Objectives: To understand the concepts of digital logic and learn methods and tools for the design of digital circuits.

Prerequisites: Major in ECE or prior approval

Instructors: Professor Anura Jayasumana
Office/Phone: Engr C201D (970) 491-7855
Email: Anura.Jayasumana@Colostate.edu
Office Hrs: See Canvas for current hours.

URL: Students are expected to visit Canvas frequently for class handouts, homework assignments, lab assignments, and important announcements.

Grading Policy: The grade will be based on quizzes & homework (20%), labs (20%), midterm 1 (15%), midterm 2 (15%), midterm 3 (15%), and the final exam (15%). The +/- grading scheme will be used, with the scale

- >90% -- A, A+
- >80% -- B, B+, A-
- >70% -- C, C+, B-
- >60% -- D

(The final threshold values may be lower than those in left column.) You must pass each lab assignment (score > 60%) in order to pass the course.

Quizzes & Homework: On-line quizzes and homework will be posted on Canvas. They will demand a current familiarity with the course material. Only selected questions (announced in advance) from each homework assignment will be graded. However, turn in all of the assigned problems. All assigned problems are equally important for the development of your understanding of the subjects of digital logic. To receive full credit for your homework, show all reasonable steps in solving the problem. An integral part of this freshmen course is a professional development component and the associated quizzes and surveys.

Lab Assignments: Laboratory assignments are a very important component of this course. You will learn to design and develop digital logic circuits, and by the end of the semester will be able to design sophisticated digital circuits. We use a set of digital tools used by professional engineers, which may appear a bit intimidating at first. After the first two to three labs, you will become comfortable with the tools and will be on your way to designing some interesting circuits.

Late Policy: Labs, Quizzes, Homework and Exams must be taken as scheduled in order to receive credit. Late work will not be accepted unless its lateness is due to circumstances beyond your control or prior approval has been obtained. To receive full credit, the lab reports must be turned in to the Graduate Teaching Assistant by the date due. Late lab reports will be accepted for two weeks beyond the due date, but points will be deducted from the score.
Conduct and Nature of Exams: You will be allowed to use one double-sided page of notes, prepared by you, for the four exams. Exams will be straightforward but will demand the kind of preparation only possible through continual, daily study.

Instructional Objectives: Given during class, these are the bases of all quiz and exam questions, and homework assignments. For this reason, consistent class attendance is very important.

Textbook and References: Fundamentals of Logic Design, by Charles H. Roth. The latest is the 7th Edition. However, fourth to sixth editions are also acceptable. Be aware that there are differences in chapter, page and problem numbers of the different editions. The text is available via Unizin Engage link on Canvas.

Tutoring: The course's Graduate Teaching Assistants and Learning Assistants will be available for consultation at times and places listed on the website and by appointment.

Topics:
- Introduction to digital systems and number systems
 Chapter 1
- Boolean Algebra
 Chapter 2
- Algebraic simplification
 Chapter 3
- Minterm and maxterm expansions
 Chapter 4
- Karnaugh maps
 Chapter 5
- Multi-level gate networks
 Chapter 7
- Combinational network design
 Chapter 8
- Multiplexers, decoders and PLD's
 Chapter 9
- Latches and flip-flops
 Chapter 11
- Counters and sequential networks
 Chapter 12
- Analysis of synchronous sequential networks
 Chapter 13
- State graphs and tables
 Chapter 14
- Reduction of state tables/state assignment
 Chapter 15
- Sequential network design
 Chapter 16

Academic Integrity: This course will adhere to the CSU Academic Integrity Policy as found in the General Catalog (https://resolutioncenter.colostate.edu/conduct-services/academic-integrity/) and the Student Conduct Code (https://resolutioncenter.colostate.edu/wp-content/uploads/sites/32/2018/08/Student-Conduct-Code-v2018.pdf). At a minimum, violations will result in a grading penalty in this course and a report to the Office of Conflict Resolution and Student Conduct Services (https://resolutioncenter.colostate.edu/student-conduct-code/).

Inclusivity: ECE102 classroom is a place where you will be treated with respect. We welcome individuals of all ages, backgrounds, beliefs, ethnicities, genders, gender identities, gender expressions, national origins, religious affiliations, sexual orientations, ability – and other visible and nonvisible differences. All members of this class are expected to contribute to a respectful, welcoming and inclusive environment for every other member of the class.