in (14) achieved 10%–20% improvement in classification
performance. This improvement in classification accuracy
observed in both Fig. 9 and Table II is attributed to the fact
that the alternative method in [9] relies on the use of a global
linear classifier to discriminate one class from another while
the proposed method relies on local subspace representations
to model the measured data. From Table II, it can also be noted
that both methods performed relatively well on the four objects
(i.e., the aluminum UXO, steel UXO, aluminum cylinder, and
aluminum pipe) learned by each classifier though the training
data were synthetically generated. However, the discrimination
performance for both classifiers was severely degraded for the
real UXO, which was not included in the training data set.
This degradation in performance is likely because the manifold
features of the synthetic data for other UXO objects were not
capable of capturing the properties of this particular object.

As described before, for the second experiment the trained
classifiers in the first experiment were applied to the test data
of a proud aluminum UXO at 5-m range to study the impact of
sonar range (or grazing angle θg) on the performance of both
classifiers. Fig. 10(a) and (b) clearly shows major differences in
acoustic color responses observed for this target at 10- and 5-m
range. Note that the data at 270◦ aspect angle was not used here
since it exhibits discontinuity due to wrapping artifact. This is
likely from the edge effects of the interpolation process in the
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Fig. 10. Acoustic color responses for a proud aluminum UXO object at various
range from the sonar: (a) 10-m range; and (b) 5-m range.

TABLE III
AL UXO PERCENT CORRECT CLASSIFICATION RATES AT DIFFERENT RANGES

original data. Table III gives the correct classification rates of
this UXO object under both scenarios and for both classification
methods. Similar to the results in Table II, one can once again see
a decline in the performance of both classifiers though the pro-
posed method exhibits about 10% improvement in performance
over that of the alternative method in [9]. The decline in the per-
formance is mainly attributed to the fact that compact sand has a
critical angle of around θc ≈ 34◦ and while for 10-m range θg ≈
21◦ < θc, for 5-m range θg ≈ 37◦ > θc which results in signifi-
cant (≈60%) loss of the acoustic energy into the sediment [15].
Nevertheless, the proposed method performed fairly well with a
correct classification rate of over 80% even though the simulated
training data set did not include sonar data at 5-m range.

V. CONCLUSION

This paper considered the development and testing of a
manifold-based feature extraction and classification strategy for
discriminating UXO versus non-UXO objects. The proposed
feature extraction and classification system are designed based
on the assumption that the data lies in some unknown low-
dimensional subspace, which is globally nonlinear but locally
linear. Based on this premise, a feature extraction technique us-
ing the LE [7] algorithm was proposed, which produces a set of
low-dimensional features that respect distances among training
points in the high-dimensional space. Extending the algorithm
to newly observed testing data yielded an out-of-sample embed-
ding procedure for the purposes of feature extraction.

Given this set of low-dimensional features, a multiaspect clas-
sification method was introduced to discriminate among UXO
and non-UXO objects. The first step in the algorithm involves
identifying the subset of training features that best matches the
extracted features using a sequence matching measure. This pro-
cess corresponds to estimating the aspect angle of the object.
Once this sequence has been identified, the set of training fea-
tures from each object type nearest the extracted features is then
used to form a local linear subspace to represent those features.
The most likely class label is then selected by finding the class
that minimizes the error in representing the extracted features.

The performance of the classifier was then demonstrated on
the PondEx data sets and compared to that of an alternative
method that relies on the same set of features but constructs a
linear classifier to discriminate one class from another. For this
study, both methods were trained using model-generated sonar
data to discriminate two non-UXO objects (cylinder and pipe)
from two replica UXO (aluminum and steel UXO) objects with
different shapes and material properties. The method was then
applied to testing data from these four objects as well as a pre-
viously unseen real UXO when each object was located 10 m
from the rail and sitting proud on the seafloor. For the four ob-
jects used to train the classifier, the proposed method was able to
correctly classify over 93% of the testing data in these data sets
versus an 82% correct classification rate for that in [9]. More-
over, the method was able to correctly classify nearly 70% of
the testing data for the real UXO object which was not included
in the simulated training data set. A second test was then con-
ducted to observe how changes in the target’s range or grazing
angle affect the performance of the classifiers. It was observed
that the method did indeed exhibit a deterioration in classifi-
cation performance with the sonar grazing angle significantly
deviates from what was used for training. Nevertheless, the sys-
tem trained with the simulated data of 10-m range was still able
to correctly classify over 80% of the data in these scenarios ver-
sus only a little over 70% for the alternative method in [9]. Future
testing should include more realistic data sets with more object
variations.
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