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Abstract—In this work, a novel 670-GHz integrated direct-

detection receiver using 25-nm InP HEMT technology is 

presented. This is the first demonstration of an integrated direct 

detection radiometer architecture at these frequencies. The 

receiver exhibits a noise figure of 11.4 dB with a total DC power 

consumption of 0.25 W. The integrated receiver measures only 

0.8 cm x 1.3 cm x 4.8 cm (0.3” x 0.5” x 1.9”). These results show 

that transistor-based direct-detection receivers are a viable 

technology for submillimeter wave applications, with low SWaP 

with no compromise in performance. 

Index Terms—radiometer, low noise amplifier, MMIC, 1/f 

noise, calibration, HEMT, sub-millimeter wave 

I. INTRODUCTION 

ce clouds in the upper atmosphere are a major source of 

uncertainty in climate models. Global observation of ice 

particles in the upper troposphere could provide information 

on the influence of aerosol pollution on ice particle size, 

which affect cloud precipitation processes and albedo [1-3]. 

Submillimeter wave radiometric instruments can fill the gap 

in cloud ice particle size information between approximately 

50 µm and 1 mm. For example, CloudSat’s 94 GHz radar 

observes particles larger than ~600 µm in diameter, and 

MODIS infrared radiometers observe particles smaller than 

~50 µm [2]. The Tropospheric Water and Cloud Ice (TWICE) 

instrument seeks to perform global observations of ice particle 

size and water vapor profiles from a 6U CubeSat platform, 

using 16 submillimeter wave radiometric channels ranging 
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from 118 GHz to 850 GHz [1].  

 

Fig. 1. Photograph of the 670 GHz integrated receiver, with 

dimensions of 0.8 cm x 1.3 cm x 4.8 cm (0.3” x 0.5” x 1.9”).  

 

The 16-channel TWICE CubeSat instrument is enabled by 

low SWaP direct-detection integrated receivers using 25-nm 

InP HEMT transistor amplifiers. Direct-detection receivers 

consume significantly less power and use fewer components 

compared to similar heterodyne receivers. This allows them 

to be integrated into small, lightweight, and low power form 

factors ideal for CubeSat applications [4-5].  

Significant work has already been performed on compact, 

low DC power radiometric receivers in the high millimeter to 

submillimeter wave frequency range up to 850 GHz [6-11]. 

The Tropical Systems Technology Demonstration 

(TEMPEST-D) satellite mission uses NGC 35-nm InP HEMT 

direct detection receivers to observe thermal radiation at 

frequencies from 87 to 181 GHz [12], and the Compact 

Submillimeter Wave and Long-Wave Infrared (LWIR) 

Polarimeter (SWIRP) instrument contains 220 GHz and 680 

GHz direct detection dual-channel polarimeters leveraging 

the NGC 25-nm InP HEMT process. The receiver presented 

in this work is the 670 GHz channel of the TWICE 

instrument, shown in Fig. 1, which is the most compact and 

lowest power consumption direct detection receiver at 670 

GHz to date.  The receiver has demonstrated radiometric 
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resolution improvement in direct detection receivers with a 

novel 1/f noise mitigation technique [13]. 

The paper is organized as follows. Section II describes each 

major component of the receiver including the horn antenna 

design, the low noise amplifier, the bandpass filter, and the 

diode detector. Each component was prototyped individually 

in split-block modules and characterized before designing and 

fabricating the integrated receiver. Results from the 

prototypes are provided in each respective component 

subsection. Section III describes the characterization and 

performance of the final integrated receiver.  This includes 

noise figure, output voltage, and analysis of receiver 

radiometric resolution. The measurement of radiometric 

resolution is performed both with and without the addition of 

a novel technique to mitigate gain fluctuations from 1/f noise 

[13].     

II.  RECEIVER ARCHITECTURE 

A. Integrated Receiver Overview 

The block diagram of the 670 GHz direct-detection receiver 

is shown in Fig. 2. The 25 nm InP HEMT MMIC LNAs at 

the front end of the receiver enable the use of the direct-

detection architecture. The noise figure of these LNAs is 

comparable to the conversion loss of GaAs Schottky mixers at 

the same frequency in heterodyne systems [14]. The 

elimination of the mixer and LO chain reduces DC power 

consumption and reduces receiver size and complexity, which 

makes the direct-detection architecture ideal for CubeSat 

instruments such as TWICE which require small size, weight 

and power. The receiver components are integrated into a 

single split-block housing with dimensions of 0.8 cm x 1.3 

cm x 4.8 cm (0.3” x 0.5” x 1.9”). WR-1.5 waveguide 

connects the internal components, resulting in a compact 

flangeless form factor.  

 

Fig. 2. TWICE 670 GHz integrated receiver block diagram. 

Table I provides the detailed specifications for the receiver, 

including measured capabilities of noise figure, DC power 

consumption, and RF gain. The center frequency of 670 GHz 

was chosen to be within an atmospheric window that allows 

the sensor to provide sensitivity to cloud ice particles of a 

certain range of sizes. Multiple sensors at a set of frequencies 

from 240 to 850 GHz in the TWICE instrument are used to 

provide information on cloud ice particle size in the upper 

troposphere [2-3].  

The direct detection technique enables low DC power 

consumption. The total receiver DC power consumption is 

264 mW, including the LNA bias and video amplifier bias. 

This is lower than heterodyne receivers at similar frequency 

ranges by about a factor of 10 [5]. 

A photograph showing the internal RF path of the receiver 

is provided in Fig. 3a. The received signal is amplified by two 

initial LNA stages with a combined gain of approximately 24 

dB, including transition losses. The LNAs are fabricated 

using Northrop Grumman’s 25 nm InP HEMT process, which 

is described in [15]. A 660-680 GHz waveguide bandpass 

filter then band limits the spectrum at the output of the 

second LNA to prevent compression of the third LNA. A 

second bandpass filter further band limits the spectrum at the 

output of the third LNA to prevent compression of the 

detector diode. The signal is detected using a zero bias 

Schottky diode detector produced by Virginia Diodes, Inc. 

(VDI).  

 

 
(a) 

 
(b) 

Fig. 3. (a) Internal view of the 670 GHz receiver RF path, (b) DC 

bias cavity with chip and wire video amplifier on the reverse side.  

The detector output voltage is amplified using a video 

amplifier to maximize ADC dynamic range. The detector 

output is routed by a DC feedthrough to the MIC video 

amplifier assembled on the back side of the housing, shown in 

TABLE I 

SPECIFICATIONS FOR 670 GHZ RECEIVER 

Parameter Quantity Units 

Center Frequency 672.5  GHz 

Bandwidth 660-680 GHz 

Cascaded Noise Figure 11.4 dB 

Ambient Output Voltage 1 V 

Total RF Gain 36 dB 

DC Power Consumption 264 mW 

DC Voltage Inputs 1.2, 2.5, 10, -10 V 

Dimensions 0.8 x 1.3 x 4.8 cm 

Weight 40 g 
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Fig. 3b. The LNA DC biasing circuitry is also fed through 

from the back side of this integrated housing. 

B. WR-1.5 Horn 

The antenna is a broadband multiflare angle circular horn 

design, which has been demonstrated up to 1.9 THz in [16]. 

The multiflare angle horn design has performance 

characteristics similar to a corrugated horn, including low 

cross polarization, low side lobe levels, and good beam 

circularity, but is easier to machine, making the design more 

repeatable at high frequencies.  

Fig. 4 shows the circular horn antenna prototype assembly, 

as well as the integrated receiver horn machined into the 

split-block waveguide housing. The antenna is designed with 

a circular-to-rectangular waveguide transition that is also 

machined into the split-block assembly.  

The simulated versus measured E-plane and H-plane 

radiation patterns for the prototype horn module are shown in 

Fig. 5. The measured E-plane beamwidth of the antenna is 

7.7 degrees, and the H-plane bandwidth is 8.4 degrees, 

closely matching the 8.4 degree simulated 3 dB beamwidth in 

both planes. The calculated directivity of this antenna is 28 

dB, calculated from the 3 dB bandwidth. The measured return 

loss of the antenna is not shown here, but was measured to be 

greater than 20 dB across the WR-1.5 waveguide band. 

 

     

Fig. 4. Prototype horn antenna module (left). Horn antenna with 

circular to WR-1.5 rectangular waveguide transition machined into 

the split-block receiver housing (right).  

C. LNA Design   

The LNA MMIC shown in Fig. 6 consists of eight 12 µm 

gate periphery transistor stages matched to an intermediate 

impedance consisting of a series CPW line and shunt DC 

blocking capacitor. The lengths of the interconnect CPW 

lines are tuned independently, and each are between 0 and 3 

µm in length. The input and output are matched to 50 ohms 

using open-circuited shunt stubs. Further details regarding 

the LNA design and HEMT transistor modeling are reported 

in [14-15]. 

A CPW-to-coplanar stripline transition connects the input 

and output 50 Ohm transmission lines of the amplifier to the 

half-wavelength dipole transitions that couple to the WR-1.5 

waveguides. Each dipole transition contributes about 2.5 dB 

of insertion loss at 670 GHz. Further information on the 

design and simulation of on-chip dipole transitions can be 

found in [17].   

 

 
          (a) 

 
           (b) 

Fig. 5. Simulated vs. measured (a) E-plane and (b) H-plane cuts of 

the circular horn radiation pattern.  

 

 

Fig. 6. Photograph of the 670 GHz LNA MMIC with integrated 

dipole transitions and split-off first transistor bias line for switching 

to mitigate 1/f noise. 

The LNAs were assembled in separate prototype split-block 

housings, where the gain and noise figure of the LNA have 

been verified over the frequency range of the 670-GHz 

receiver. Scattering parameter data from a single packaged 

prototype is shown in Fig. 7. As seen from Fig. 7, the LNA 

stage has about 12 dB of gain in package. The packaged noise 

figure was also measured using the Y-factor method, and was 

found to be 9.6 dB at 670 GHz, with a maximum of 10.1 dB 

over the 660 to 680 GHz bandwidth. It should be noted that 

these measurements are referenced to the waveguide flange 

interface and therefore include all transition and waveguide 

losses. 
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Fig. 7. Scattering parameters of a single packaged prototype LNA. 

The LNA has a maximum gain of 12 dB and maximum noise figure 

of 10.1 dB (not shown here) across the 660 to 680 GHz bandwidth. 

Compared to [14], a key architectural change has been 

made.  In [14], the bias lines for all gates and drains were tied 

together at a single gate and drain bias pad. This scheme is 

quite simple, but requires that all stages are biased equally.  

For this work, we separate the gate and drain bias for the first 

stage so that they can be biased independently from the 

subsequent stages. In the development stage, this was done as 

a risk mitigation technique to potentially minimize the impact 

of 1/f noise. It was found during development that 1/f noise 

did significantly impact performance of the receiver. This 

technique is further discussed in the subsequent paragraphs.       

It is well known that 1/f noise can contribute to receiver 

NEDT. This is particularly true in direct detection receivers 

which directly convert RF energy to 0 Hertz. In real 

semiconductor devices, 1/f noise is follows a linear 

dependence. This well-behaved 1/f roll-off characteristic 

intersects with the white noise at the 1/f noise corner 

frequency.  Below the 1/f noise corner frequency, 1/f noise 

will degrade NEDT. Above this frequency, the impact of 1/f 

noise on NEDT is minimal. This impact has been 

demonstrated in [18]. The traditional method for mitigating 

1/f noise in direct detection receivers is the Dicke-switched 

receiver, which toggles between the antenna port and a fixed 

port impedance at a known physical temperature.  

Unfortunately, Dicke-switched receivers degrade receiver 

NEDT both due to the excess insertion loss associated with 

the switch, but also due to the fact that the antenna is only 

viewed for half of the time, resulting in a square-root of 2 

increase in NEDT, with respect to that of a balanced total-

power radiometer.   

In this work, we propose an alternate technique for 

reducing 1/f noise.  Instead of switching between the antenna 

and a known load, as is done in a Dicke-switched receiver, we 

propose to toggle the bias of the first stage on and off.  Since 

the direct detection receiver consists of a total of 24 

amplification stages and one detection stage, we assume that 

toggling the bias of the first stage may be sufficient to remove 

the 1/f noise contribution of the remaining 23 transistors and 

detector diode.  This idea was first discussed between Dr. 

Deal and Dr. Grossman [19]   

In this case, the first transistor in the amplifier chain 

creates an independent reference in the off state that tracks 

the gain fluctuations due to 1/f noise generated by the low 

noise amplifiers. While the physical impedance in the off-

state is not well known, we postulate that we can numerically 

relate the residual 1/f noise of the chain to the 1/f noise of the 

total receiver chain, and then numerically remove the 1/f 

noise [13].  Fig. 8 shows an example of a toggled control 

signal and output voltage of the 670 GHz receiver. Each 

transistor has about 1-2 dB of gain per stage at 670 GHz, so 

turning off one transistor still produces an appreciable output 

voltage signal that can be accurately measured by the 

instrument ADC, and used to create a correction for the 

signal from the antenna in the first transistor’s “on” state.  

The 1 kHz switching frequency is chosen to be faster than 

the 1/f noise corner frequency, but as slow as is reasonable to 

reduce the total amount of time that the output voltage is 

spending transitioning from state-to-state. This rise and fall 

time is limited by the cutoff RC constant of the video 

amplifier, which sets the video cutoff frequency. Fig. 8 shows 

a 25 µsec rise time, which represents 5% of the total “on” 

state measurement time. This sufficiently short transition 

time reduces the total time the instrument spends observing 

the cloud target, which in turn reduces the receiver 

radiometric resolution, so it is important to choose the cutoff 

frequency of the video amplifier carefully to minimize this 

transition time as much as possible. The 50% time spent in 

the reference state also increases the receiver radiometric 

resolution by the square-root of 2, by reducing the target 

dwell time. Further discussion of the 1/f noise sensitivity 

evaluation will be provided in Section III.  

 

Fig. 8. The output voltage of the receiver vs. time using the 1/f noise 

reduction technique. The top trace in yellow shows the switched 

output voltage. The bottom trace in green shows the control signal 

toggling the gate and drain bias voltage of the first transistor.  

To facilitate the toggled bias scheme, we apply the bias 

between two separate bias pins.  The first stage is biased from 

an applied voltage of 2.5 V amplitude switching at 1 kHz. 

The 2.5 V amplitude switching voltage was chosen as a 

convenient value for the output of the TWICE instrument 

FPGA. Both the gate and drain biases of the first transistor 

are connected to this switching voltage. All subsequent stages 

are biased at 1.2 V. The 1.2 V input is set using a series of 

resistor dividers to the individual MMIC gates. The gate 
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voltages are set so that the MMICs operate at a 400 mA/mm 

drain current density. 

Fig. 9 shows one LNA MMIC packaged in the TWICE 

receiver split-block housing with DC bias peripherals. The 

first amplifier MMIC is shown, so the left side DC bias pins 

bring in the switching signal to bias the first transistor, while 

the right side DC bias pins bring in a constant voltage to bias 

subsequent transistors. The MMIC DC bias pads are 

wirebonded to a 3-mil thick quartz substrate, which is 

wirebonded to a 100 pF single-layer capacitor. The DC 

feedthroughs connect to the resistor divider networks on the 

back side of the receiver. 

 

Fig. 9. Assembled LNA MMIC packaged in the integrated TWICE 

housing with DC bias peripherals.  

D. Bandpass Filter Design 

Two identical bandpass filters are machined into the 

integrated split-block receiver housing. Each one is an 8-pole 

waveguide iris filter. Fig. 10 shows a photograph of the lower 

half of the filter machined into the receiver housing, along 

with a CAD model of the complete filter shape. The total 

length of the iris filter is approximately 1 cm.  

The filter is designed using a hybrid simulation method 

that allows for rapid optimization. A single iris section is 

simulated using Ansys HFSS by varying iris thickness. Once 

the HFSS simulations are completed, the resulting simulation 

files are cascaded in Keysight ADS. This allows us to 

efficiently optimize both iris thickness and length between 

filter sections. The full filter design is then transferred back 

into HFSS for verification. 

Several prototype filter iterations were fabricated to better 

understand the effects of machining tolerances on the filter 

performance. This is especially important when examining 

filters for the integrated receiver design, since the two filters 

within the housing cannot be evaluated individually. Two 

prototype filter iterations were designed before the integrated 

receiver housing was finalized. Simulated versus measured 

results of the bandpass spectral responses are shown in Fig. 

11.  

 

 

Fig. 10. Photograph of the split-block machined waveguide iris 

bandpass filter, and full CAD model.   

A significant downward frequency shift was observed in 

the measurements of the first iteration of filters, as shown in 

Fig. 11a. The average center frequency is 640 GHz, which is 

a 5% downward shift from the designed 672 GHz center 

frequency. The overall bandwidth of each filter is also about 5 

GHz wider than simulated. This shift in performance is 

attributed to systematic machining variations. The measured 

insertion loss is 3-4 dB, compared to the simulated 2 dB 

insertion loss.  

The second iteration of filters was purposefully designed 

to be higher in frequency than the desired model to 

compensate for the downward frequency shift observed in the 

first iteration. The upward frequency shift is obtained by 

reducing the length of the thicker capacitive filter sections. 

The measured results from the second iteration are shown in 

Fig. 11b. The average center frequency is shifted upward by 

about 3%, and shows about 10 GHz of variation among the 

filter samples measured.  

A tuning method was employed to shift the filters to the 

desired frequency range centered at 672 GHz as described in 

[20]. A small section of ribbon bond wire is added along the 

length of the filter between the split-block halves, which 

slightly increases the waveguide dimensions and tunes the 

filter response downward in frequency. The length and 

thickness of the individual tuning bond wires are varied for 

each filter response. If the filter response needs to be shifted 

upward, the pressure ridges of the waveguide can be carefully 

sanded to reduce the height of the waveguide. This is not a 

preferred tuning method, since material is permanently 

removed from the module. This is why it is preferable to 

design the filters purposefully higher in frequency and shift 

them downward with an easily removable and reconfigurable 

bond wire. Fig. 11c shows that this technique was 

successfully implemented to tune the iris filters individually 

to achieve the desired frequency range. In the integrated 

housing, this method could also be employed on both filters 

inside the module if the measured center frequency of the 

receiver significantly deviated from that of the design. 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 11. Modeled versus measured bandpass spectra of the 670 GHz 

waveguide iris filter prototypes. (a) Iteration 1 with downward 

frequency shift. (b) Iteration 2 designed purposefully to be higher in 

frequency to compensate for downshift seen in Iteration 1. (c) 

Measured response of ribbon-tuned Iteration 2 filters compared to 

original measured response.   

E. Detector and Video Circuit 

The detector is a zero-bias Schottky diode detector 

developed by VDI. A photograph of the diode mounted on a 

silicon substrate is shown in Fig. 12. A zero bias Schottky 

diode is mounted on a quartz substrate and printed with an 

electromagnetic probe that couples to the WR-1.5 waveguide. 

The output of the detector is wirebonded to a DC feedthrough 

that connects to the MIC video amplifier on the back side of 

the receiver.  The detector circuit was designed and fabricated 

by VDI. 

The detector substrates were also tested prior to integration 

into the TWICE receiver housing using a stand-alone split-

block test fixture. A Virginia Diodes amplified multiplier 

chain frequency source was used to input a signal of 

approximately -30 dBm into the split-block housing, and the 

responsivity of the diode detector was measured over 

frequency. From the measured results shown in Fig. 13, the 

responsivity is greater than 1000 mV/mW in the 660 to 680 

GHz operating range.  

 

 

Fig. 12. Photograph of the zero-bias Schottky diode detector 

mounted in the receiver housing. The diode is attached to a 2 mil 

thick silicon substrate printed with a receiving antenna and 

matching network. 

 

Fig. 13. Measured responsivity of the diode detector as a function of 

frequency, shown along with input power. 

The video amplifier circuit consists of two cascaded 

operational amplifiers, providing a total of about 60 dB of 

gain, with a lowpass cutoff frequency of 21 kHz. Fig. 14 

shows the video amplifier circuit implemented with bare die 
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connected with wirebonds, allowing the circuit to fit into a 

smaller form factor. The video amplifier IC is a bare die 

OP27 manufactured by Analog Devices. The external pins 

supply +/-10 V bias to the video amplifier. The total power 

consumption of the video amplifier is 120 mW, accounting 

for about half of the power consumption of the integrated 

receiver.  

 

Fig. 14. Photograph of the chip and wire video amplifier circuit, 

mounted on the back side of the 670 GHz receiver. 

III. RECEIVER PERFORMANCE 

A. Receiver Integration Method 

The integrated receiver is first populated with passive 

CPW transmission line ICs with dipole transitions in place of 

the three LNAs. This allows measurement of the filter’s 

frequency response independently from the LNA response 

and possible process variations. It also verifies the 

functionality of the detector without complicating the 

debugging process with multiple active components in the 

chain. Fig. 15 shows the test setup for this measurement. The 

receiver is excited with a VDI WR-1.5 amplified multiplier 

chain. This allows the source frequency to be varied across 

the filter bandwidth and excited with enough signal strength 

to be read by the detector without the LNA gain.  

The source and the device under test (DUT) are placed 

about 7.5 cm (3”) apart so that the signal level is strong 

enough at the detector to achieve adequate dynamic range 

without LNAs. The source power is calibrated by placing a 

test horn antenna as input to an Erickson PM5 power meter 

and measuring the source power at the same 7.5 cm (3”) 

distance. 

Fig. 16 shows the measured normalized frequency 

response of the integrated receiver populated with dipole 

through-lines in the place of the LNAs. The measured 

bandwidth of the module is seen to be 24 GHz. The center 

frequency of the module is shifted downward to 662 GHz, 

which represents a modest 1.5% shift in frequency. This 

frequency range was determined to still meet science goals, so 

no further action was taken to tune this filter using the 

sanding methods discussed in Section II.  

   

 

Fig. 15. Test setup for the filter shape and detector functionality 

measurements using a VDI WR-1.5 active multiplier chain source to 

sweep an input signal to the receiver over bandwidth. 

 

The through-lines in the receiver were replaced one-by-

one, and the measurement was repeated using a similar setup.  

The distance between the source and DUT was recalibrated as 

each LNA was added to avoid compressing the detector as 

gain stages were added. After all MMIC amplifiers were 

populated, the receiver was aimed at an ambient 

submillimeter-wave absorber to measure the output voltage of 

the receiver when measuring ambient noise. The output 

voltage level is desired to be 1-2 V, which allows the signal to 

be measured with adequate dynamic range using the TWICE 

instrument ADC. The output voltage of this receiver is 1.6 V 

when measuring an ambient submillimeter-wave absorber, 

verifying that all three amplifier stages provide adequate 

gain.   

 

 

Fig. 16. Normalized frequency response of one integrated receiver 

prototype populated with bandpass filters and through-lines. The 

bandwidth is measured to be 24 GHz, with a downward-shifted 

center frequency of 662 GHz.  
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B. Noise Figure 

The receiver noise figure is measured using the Y-factor 

method with the test setup shown in Fig. 17. The receiver is 

placed in front of a small opening in the plexiglass enclosure. 

An absorber is attached to a heated chopper wheel, which 

cycles between the hot target and a liquid nitrogen (LN2) 

cooled absorber behind it. The noise figure measured using 

this setup is 11.4 dB. This measurement is the noise figure 

integrated over the entire 24 GHz receiver bandwidth.  

 

 

Fig. 17. Y-factor heterodyne noise figure test set.  

C. TWICE Instrument Parameters 

The operating parameters of the TWICE instrument are 

integral in evaluating the radiometric performance of the 

receivers. This section defines the end user requirements for 

the TWICE instrument, which help to define success criteria 

for the receiver performance. 

The NEDT requirement for the TWICE instrument is 

determined from the intended application to provide cloud ice 

particle size information at multiple submillimeter wave 

frequencies from 240 to 850 GHz.  Based on simulations of 

atmospheric remote sensing retrievals, the required NEDT of 

the 670-GHz receiver is 1 K [3]. 

Since the TWICE instrument performs end-to-end 

calibration with two known references every second, 

instrument temperature variations can be effectively 

removed.  A very similar calibration technique has been 

successfully demonstrated on-orbit by the calibration and 

validation of TEMPEST-D [21].  Results demonstrated that 

the TEMPEST-D CubeSat instrument is a very well-

calibrated, low-noise and highly stable radiometer, rivaling 

that of much larger operational instruments [21]. 

The frequency response of the measurement is accounted 

for during calibration, i.e. when converting the measured 

power to a brightness temperature through the effective 

bandwidth of the radiometer.  The suitability of the brightness 

temperature measurements for use in atmospheric remote 

sensing retrievals does not depend strongly on the frequency 

response, as long as it is stable.  

In the TWICE instrument, two calibration sources, i.e. 

cosmic microwave background and an ambient blackbody 

calibration target, are measured every second, and the Earth 

target is measured in between the two calibration sources [1].   

D. 1/f Noise Stability 

The stability and accuracy of the 670 GHz receiver are 

critical for the reliability of radiometric measurements. The 

stochastic noise properties of the 670 GHz receiver (e.g., 1/f 

noise performance) are crucial to determine the receiver 

performance. For stability testing, the designed TWICE 

command and data handling (C&DH) and power regulation 

subsystems have been operated with the integrated 670 GHz 

radiometer [22]. During the test, the C&DH boards performed 

digital acquisition of the 670 GHz radiometric data while the 

receiver measured an ambient calibration target at constant 

room temperature. The frequency spectrum of the radiometric 

measurements during the stability test is provided in Fig. 18 

labeled as “without 1/f noise correction”. The initial test 

results indicated that high 1/f noise in the system dominates 

the performance of the radiometer. It has been shown in [18] 

that 1/f noise stability of the 670 GHz InP HEMT low-noise 

amplifiers has been successfully measured with a zero-bias 

Schottky detector diode. For the integrated 670 GHz direct 

detection receiver under test, the three MMICs and the GaAs 

zero-bias diode contribute to the cumulative 1/f noise 

response. 

The LNA switching technique described in Section II.C 

has been designed to mitigate 1/f noise in the 670 GHz 

radiometric measurements. The technique is based on 

controlling the first transistor stage of the first LNA MMIC of 

the 670 GHz receiver from the Field Programmable Gate 

Array (FPGA) on the C&DH board. The LNA switching 

technique generates two different gain stages of the 

radiometric measurements that can be designated “antenna” 

and “reference” for the LNA ON and OFF states, respectively. 

The switching rate is chosen to be high enough to track the 

1/f noise gain variations in the system. The correction in the 

digitized samples has been applied by comparing the gain 

variations in both LNA ON and OFF states of measurement.  

The power spectral analysis of the TWICE 670 GHz 

radiometric instrument with 1/f noise correction applied is 

shown in Fig. 18 labeled as “with 1/f noise correction”. As 

shown in the plotted curves in Fig. 18, the 1/f noise 

mitigation technique significantly reduces the 1/f noise effect 

from the radiometric measurements by 19 dB. The corrected 

1/f noise curve has a 1/f corner frequency of approximately 1 

Hz. 

At 670 GHz, the tradeoff in integration time discussed in 

Section II.C has proven to be less of a detriment for 

radiometric resolution than the degradation caused by gain 

fluctuations due to the transistor and Schottky diode 1/f noise 

contributions. Radiometric measurements were performed 
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using a 50 msec integration time. The NEDT of the receiver 

without the switching technique was measured to be 4.75 K. 

With the switching technique employed, the NEDT decreased 

to 0.88 K. This is over 80% improvement in radiometric 

resolution, which is critical to performing useful 

measurements to estimate cloud ice particle sizes for 

atmospheric science. Further details on the test setup and 

discussion of the results of this method can be found in [13]. 

 

Fig. 18. The normalized PSD response of radiometric receiver with 

and without the switching method applied.  

The improvement in NEDT due to the switching 

technique meets the specifications of <1 K, as determined by 

the simulations of atmospheric remote sensing retrievals [3]. 

This value can still be improved upon in future applications. 

Using the theoretically ideal equation for NEDT, assuming an 

ideally flat 24 GHz bandwidth, an integration time of 50 

msec, a noise figure of 11.4 dB, and the modulation 

degradation (50% duty cycle with an additional 5% reduction 

in integration time due to the rise/fall time), the NEDT would 

be approximately 0.17 K.  

The additional 0.71 K of NEDT is attributed to a number 

of factors. First, the noise contribution from the first 

transistor, the one being switched, is not removed. If we 

approximate that all semiconductor devices contribute as 

equal additive noise contributors, each transistor contributes 

0.18 K of noise (25 devices). Secondly, the filter bandwidth is 

not perfectly flat. The effective bandwidth is closer to 17.4 

GHz, based on the data shown in Fig. 16. Finally, the 

calibration frequency is 1 Hz.  As shown in Fig. 18, there is 

still some residual spectral noise in the measurement since 

the calibration frequency is not high enough to be sufficiently 

above the knee frequency. A faster calibration speed would 

mitigate this further but would not meet instrument 

requirements. Finally, there may be some additive 1/f noise 

from the video amplifier due to low video amplifier drive 

level. This can be mitigated in the future by either increasing 

the detector drive level, or choosing a video amplifier with 

improved 1/f noise at low drive levels. 

IV. CONCLUSIONS 

In this work, a novel 670 GHz integrated direct-detection 

receiver is presented.  The receiver demonstrates a single-

sideband noise figure of 11.4 dB integrated over a 24 GHz 

bandwidth. A filter tuning method is presented to adjust the 

bandwidth of submillimeter-wave waveguide iris filters, 

which are highly susceptible to performance shifts due to 

machining tolerances and plating variations.  

The receiver measures only 0.8 cm x 1.3 cm x 4.8 cm (0.3” 

x 0.5” x 1.9”) in size and consumes only 250 mW of DC 

power. This receiver represents the most compact and lowest 

power consumption 670 GHz receiver to date, which will 

further the capabilities of cloud remote sensing instruments. 

This particular receiver has been integrated into the TWICE 

instrument as part of a 16-channel radiometer to provide 

measurements of atmospheric humidity, temperature and 

cloud ice properties.   

The 1/f noise mitigation technique described here produces 

a 19 dB improvement in stability of the receiver and reduces 

the NEDT of the receiver to less than 1 K at 670 GHz. 

Therefore, the presented InP HEMT based receiver exhibits 

superior noise performance compared to GaAs Schottky 

receivers up to at least 670 GHz. This is a significant result, 

demonstrating the viability and superior performance of 

direct-detection receivers at submillimeter-wave frequencies.  
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