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Abstract— Deep learning artificial neural network techniques
can be applied for on-orbit calibration of microwave and
millimeter-wave radiometer spaceborne instruments, including
those for small satellites. The noise-wave model has been
employed for noise characterization and validation of the pro-
posed deep learning calibration technique for a synthetically gen-
erated Dicke-switching radiometer. The developed deep learning
neural network radiometer calibrator produces high accuracy
estimates of antenna temperatures from the measurements of
radiometer output voltage and thermistor readings. Tests with
noise-free and noisy samples of the developed model have shown
that the proposed calibration method does not add any significant
noise to the radiometer calibration. The performance of the
proposed method does not degrade with increased nonlinearity
for a radiometer, while nonlinearity is a challenging issue for
conventional calibration techniques. The deep learning calibra-
tion model learns the radiometer noise characteristics from
radiometer prelaunch measurements during thermal vacuum
chamber testing. The neural network calibrator proposed in this
paper has self-learning capability during the on-orbit operation
of a radiometer that can be used to improve the performance of
on-orbit calibration. The proposed technique is demonstrated
by comparing the residual uncertainty of the deep learning
calibration with the theoretical value. No numerical study is pre-
sented to compare the performance with conventional calibration
techniques. The new method may be solely applied to calibrate
the radiometer or applied along with conventional calibration
techniques.

Index Terms— Calibration, CubeSats, deep learning,
microwave radiometer, millimeter-wave radiometer, neural
network, noise-wave model.

I. INTRODUCTION

M ICROWAVE and millimeter-wave radiometers have
been widely used to improve understanding of the

distribution of atmospheric water vapor and its dynamics for
decades to provide information for studies in hydrology, agri-
culture, meteorology, climatology, and oceanography [1], [2].
Accuracy, sensitivity, stability, and measurement uncertainty
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are used as figures of merit of a radiometer. The accuracy
of a radiometer determines the reliability of the retrieved
parameters from the measurements. On the other hand, radio-
metric resolution (sometimes called sensitivity) provides the
minimum detectable change of a radiometer due to its internal
noise. Therefore, improved accuracy and radiometric resolu-
tion improve the quality of the geophysical products retrieved
from radiometric measurements, including water vapor, cloud
water and ice contents, soil moisture, sea-surface wind speed,
and superficial sea salinity [3].

Calibration plays a major role in determining the radiomet-
ric accuracy and stability. Microwave and millimeter-wave
radiometers are usually calibrated using a two-point calibration
scheme by measuring two external calibration targets at widely
separated, known temperatures [4]. Assuming a linear response
of the radiometer without gain fluctuations, the radiometric
calibration of output voltage to antenna temperature can
be performed using end-to-end calibration. However, the
radiometer gain fluctuates due to inherent instabilities in the
radiometer’s amplifiers and electronics. To account for these
fluctuations and to improve the stability, radiometer architec-
tures were developed to use internal calibration techniques,
such as noise diodes for noise injection radiometers and
reference loads for Dicke-switching radiometers [5].

Radiometers have been used to perform passive remote
sensing of earth resources and environment from ground-
based [6], airborne [7]–[9], and satellite platforms [10], [11]
since the 1970s. During the past few years, interest has
greatly increased in earth remote sensing from small satellites
(SmallSats), especially CubeSats [12]. The CubeSat standard
is based on a Unit (1U) with the volume of a 10-cm cube and a
mass of up to 1.33 kg [13]. The mass and volume of a multiple-
unit CubeSat ranging up to at least 12U is scaled with refer-
ence to 1U, with recent standards allowing 50% greater mass
density for 6U than for 3U [14]. Advances in attitude deter-
mination and control systems, computing and communication
technology, and developments in integrated circuit design and
manufacturing technology have substantially reduced satellites
into a small form factor. In addition, CubeSats have much
a lower cost of design, launch, and operation than tradi-
tional larger satellites. For these reasons, an increasing num-
ber of microwave and millimeter-wave radiometers is being
deployed on CubeSat missions. Among them, the Temporal
Experiment for Storms and Tropical Systems—Demonstration
(TEMPEST-D) CubeSat mission is led by Colorado State
University (CSU) in partnership with the NASA Jet Propulsion
Laboratory and Blue Canyon Technologies. TEMPEST-D is
a 6U CubeSat mission deploying new satellite technology
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Fig. 1. Radiometer calibration. (a) Radiometer noise diagram. (b) Two-point radiometer calibration.

with the potential to perform the first temporal measurements
of cloud and precipitation processes on a global basis [15].
The TEMPEST-D mission includes a five-channel millimeter-
wave radiometer from 89 to 182 GHz, featuring cross-track
scanning and end-to-end external calibration performed every
two seconds using cosmic microwave background and an
ambient blackbody target [16]. Next, the Time Resolved
Observations of Precipitation structure and storm Intensity
with a Constellation of SmallSats (TROPICS) led by the
Massachusetts Institute of Technology Lincoln Laboratory is
a 3U CubeSat planned to provide microwave measurements
of tropical hurricanes and typhoons. The TROPICS will
employ internal noise diode calibration as well as scanning
vicarious sources to calibrate 12 radiometric channels from
90 to 206 GHz [17]. The TROPICS CubeSat constellation will
be used to observe the thermodynamics of the troposphere
and precipitation structure for storm systems. Finally, the
Tropospheric Water and Cloud Ice (TWICE), led by CSU, is a
6U CubeSat instrument with millimeter and sub-millimeter-
wave radiometers from 118 to 670 GHz [18]. TWICE is
designed to enable measurements of cloud ice particle size
distribution in the upper troposphere and lower stratosphere
in addition to measuring water vapor profiles and liquid
water retrievals. The TWICE total power radiometers will be
calibrated using an on-orbit ambient calibration target and a
cold-sky reflector.

This emerging field of CubeSats has introduced new
challenges for microwave and millimeter-wave radiometry
in terms of mass, volume, power consumption, and data
telemetry rate. Another challenge for CubeSat radiometers
is end-to-end calibration. External calibration targets are
typically large in size and mass relative to radiometer
antennas and optics. In addition, external calibration targets
can limit the earth viewing portion of the scan or may reduce
the number of available calibration measurements. In addition,
it may be difficult to maintain homogeneous temperature

distribution over the portion of the calibration target viewed
by the radiometer antenna, as required for reliable calibration.

Recent advances in computational speed and deep learning
neural network algorithms have significantly reduced the
processing times and improved the accuracy of deep learning
techniques [19]. This paper presents a new approach for
microwave and millimeter-wave radiometer calibration by
employing the advanced techniques of deep learning. The
approach relies principally on the characterization of the
radiometric instrument under various operating conditions to
train a network of artificial neurons to predict the radiometer
response.

In this paper, the noise-wave model representation of a
radiometer will be used to demonstrate deep learning calibra-
tion. The noise-wave model is useful since it permits analysis
of each component of the radiometer utilizing the scattering
matrices to calculate the end-to-end flow of the noise as a
signal [20]. The data generated by the noise-wave model will
be used to train the artificial neural network (ANN) for the
calibration algorithm. Independently collected samples from
the same model will be used to test the ANN performance for
radiometer calibration. This approach is intended to be used
to improve the calibration of radiometers in CubeSats as well
as for any other radiometer platform.

II. RADIOMETRIC CALIBRATION OVERVIEW

Assuming a linear system and no gain fluctuation due to
1/f noise, a radiometer response is defined by a two-point cal-
ibration using the ambient and cold external calibration targets
of the instrument where the antenna temperature is estimated
from the output voltage [3]. As shown in Fig. 1(a), the ambient
and cold targets with known temperatures are measured by
the radiometer to determine the antenna temperature-to-voltage
response of the system plotted in Fig. 1(b) [21].

The need to improve the accuracy and reliability of
the radiometers has led to the use of several methods
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Fig. 2. Dicke-switching direct detection radiometer.

Fig. 3. Wave model representation of a radiometer. It should be noted that this is not a connection diagram.

to overcome gain fluctuation by employing internal gain
calibration techniques [22] including noise diodes and
reference loads, at the expense of radiometric resolution [1].
For instance, noise injection radiometers add a preset noise
into the measurement path and Dicke radiometers switch the
input signal between antenna and a reference source, which
reduces the amount of time available for observation [3].

Internal gain calibration techniques used together with
external calibration targets for two-point radiometric
calibration improve accuracy and stability of a radiometer.
However, it is a challenge to employ external calibration
techniques in small satellites for end-to-end calibration due to
their stringent design requirements on mass and volume [13].
However, complete end-to-end radiometric calibration cannot
be accomplished by using only internal reference sources
since the calibration source is inside the system after the
antenna and will not account for its efficiency. In addition,
internal calibration techniques add complexity to small
satellites in terms of power and mass to control and maintain
the thermal stability of those calibration sources.

This paper presents a deep learning approach for gain
and radiometric calibration without making any assumptions

regarding the system linearity, radiometer architecture, or pres-
ence of on-orbit external calibration targets.

III. RADIOMETER WAVE MODEL

A Dicke-switching direct detection radiometer has been
used to provide a generalized idea that can be applied to
any architecture. The radiometer block diagram is shown
in Fig. 2. The incident energy upon the antenna is denoted by
the apparent antenna temperature distribution (TAP) perceived
as Tant by the antenna that is measured as Vout at the output
of the receiver.

The noise in the radiometer is characterized with noise
waves since they allow the use of scattering matrices and
signal flow graph theory for noise calculations [23], [24].
Fig. 3 illustrates the noise-wave diagram of the radiometer
shown in Fig. 2. The connections of each block on this
diagram are made to ease the understanding of the noise waves
propagating in the system. Fig. 3 is not intended to show the
physical connections of the system.

In the noise-wave representation, a (5×1) and b (5×1) are
the incident and outgoing waves, respectively, to the switching
network, defined over a 1-Hz bandwidth. The scattering matrix
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is given as S (5×5), and the internally generated noise waves
are represented by n (5 × 1). The outgoing waves are defined
as the sum of the scattered incident waves and the internally
generated noise [20]

b = S a + n. (1)

Similarly, the incident waves (a) are represented as the sum
of the reflected incoming waves and the source waves (as) [25]

a = � b + as (2)

where � is a diagonal matrix such that each main diagonal
element of the matrix represents the reflection coefficient
looking into the port

� = diag([�ant �cou �NI �ref �R]). (3)

The source waves (as) in (2) are

as = [cant ccou cNI cref cR1]T (4)

where cant is the noise collected by the antenna from the scene,
ccou is the noise generated by the internal matched load of the
coupler, cNI is the noise generated by the noise diode and
injected by the coupler, cref is the noise generated by the
reference load, and cR1 is the noise generated by the receiver
toward its input.

The final goal of the noise-wave calculations of the radiome-
ter is to derive a relationship relating the input temperature and
noise temperatures of various components of the radiometer
to the output voltage that is needed for radiometer calibration
analysis. The outgoing waves are represented in terms of the
source waves by using (2) in (1) as

b = S a + n = S(� b + as) + n

= S � b + S as + n (5)

b − S � b = S as + n (6)

(I − S �)b = S as + n (7)

where I is a 5 × 5 identity matrix. Then

b = (I − S �)−1(S as + n). (8)

Now, a new variable is defined to ease the representation of
these equations

∧
def= (I − S �)−1 (9)

b = (I − S �)−1(S as + n) =
∧

(S as + n) (10)

b =
∧

S as +
∧

n. (11)

With the addition of the noise waves at the input of the
amplifier, the input waves are represented as [26]

b′ = b + c (12)

b′ in (12) is the equivalent total input wave and c stands for
the noise waves at the input of the low-noise amplifier (LNA)
and defined as

c = [0 0 0 0 cR2] (13)

where cR2 is the noise generated by the receiver at the input
of LNA.

The waves at the output of the LNA before the filter and
the can be written as

b′′ = SLNA
21 b′ (14)

where SLNA
21 is the forward transmission scattering matrix

parameter of the LNA. The gain of the amplifier is represented
in terms of the S-parameters of the amplifier as [1]

G = ∣
∣SLNA

21

∣
∣2

. (15)

The power detected by the detector diode is the autocor-
relation of the input waves at the input of the detector given
by (14). The detector power can be written as the effect of
the filter on the waves except that the bandwidth limiting is
ignored [24], [26]

〈b′′(b′′)H 〉 = G〈b′(b′)H 〉 (16)

〈b′′(b′′)H 〉 = G N (17)

where N is defined as the correlation matrix of the input
waves. Then, the voltage detected by the square-law detector
is given as [1], [24]

Vdet = Cd G N (5,5) (18)

where Cd is the constant (responsivity) of the power detector.
The voltage at the output of the video amplifier is

Vvideo = GVACd G N (5,5) (19)

where GVA is the gain of the video amplifier (V/V). The
voltage at the output of the low-pass filter that is to be digitized
by the radiometer back end can be written as

VLPF = gLPFGVACd G N (5,5) (20)

where gLPF is the attenuation (i.e., expressed as gain) of
the low-pass filter. Finally, the noise matrix N needs to be
represented in terms of temperature to reach our goal in
noise-wave analysis for calibration analysis. In this paper,
the Raleigh–Jeans limit of the Planck function is used [3].
Therefore, the noise waves over a 1-Hz bandwidth are
expressed as a product of Boltzmann’s constant (kB) and
the physical temperature (T ) [23]. The equivalent input total
wave defined in (12) and its Hermitian is given as

b′ =
∧

S as +
∧

n + c (21)

(b′)H = (∧
S as +

∧
n + c

)H

= aH
s S

H ∧H

+ n H
∧H

+ cH . (22)
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Then, the correlation matrix of input noise waves given
in (17) is calculated as

N = 〈b′(b′)H 〉 (23)

N = 〈(∧
Sas +

∧
n + c

) · (aH
s S

H∧H

+ nH
∧H

+ cH )〉

(24)

N =
∧

S
〈
asaH

s

〉
S

H ∧H

+
∧〈

n a H
s

〉
S

H ∧H

+ 〈
c aH

s

〉
S

H ∧H

+
∧

S〈asnH 〉
∧H

+
∧

〈n n H 〉
∧H

+ 〈c nH 〉
∧H

+
∧

S〈ascH 〉 +
∧

〈n cH 〉 + 〈c cH 〉. (25)

The noise matrix in (25) is represented in terms of the
correlation of the noise waves. The noise matrix is further
simplified by employing Bosma’s theorem [27] and following
the theorems presented in [1], [23], [24], and [25]:

N =
∧

SkB T s S
H ∧H

+
∧

kB TSN(I − S S
H

)
∧H

+ kB C (26)

N = kB
[∧

S T s S
H ∧H

+
∧

TSN(I − S S
H

)
∧H

+ C
]

(27)

T RAD
def= [∧

S T s S
H ∧H

+
∧

TSN(I − S S
H

)
∧H

+ C
]

(28)

N = kB T RAD (29)

where TSN is the physical temperature of the Dicke switch,
C is the diagonal correlation noise matrix of the LNA, which
depends on its physical temperature (TLNA), and (T s) is the
temperature matrix defined as

T s = diag[TA Tcou TNI Tref TR] (30)

where TA is the antenna physical temperature, Tcou is the noise
temperature of the matched load of the coupler, TNI is the
equivalent noise temperature injected thorough the noise diode,
Tref is the physical temperature of the reference load, and TR

is the physical temperature of the isolator at the input of the
LNA. Finally, using (20), the analog voltage digitized by the
radiometer back end is expressed as

VLPF = kB gLPFGVACd GBT RAD(5,5) (31)

where G is the gain of the LNA (V/V), Cd is detector diode
constant (V/W), GVA is the gain of the video amplifier (V/V),
and B is the bandwidth (Hz).

IV. RADIOMETER DEEP LEARNING

MODEL FOR CALIBRATION

The proposed model for radiometric calibration is based
on a multilayer perceptron (MLP) feed-forward ANN utiliz-
ing a supervised deep learning algorithm to retrieve antenna
temperatures from the voltage measurements at the output of
the radiometer. The multiple-layer structure of the deep MLP
model and the nonlinear activation between layers make this

option suitable for extraction of features to learn representa-
tions of complex radiometer data structure with multiple levels
of abstraction [19], [28].

The internal adjustable parameters of the MLP structure
are the weights that define the input–output relationship of
the network. A learning algorithm adjusts the weights of the
network by minimizing the error of the cost function between
the output and the desired values. The stochastic gradient
descent (SGD) algorithm computes the average gradient by
calculating the outputs and the errors for a few examples of
large data sets to adjust the weights, resulting in frequent
updates of those parameters with high variance. As a result,
the loss function fluctuates due to high variance that helps
the detection of different local minima for the SGD gradi-
ent calculation. In this way, the SGD significantly reduces
computational time and memory usage while providing fast
convergence for the training [29].

A neuron is the smallest computational unit in the neural
network architecture. The data at the input of a neuron are
transmitted to its output through activation functions, which
define the system response of a single neuron to specific
information at its input. The rectified linear unit (ReLU)
nonlinear activation function is a half-wave rectifier defined as

f (x) = max(0, x) (32)

where x is the input to a neuron in the network and f (x) is
the output of the neuron. The simple structure of the ReLU
activation function compared to complex activation functions,
including sigmoid and hyperbolic tangent, provides fast
learning in multiple layer networks allowing deep supervised
learning without unsupervised pretraining [30], [31].

The number of layers and neurons at each layer in the
MLP network depends on the complexity and nonlinearity
of the calibration problem. These values are found after an
optimization process, and they are specific to the subjacent
hardware being calibrated and the amount of available infor-
mation, such as inputs and data set. Increasing the number
of layers increases the amount of nonlinearity in the system.
The network can learn complex data structures with multiple
levels of abstraction by increasing the number of layers and
neurons. However, having higher level of complexity than
is needed in the neural network model may result in slow
convergence or not being able to converge to the desired
performance.

The following procedure is suggested to build a deep-
learning radiometer calibrator.

1) Analyze the calibration problem from the point of view
of a neural network.

2) Start the design with a reasonable number of layers and
neurons.

3) Determine if the calibrator is ready for the radiometer
calibration or it requires improvement by examining the
error function and convergence rate of the calibrator.
If the performance does not meet the specifications,
the designer has several options to improve it, i.e., going
back to Step 2, considering including other sources of
information as NN inputs, or extending the data set to
make it more statistically comprehensive.
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Fig. 4. ANN architecture for radiometer calibration used for the presented model.

The designed MLP neural network structure for the cal-
ibration problem contains three hidden layers as depicted
in Fig. 4. The measured radiometer antenna temperature is the
final product of the ANN to be retrieved from the radiometer
antenna and reference voltage measurements in addition to
thermal measurements of the instrument.

The noise-wave model of a radiometer is used to generate
data for the MLP network since the noise-wave representation
of radiometers provides flexibility to introduce uncertainty
and noise into the system for testing the performance of
the calibration process under various conditions. In addition,
the noise-wave model breaks down the radiometer architecture
into a number of smaller parts, making it easier to calculate
the noise waves originating from each separate part of the
instrument [24].

The ANN uses the antenna temperature data for target
values in the supervised learning of the system for training.
As shown in Fig. 4, the ANN model has three types of inputs.

1) Vant is the radiometer voltage output when the antenna
leg is selected by the Dicke switch.

2) Vref is the radiometer voltage output when the Dicke
switch is set to the reference load leg.

3) Thermistor data, which consists of the acquired physical
temperature of the antenna, waveguide, noise diode,
coupler, switch, reference load, isolator, and receiver
electronics measured by the thermistors mounted on
those subsystems. The input information from the
thermistors is useful to understand the radiometer noise
change with respect to physical temperature due to
orbital variations, e.g., in the sunlight compared to
earth eclipse.

The ANN model builds a relationship between the input
and the output layers by assigning suitable coefficients to each
neuron in each hidden layer. In this way, the model performs
end-to-end calibration of the radiometer.

Common calibration strategies use a Dicke load or
noise diodes to improve system stability for radiometric
measurements. Then, two-point calibration is performed using

measurements of hot and cold calibration targets to convert
measured counts to volts [3]. However, the proposed model
calibrates the instrument in a single step by directly providing
the calibrated antenna temperature from the measurements,
as opposed to conventional two-point calibration techniques
in which the antenna temperature is estimated in two steps.

V. DEEP LEARNING CALIBRATION RESULTS

The proof of concept of the deep learning MLP model that
has been developed for calibration will be carried out by using
the radiometer noise-wave model derived in this paper. The
radiometer chosen for this paper is a basic Dicke radiometer.
The input parameters for such a radiometer are presented
in Table I. The radiometer is assumed to be operating in low-
earth orbit conditions. It is also assumed that the temperature
control of the system to keep the radiometer instrument at a
constant temperature still depends upon the external tempera-
ture since the CubeSat has stringent limitations for power and
mass. Therefore, the temperature of each part of the radiometer
system varies at a different rate due to orbital temperature
fluctuations.

The orbital and radiometer operation parameters are pro-
vided in Table II. Several data sets have been calculated from
the noise-wave model under the orbital conditions provided
in Table II. Then, as a rule of thumb defined by the holdout
method for an MLP neural network data set selection, 70% of
the samples of the data set have been randomly selected for
the training of the neural network [32]. The remaining samples
are allocated for the testing and validation of the ANN.

The first test is the noise-free case where there is no
uncertainty in the measurements of the antenna voltage from
the radiometer for both the training and testing data sets.
In addition, the thermistors perform precise measurements of
the thermal state of the subsystems (i.e., assuming that they do
not have any uncertainty or bias). The goal of the noise-free
test is to examine the performance of the calibration ANN
under ideal conditions.
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TABLE I

PARAMETERS OF A TYPICAL DICKE-SWITCH DIRECT DETECTION
MICROWAVE RADIOMETER SHOWN IN FIG. 2 [1], [22], [24], [26].

IT SHOULD BE NOTED THAT THE INPUT PARAMETERS

HAVE A MUCH WIDER RANGE THAN THAT

OF A CONVENTIONAL RADIOMETER

TABLE II

ORBITAL AND RADIOMETRIC OPERATION PARAMETERS

The ANN is trained using random selected training samples.
Then, the antenna temperature of the radiometer has been
predicted by the ANN using 20 000 randomly selected samples
from the testing data set. Fig. 5 shows a 5-K bin plot of
the ANN predicted antenna temperatures versus the target
antenna temperatures calculated from the noise-wave model of
the radiometer. The root-mean-square error (RMSE) and the
standard deviation in the predictions are calculated as 48 mK.

However, the output voltage of an actual radiometer has
uncertainty due to noise in the system as well as limited
bandwidth and integration time [3]. The radiometric resolution
of a total power radiometer is

�T = Tsys√
BW×τint

(33)

where Tsys is the system noise temperature (K), BW is the
equivalent noise bandwidth (Hz) of the radiometer, and τint is
the integration time (s) [22].

Fig. 5. Comparison of antenna temperature estimated using the ANN model
with the true temperatures for an ideal case.

The goal of noise-added testing is to study the performance
of the designed ANN for calibration under the presence of
noise in the system. The noise-wave model is used to generate
348 000 testing samples when the antenna is measuring targets
with temperatures from 2.7 to 350 K with 1-K resolution.
Before applying these testing samples to the ANN for calibra-
tion, 0.1% zero-mean additive white Gaussian random noise is
introduced into the radiometer output voltage measurements.
The output voltage uncertainty of 0.1% accounts for gain
fluctuations and corresponds to 0.3 K of uncertainty at an
antenna temperature of 300 K. The same test is repeated for
the uncertainty level of 0.3% at the radiometer voltage output
(i.e., �T = 0.9 K at Tant = 300 K).

The resulting sensitivity of radiometric temperatures to
antenna voltage measurements is defined by

�T /�V = Tmax − Tmin

Vmax − Vmin
(34)

where Vmax and Vmin are the output voltage readings at the
maximum (Tmax) and minimum (Tmin) temperature measure-
ment during the test. Then, the output voltage uncertainty is
expressed in terms of antenna temperature uncertainty as

�T noise = (�T /�V ) × �V noise. (35)

The expected uncertainty in the temperature in (35) is
�T noise, and �V noise is the amount of uncertainty present
at the measured output voltage of the radiometer represented
in Volts.

The expected and measured uncertainties in Kelvin when
using the ANN for antenna temperature calibration for 0.1%
uncertainty at the received radiometer output voltage are
plotted with a bin size of 5 K, as presented in Fig. 6(a).
As shown in the plot, the measured noise is in agreement
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Fig. 6. Antenna temperature estimated using the ANN model when (a) 0.1% uncertainty is presented in the output voltage and (b) 0.3% uncertainty is
presented in the output voltage.

with the expected noise. We conclude that the ANN model
does not add any significant noise to the retrievals.

In Fig. 6(b), the radiometer output voltage uncertainty is
increased to 0.3%. Similar to the results for 0.1% of the
uncertainty level, the measured noise level agrees with the
expected value. The test results for the ideal situation and
the case with uncertainty in the radiometer output voltage
indicate that the designed ANN model does not add any
significant noise to radiometer calibration.

A radiometer operating in orbit has also inaccuracies in
the acquired physical temperature information as a result of
digitization and measurement errors. Therefore, in addition
to 0.1% output voltage uncertainty, 0.1-K uncertainty in the
thermal data is introduced to 20 000 randomly selected samples
of testing data. The current level of thermistor technology
allows a physical temperature measurement precision of better
than 0.1 K [33]. The estimated antenna temperatures of the
ANN have been plotted with respect to expected antenna tem-
peratures on Fig. 7. The RMSE has been calculated as 0.75 K
for the antenna temperature estimates for this case.

Several randomly selected training sample data sets with
various resolutions are generated using the noise-wave model
to analyze the effect of the training data set resolution on the
ANN estimates. Each training data set with sample size from
1.2 million to 149 million is input to an ANN having the
same structure as presented in Fig. 4 to train for radiometer
calibration. Each trained network for five epochs has been
tested with the same three randomly selected data sets having
20 000 noise-free samples, with 0.1% and 0.3% radiome-
ter output voltage uncertainty. The results are summarized
in Table III with the expected RMSE values for noise free,
0.1% and 0.3% uncertainty test cases in addition to expected
standard deviation (STD) values calculated at 300 K for 0.1%
and 0.3% uncertainty test cases.

The RMSE and STD results provide a complete picture of
the ANN performance since the RMSE is used to analyze
how close the estimates are to the expected values while the

Fig. 7. Antenna temperature estimates using the ANN model for a radiometer
with 0.1% output voltage and 0.1-K thermistor reading uncertainties compared
with the true temperatures.

STD provides information about how much uncertainty exists
around the mean estimate value. The measured RMSE values
are close to the expected ones for the networks trained with
larger numbers of the samples. This indicates that increasing
the number of training samples improves the performance of
the network to estimate the antenna temperatures for the net-
works having the same training epoch numbers. The measured
and expected STD values are close to the expected results,
confirming that the ANN does not add any significant noise
when it is tested with networks having a different number of
training samples.
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TABLE III

MEASURED RMSE AND STD PERFORMANCE FOR THE ANTENNA TEMPERATURE RETRIEVALS OF THE ANNS TRAINED
FOR FIVE EPOCHS WITH DIFFERENT NUMBERS OF SAMPLES

TABLE IV

MEASURED RMSE PERFORMANCE FOR THE ANTENNA TEMPERATURE

RETRIEVALS OF THE ANNS TRAINED FOR DIFFERENT
NUMBERS OF TRAINING EPOCHS

The performance of the ANN for the accuracy of the
estimates also depends on how well the network has learned
during the training process [19]. The epoch number of the
network for training defines how many times the training
process is repeated using the complete training data samples.
Therefore, the number of epochs used to train the neural
network is expected to affect the performance of the retrievals.
To demonstrate the effect of training epochs on the accuracy
of the estimates, the trained ANN with the lowest number
of training samples among those ANNs listed in Table III
is chosen. The developed noise-wave model for the Dicke
radiometer is used to generate 1.2 million randomly selected
training samples to train several ANNs, each having different
training epochs but the same training data set. Then, each
network has been tested with the same randomly selected
20 000 testing samples. The results are summarized in
Table IV. The accuracy of the retrievals significantly improves
when the number of training epochs is increased. However, it is
evident from the results that any further increase of the training
epochs beyond 20 does not have significant improvement in
the performance of the ANN for the tested calibration model.

The data used for training an ANN will have measurement
uncertainty since it will be obtained from a real radiometer
even if the radiometer is operating in a controlled environ-
ment in laboratory conditions. Therefore, uncertainty has been

TABLE V

MEASURED RMSE PERFORMANCE FOR THE ANTENNA TEMPERATURE

ESTIMATES OF THE ANNS TRAINED WHEN DIFFERENT AMOUNTS OF
UNCERTAINTY IS INTRODUCED TO THE TRAINING SAMPLES

introduced into the voltage measurements obtained from the
noise-wave model for training the ANN calibration model.
The radiometer noise-wave model has been used to generate
three randomly selected training data sets with noise-free,
0.1% and 0.3% of uncertainty, respectively. The ANN calibra-
tion model is trained for 40 training epochs using each of those
three training data sets separately with 1.2 million training
samples. The results are summarized in Table V. The trained
ANNs have similar performance when they are tested with
samples having 0.1% and 0.3% of uncertainty. Finally, this
test has shown that introducing uncertainty into the samples for
training the ANN does not have a significant effect on the esti-
mates, when compared to noise-free cases shown in Table IV.

In microwave and millimeter-wave radiometry, it is desir-
able to have a linear calibration curve, as shown in Fig. 1(b),
to perform reliable measurements in orbit with high accuracy.
However, radiometers have nonlinear temperature to voltage
response, as shown in Fig. 8(a), due to imperfections in
square-law detector diodes, amplifiers, and analog-to-digital
converters. The detector diodes have a square-law transfer
function for the most of the radiometer’s operating range,
except for low-signal detection. In addition, the third-order
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Fig. 8. ANN calibration performance. (a) Nonlinear and linear antenna calibration curves and (b) antenna temperature estimates using the ANN model for
a nonlinear radiometer.

intercept of the RF amplifiers and fourth-order RF coefficient
of the video amplifier contribute to the nonlinear behavior of
radiometers [34]. There are several ground-based calibration
methods to check the linearity of a radiometer, including
three-point calibration and slope methods explained in [22].
However, those methods are not suitable to be used in on-orbit
radiometers.

The noise-wave model is used to generate data for a
radiometer having a nonlinear calibration curve to check
the performance of the ANN model regarding linearity. The
voltage-to-temperature calibration curve for such a radiometer
is given in Fig. 8(a). The ANN model is trained by randomly
selected 2 millions of training samples having 2 K of non-
linearity at 250-K antenna temperature and 0.1% radiometer
output voltage uncertainty. The trained network is tested using
50 000 randomly selected samples. The estimated antenna
temperatures are plotted with 5-K bin size with respect to
ground-truth antenna temperatures in Fig. 8(b). The RMSE of
the ANN calibration is calculated as 0.3 K. These results indi-
cate that a radiometer having nonlinear calibration response
can be calibrated on orbit by applying the ANN model.

The ANN tests have been applied for an ideal radiometer,
a radiometer having various uncertainties in the output voltage,
and the thermistor measurements as well as a radiometer
with a nonlinear radiometer response. The results have shown
that the ANN model reliably performs low-noise radiometer
calibration under various conditions.

VI. DISCUSSION AND CONCLUSION

The proposed method of calibration for microwave and
millimeter-wave radiometers is based on the deep learning
ANN computation technique. This technique has been
demonstrated using the radiometer noise-wave model. It has
been shown through calculations that the ANN model
produces calibrated antenna temperatures at high accuracy
(low RMSE value) directly, i.e., without any extra data
provided by an external target or a noise diode, as outlined

in Fig. 4. Furthermore, the demonstration has been performed
for the case where there are large gain variations and
insufficient temperature control, as shown in Tables II and III.
The noise analysis of the model has shown that the ANN
does not introduce any significant noise into the radiometric
measurements, for a well-trained model. Therefore, the
presented calibration model can be applied to calibrate
microwave and millimeter-wave radiometers regardless of the
architecture design, operating frequencies, and bandwidths.

The training data set for the ANN model can be obtained
from thermal vacuum chamber (TVAC) radiometric measure-
ments during the prelaunch phase of the instrument develop-
ment. During TVAC tests, the antenna performs radiometric
measurements when viewing a calibration target with a known
and varying temperature in a controlled environment. While
radiometric measurements are being performed, the temper-
ature of different parts of the instrument is continuously
recorded with thermistors placed on the instrument. During
TVAC testing, one may place as many thermistors as possible
on various parts of the instrument for synchronized temper-
ature monitoring with the radiometric acquisitions since the
tests are performed in laboratory environment. Then, it can
be determined which parts are critical for deep learning
calibration based on the radiometric measurements and ther-
mistor readings during TVAC testing. Prelaunch tests may also
provide an opportunity to analyze the system before launch in
addition to providing data for the training.

This paper proposes a general approach that has been
demonstrated for different numbers of training samples and
training epochs. The number of samples for training should
be estimated for any specific radiometer mission based on the
mission requirements and orbital parameters. Then, the ANN
architecture should be designed based on the complexity of the
training data set. Finally, the ANN model should be trained
for a sufficient number of training epochs with the training
samples obtained during the prelaunch tests to achieve the
desired performance for radiometer calibration.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

OGUT et al.: DEEP LEARNING APPROACH FOR MICROWAVE AND MILLIMETER-WAVE RADIOMETER CALIBRATION 11

The ANN model that has been trained for a specific mission
can also be tuned while the radiometer is on-orbit with the
provided data from internal calibration sources or from cold-
sky measurements to consider any changes in the radiometer
system parameters including the aging of the instrument. Also,
external calibration sources that do not exist in the instrument
can be used to tune the neural network in-orbit operation. For
this purpose, the radiometer can perform measurements over
the ocean surface or cold sky to improve the on-orbit per-
formance of the deep learning calibration [35]. Furthermore,
cross-calibration of the antenna temperature measurements
is possible with another on-orbit radiometer performing
nearly collocated measurements. This might also be used
to retrain the ANN model to adjust the weights to improve
on-orbit calibration [36], [37]. The proposed method can
also be applied along with end-to-end calibration techniques.
In this case, calibration using the ANN model may be used
to correct estimates of calibration gain and receiver noise
temperature.

The proposed study can be applied to the radiometers oper-
ated from other platforms such as airborne or ground-based
systems. In addition, the technique presented in this paper may
be extended to perform analysis for time-varying statistical
fluctuations and biases in calibration reference temperatures.
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