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Abstract This study presents a simulated simultaneous retrieval of mass mean cloud ice particle effective
diameter, ice water content, water vapor, and temperature profiles using a combination of a 94‐GHz
cloud radar and multifrequency (118, 183, 240, 310, 380, 664, and 850 GHz) millimeter‐ and
submillimeter‐wave radiometers from a space platform. The retrieval capabilities and uncertainties of the
combined radar and microwave radiometers are quantified. We show that this combined active and passive
remote sensing approach with SmallSat technologies addresses a gap in the current state‐of‐the‐art
remote sensing measurements of ice cloud properties, especially deriving vertical profiles of ice cloud
particle sizes in the atmosphere together with the ambient thermodynamic conditions. Therefore, this new
approach can serve as a plausible candidate for future missions that target cloud and precipitation processes
to improve weather forecasts and climate predictions.

1. Introduction

Clouds andwater vapor are strongmodulators of Earth's hydrological cycle, weather, and climate (Hartmann
& Short, 1980; Stephens, 2005; Bony et al., 2006). In 2017, an Earth Science Decadal Survey released by the
U.S. National Academies outlined a 10‐year planned scientific missions and goals summarized based on
inputs from scientists in the United States and beyond. This 2017 Decadal Survey identified clouds, convec-
tion, and precipitation as one of the targeted observables that are essential to advancing our understanding of
a broad range of Earth science themes. In particular, “For ice clouds, the challenge is even more daunting
than for water clouds owing to serious gaps in knowledge of dynamics and microphysics.” [https://www.
nap.edu/catalog/24938/thriving‐on‐our‐changing‐planet‐a‐decadal‐strategy‐for‐earth, Thriving on our chan-
ging planet: A decadal strategy for Earth observation from space, 2017; hereafter DS2017].

Microwave radiometric measurements of liquid and ice clouds have been available from both aircraft and
satellite platforms for over three decades using millimeter‐wave frequencies mostly below 190 GHz (e.g.,
Burns et al., 1997; Hong et al., 2005; Wilheit et al., 1982). At submillimeter frequencies above ~200 GHz,
the signals are mostly due to scattering and absorption by ice cloud particles, with limited interference from
liquid clouds and water vapor (Evans et al., 1998; Wu et al., 2006; Wu & Jiang, 2004). As the frequency
increases (i.e., wavelength decreases), the sensitivity of microwaves to smaller ice particles increases. By
observing radiances using multiple channels spanning the millimeter and submillimeter frequencies, it is
feasible to measure a wide range of ice particle sizes and their mass densities. However, nadir‐pointing
microwave sensors have coarse vertical resolution due to their wide weighting functions (Jiang et al.,
2017). The technique of using multifrequency millimeter‐ and submillimeter‐wave instruments to retrieve
the vertical structures of ice cloud water content and ice particle effective diameter, along with the associated
atmospheric temperature and water vapor profiles, has been developed (e.g., Evans et al., 2012; Jiang
et al., 2017).

Narrow beam, 94‐GHz (W‐band) radar has been used to provide fine‐scale cloud information from both
aircraft and spaceborne platforms (Li et al., 2004; Stephens et al., 2002). The high scattering efficiency
and short‐wavelength W‐band radar enables high sensitivity for both liquid and ice cloud detection,
and pulse timing provides excellent vertical resolution. W‐band radars supplement microwave radio-
meters' ability to measure broad features of cloud mass and particle sizes by improving characterization
of the vertical structure of clouds. Radar‐radiometer combinations have been recommended by the
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DS2017 to quantify ice cloud properties, ranging from thin cirrus to
deep convective clouds with precipitating ice.

A recently developed Tropospheric Water and Cloud ICE (TWICE) pas-
sive CubeSat instrument (Kangaslahti et al., 2016; Ogut et al., 2018;
Reising et al., 2016) shows the potential of miniaturized radiometers.
TWICE uses three radiometer front ends to provide 14 channels with fre-
quencies of 118, 183, 240, 310, 380, and 664 GHz. Jiang et al. (2017)
demonstrates TWICE's ability to retrieve profiles of cloud ice particle mass
mean effective diameter (De), ice water content (IWC), water vapor (H2O),
and temperature (T) from space. Jiang et al. (2017) show that TWICE has
limited sensitivity to small ice particles (~50% uncertainty for ice clouds
with column‐mean De < 100 μm). TWICE vertical resolution is 3‐5 km.
To enhance TWICE's sensitivity to smaller ice particles and improve the
retrieval of vertically resolved ice cloud properties, a new 850‐GHz radio-
meter is being incorporated into the TWICE instrument. The addition of
the 850‐GHz frequency to TWICE increases its sensitivity to ice clouds
that are optically thin. This upgraded TWICE instrument combines four
radiometer front ends that can be further hosted together with a 94‐GHz

cloud radar in a small‐satellite payload, which is named as ENTICE (Earth's NexT‐generation ICE mission),
to provide finely resolved ice cloud vertical structure together with the ambient thermodynamic conditions.

This paper presents a detailed simulation of the fundamental measurements from the ENTICE suite of com-
bined active radar and multifrequency passive microwave and submillimeter radiometers to assess the sen-
sitivity and accuracy of the retrievals. We select eight frequencies corresponding to a 94‐GHz radar and a
seven‐frequency (94, 118, 183, 240, 310, 380, 664, and 850 GHz) passivemicrowave submillimeter radiometer
suite. The 15 channels for the radiometer suite are shown in Table 1. The TWICE Forward Radiative
Transfer Model and Retrieval System (Jiang et al., 2017) has been updated to facilitate the new combined
radar‐radiometer instruments, as described in section 2. The sensitivity analysis is presented in section 3.
The simulated retrieval and uncertainty estimates are shown in detail in section 4. A summary and conclu-
sion are provided in section 5.

2. Forward Radiative Transfer Model

To simulate the brightness temperature spectra and the radar reflectivity vertical profiles that would be
observed by the ENTICE, forward radiative transfer calculations are performed using the vertical profiles
of atmospheric temperature (T) and relative humidity (RH), as well as cloud IWC, liquid water content,
and mass mean equivalent spherical effective diameter (De) generated by the Weather Research and
Forecasting (WRF) model Version 3.8.1 (Skamarock et al., 2008). Since ozone (O3) has absorption bands
in the microwave frequencies, the tropical O3 profile from a standard atmosphere is used in all calculations.

The forward model component is in the Forward Radiative Transfer Model and Retrieval System (FMRS)
described in Jiang et al. (2017). FMRS was developed based on the Spherical Harmonics Discrete Ordinate
Method for Plane‐Parallel Data Assimilation (SHDOMPPDA) by Evans (2007); Evans et al. (2012). It has
been updated to include the additional 850‐GHz channel and the 94‐GHz cloud radar. The radar reflectivity
is calculated at 0.5‐km vertical resolution. The radiometric brightness temperature spectra at the top of the
atmosphere are calculated for the channels specified in Table 1 by performing unpolarized radiative transfer
calculations with randomly oriented particles. Only a brief summary on the forward model is provided here
since a more detailed description can be found in Jiang et al. (2017). A k‐distribution method (Fu & Liou,
1992) is used to calculate the molecular absorption for given temperature, water vapor, and ozone profiles.
The single scattering properties of hydrometeors, such as ice particles and spherical liquid particles for each
channel, are incorporated into themodel by using precalculated scattering lookup tables as a function of par-
ticle size distribution, shape, and ambient temperature. These tables are calculated using the discrete dipole
approximation method (Evans & Stephens, 1995; Yurkin &Hoekstra, 2011) for ice particles and the Mie pro-
gram for liquid particles. The Mie assumption is used for solid sphere particles. For nonspherical particles,
including plate aggregates, sphere aggregates, and snow aggregates, the discrete dipole approximation is

Table 1
Center Frequencies (GHz), Offsets (GHz), and Bandwidths (GHz) of the
Microwave Radiometer Suite

Channel Center frequency ± Offset frequency Bandwidth

1 118.75 1.1 0.4
2 118.75 1.5 0.4
3 118.75 2.1 0.8
4 118.75 5.0 2.0
5 183.31 1.0 0.5
6 183.31 3.0 1.0
7 183.31 6.6 1.5
8 243.20 2.5 3.0
9 310.00 2.5 3.0
10 380.20 0.75 0.7
11 380.20 1.80 1.0
12 380.20 3.35 1.7
13 380.20 6.20 3.6
14 664.00 4.20 4.0
15 850.00 0.0 4.0
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used. Since no ice particle shape information is readily available from the WRF, for the channel sensitivity
study presented here, only the solid sphere shape is used for ice clouds in the forward calculation. A study by
Wu et al. (2008) found that uncertainty of cloud induced radiances due to ice particle shape at microwave
frequencies is generally less than 20%. The surface emissivity is assumed to be the value of Fresnel
emissivity at ENTICE frequencies for a flat water surface at 26°C, plus 0.06 (Evans et al., 2012) to
approximate ocean roughness.

To generate realistic atmospheric and cloud property profiles, a WRF model run is conducted with ~15‐km
horizontal resolution covering the entire globe with 50 levels in the vertical. The model simulation is initi-
alized with the ERA‐Interim (http://rda.ucar.edu/datasets/ds627.0/) at 1800 UTC on 31 May 2007. We use
the simulation output at 0 UTC on 1 June 2007. The physical parameterizations include the Tiedtke scheme
(Zhang et al., 2011) for convective processes, the Yonsei University scheme (Hong et al., 2006) for planetary
boundary layer processes, the Rapid Radiative TransferModel for General circulationmodel scheme (Iacono
et al., 2008) for shortwave and longwave radiation, and the Thompson scheme (Thompson et al., 2008) for
cloudmicrophysics. The liquid water content, IWC, rain, snow, and graupel, as well as their number concen-
tration, are prognostically calculated in themodel (Thompson et al., 2008). A sum of exponential and gamma
distributions is used to represent the snow size distribution, while the size distribution of other hydrome-
teors is a generalized gamma distribution. Snow and ice cloud particles are differentiated by the effective size
of the particle. Also produced by theWRF are the column integrated cloud ice water path (IWP), liquid water
path, and column‐integrated mass mean effective diameter (Dme).

A cross‐section along the 10°S latitude between 140 and 85°W longitude is selected to illustrate the observa-
tions that would be obtained with ENTICEmicrowave radiometer channels and cloud radar. Both snow and
ice cloud particles in the WRF simulation are included, such that the “truth” IWC is the summation of mass
from both snow and ice cloud particles and the “truth” De is the average effective size weighted by the snow
and ice cloud particle masses. As shown in Figure 1, this cross section includes a wide variety of ice clouds,
such as thin cirrus, anvils, and deep convection with a range of ice particle sizes. Figures 1a and 1b show the
WRF‐simulated IWC and De profiles along this cross section, respectively. Figure 1c shows the forward
model simulated top‐of‐atmosphere (TOA) radiances “observed” by the 15 microwave radiometer

Figure 1. (a and b) The WRF simulated “Truth” ice water content (IWC) and De, respectively, along the cross section at
10°S between 140 and –85°W. (c and d) The forward model simulated radiance and reflectivity observations from
the 15 passive radiometers channels and active 94‐GHz radar, respectively, flying above with nadir viewing along the same
cross section.
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channels, while Figure 1d shows the simulated reflectivity profiles “measured” by the 94‐GHz radar for the
atmosphere along the cross section. We assume nadir viewing for all of the microwave radiometer channels,
with a field of view of 15 km × 15 km. The radar reflectivity is simulated at the same horizontal resolution.
The decrease of TOA brightness temperature spectra due to cloud particle scattering is clear from Figure 1c.
The enhanced radar reflectivity in the convective core where larger ice particles exist is an apparent feature
in Figure 1d. These simulated observations directly highlight the sensitivity of the instruments to various
types of ice clouds.

3. Sensitivity Studies

For microwave radiometers, sensitivity to ice clouds can be illustrated by the difference between the clear
and cloudy TOA brightness temperature, that is, cloud induced change in brightness temperature (BT).
Jiang et al. (2017) show the dependence of BT on cloud IWP and column‐mean effective diameter (Dme)
for the frequencies in Table 1 except for the 850‐GHz band (Channel 15, Table 1). In this study the sensitivity
of the additional channel at 850‐GHz channel is examined. A total of 106 cases are generated stochastically
using the a priori database presented in Jiang et al. (2017) representing various tropical ice cloud types ran-
ging from thin cirrus to deep convection, together with their atmospheric environments. These cases are
input into the forward radiative transfer model described in section 2 to calculate the TOA radiance bright-
ness temperature and radar reflectivity vertical profiles. For each case, two calculations are carried out:
cloudy radiation and clear‐sky radiation by setting cloud water content to zero.

The relative differences in cloud induced change in radiances (BT) between 850 and 664 GHz are illustrated
in the two‐dimensional space of IWP andDme (Figure 2a), as well as cloud optical depth andDme (Figure 2b).
The increase of the BT magnitude in the 850‐GHz channel comparing to the 664‐GHz channel, the highest
frequency of the original TWICE instrument (Jiang et al., 2017), is due to both the IWP (τ) and Dme. Larger
cloud‐induced BT generally indicates an increase in sensitivity to clouds. As shown in Figure 2, the largest
impact is apparent for thinner cloud; that is, the addition of the 850‐GHz frequency increases the sensitivity
of the microwave radiometers to ice clouds that are optically thin (0.1 < IWP < 10 g/m2, 0.1 < τ< 1) and with
smaller particles (20 <Dme < 100 μm). At the sameDme, the enhancement in sensitivity to smaller IWP and τ
values is also apparent.

To quantitatively assess the vertical resolution and sensitivity of the microwave radiometer suite, an aver-
aging kernel matrix A is calculated for each profile along the cross section using definition below
(Rodgers, 2000):

A ¼ GK ¼ X′=X; (1)

whereX′ denotes the retrieved variables andX is the truth state. The Jacobian matrix K is the sensitivity of

Figure 2. Simulated relative differences, (BT850GHz‐BT640GHz)/BT640GHz, in cloud‐induced brightness temperature
change between the 850‐ and 664‐GHz channel are shown as functions of (a) IWP and column‐mean Dme and (b) cloud
optical depth (τ) and Dme, respectively.
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the forward model toX and is calculated by perturbing each element ofX, and G is the gain matrix, which
can be calculated by

G ¼ KTs−1ϵ K þ s−1a
� �−1

KTs−1ϵ ; (2)

where sϵ is the error covariance matrix of the measured spectrum and sa is the a priori covariance matrix
calculated from cloud measurements made during TC4 (Tropical Composition, Cloud and Climate
Coupling) campaign.KT denotes the transpose ofK. In the current calculation, sϵ is taken to be proportional
to a unit matrix, of the form sϵ ¼ σ2ϵ I with σϵ = 0.5K.

The sensitivity of microwave radiometers to cloud profiles can be assessed by the characteristics of IWC and
De averaging kernel functions (A) computed along the cross section (Figure 1) for the 15‐channel microwave
radiometer suite. The results are illustrated in Figure 3, in which the averaging kernel width (Figures 3a and
3b), diagonal (Figures 3c and 3d), and row sum (Figures 3e and 3f) are shown. The width ofA is a measure of
the vertical resolution of retrievals and is calculated as the full width at half maximum (FWHM) of A. The
diagonal of A is a measure of the number of degrees of freedom per vertical level (Rodgers, 2000). The row
sum of A is to illustrate how much the retrieval on a vertical level comes from the “observed” radiance data
(i.e., instead of the a priori).

Figure 3. (a and b) The full width at half maximum (FWHM) of the averaging kernel of ice water content (IWC) and De,
respectively; (c and d) their averaging kernel diagonals; and (e and f) their averaging kernel row sums. The averaging
kernel diagonal is a measure of the number of degrees of freedom per vertical level. The averaging kernel row sum is a
fraction of how much the retrieval on a vertical level comes from the “observed” radiance data instead of the a priori. All
calculations are based on the simulated radiances “observed” by the 15‐channel microwave radiometers suite along the
cross section at 10°S latitude between 140 and 85°W longitude.
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The FWHM averaging kernels vary greatly with the background atmosphere. Note that only when the row
sum of averaging kernels is larger than 0.2, the FWHM is shown in Figure 3. In general, the 15‐channel
microwave radiometers suite has high sensitivity to a wide range of IWC profiles spanning from thin cirrus
to deep convective ice, although the sensitivity to De vertical profiles is reduced below 7 km in deep convec-
tion. In general, the FWHM value increases from 0.5 km for IWC and 1 km for De near the cloud top to 2‐3
km for both IWC and De when going deeper inside the clouds, reflecting a broadening of averaging kernels
and decreasing of vertical resolution of the IWC and De information (and therefore the retrieval as well).

The particle size profile sensitivity is mostly in the anvil and deep convection above 6 km, but with reduced
sensitivity to smaller particles in the thin cirrus and near the cloud top. The De FWHM are also wider than
the IWC FWHM, which increase from about 1 km near the cloud top to 2.5 km at 8‐ to 11‐km altitude.

The results shown in Figure 3 are produced with the 850‐GHz channel included. In the Appendix A1, we
show the change of averaging kernel FWHM, diagonal and row sum after adding the 850‐GHz window
channel 15 to the original 14 TWICE channels. The addition of the 850‐GHz channel produces narrower
averaging kernel functions with larger diagonal elements above 12 km, indicating the increase of profile
sensitivity near the cloud top (by 20%). The diagonal and the row sum of Dme averaging kernels increase
by about 50% and 20%, respectively, indicating the increased information content on Dme vertical profile
retrieval provided by the new high‐frequency channel. In Figure A2, we also illustrate a single‐case
averaging kernel study, which further confirm that the addition of the 850‐GHz channel increases the
information content and improves the vertical resolution for both Dme and IWC, especially above 12 km.

The vertical resolution of a radar is determined by its pulse length. The 94‐GHz cloud radar is assumed to be
similar to the CloudSat radar, which has pulse length of 485 m, and ~600 pulses are transmitted per profile.
The pulses are oversampled every 240 m. So the result is a radar reflectivity profile with 240‐m vertical reso-
lution. However, adjacent bins are not independent. Each bin is correlated with the adjacent bins, and as a
result, the actual vertical resolution is ~500 m. The radar reflectivity profiles (Figure 1d) show high sensitiv-
ities throughout the vertical profiles of cloud when IWC is greater than ~10 g/m3 andDe is greater than ~150
μm; however, very limited or no sensitivity is seen near the cloud top and thin cirrus clouds, where radio-
meters have better sensitivity.

Figure 4 overlays the truth IWC and De profiles that radiometers and the 94‐GHz radar will be sensitive to.
For radiometers, only cloud layers where the row sum of the radiometer averaging kernels is greater than 0.5
are shown. For the cloud radar, only cloud layers with radar reflectivity larger than ‐20 dB are shown. These
results clearly demonstrate that the combined radar and microwave radiometer instrument suite provide
more information than either of them alone, especially for profiling throughout the deep convections.

Our study also found limitations of the combined multifrequency microwave radiometer and cloud radar
approach, especially for very small IWC (≲0.02 mg/m3) and De (≲20 μm), which occurs near convective tops
or thin cirrus. Moreover, as shown in Figure 3f, radiometers show very limited information for De below 8
km in the deep convection clouds (averaging row sum < 0.5). Therefore, only a single piece of information
for particle size in this region is coming from the cloud radar. However, the high information content on
IWC from the radiometers (see Figure 3e) can potentially aid the ice particle size retrieval in this region of
the clouds. Nevertheless, coordinating observations from instruments like ENTICE and radar with the infra-
red and visible observations could allow us to further improve ice cloud retrievals [DS2017].

4. Retrieval Simulation

The Bayesian Retrieval Algorithm developed for the TWICE CubeSat (Evans et al., 2012; Jiang et al., 2017) is
modified by adding an 850‐GHz radiometer channel and a 94‐GHz cloud radar. The WRF simulated field in
Figure 1 is used as the “truth” data. Vertical profiles of ice cloud as well as atmospheric temperature and
water vapor are retrieved from the forward model calculated TOA radiances and radar reflectivity profiles
of the “truth” data using the retrieval algorithm discussed in detail by Jiang et al. (2017) and Evans et al.
(2012). A hybrid Monte Carlo Integration (MCI) and Levenberg‐Marquardt Optimization approach is taken
to perform the Bayesian retrieval depending on whether there are enough MCI database points below a
threshold value of χ2, which is given by
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χ2 ¼ ∑N
j¼1

Tsim
j −Tobs

j

� �2

σj
; (3)

where Tsim
j and Tobs

j are the simulated and measured observations, respectively. The Subscript j corresponds
to channels at different microwave frequencies with T being the TOA brightness temperature, and to differ-
ent vertical levels with T being radar reflectivity. A combined measurement and forward modeling uncer-
tainty is given by σj, and N is the length of the observation vector. For the microwave radiometer
channels, σj is assumed to be 1 K, and for the radar, σj =1.5 dB including the errors from both the measure-
ment and the radiative transfer modeling. These errors have been added into the simulated observations as
independent Gaussian noise of specified root‐mean‐square (RMS) values (RMS = 1K for radiometers and
RMS = 1.5 dB for radar) for each channel.

To simulate the retrieval from a simulated ENTICE observation illustrated in Figure 1, we use both the
radiances from the 15 microwave radiometer channels (Table 1 and Figure 1c) and the radar reflectivity
(Figure 1d) as the input into the retrieval algorithm. Figures 5 illustrates the performance and accuracy of
the retrieval, where the retrieved IWC, De, cloud layer (500 m) optical depth τ, RH, and T profiles are shown
in the left column, and the retrieval errors computed by comparing with the “truth” profile‐by‐profile are
shown in the middle column. The mean biases (solid line) from all the profiles and the RMS (dashed line)
errors are shown in the right column.

The retrieved cloud profiles are limited to altitudes above the freezing level at ~4 km. For clouds with IWC in
the range of 0.02 and 3 g/m3, and De larger than 50 μm, the magnitude of mean biases is <40%. For T, the
mean retrieval error is within 1 K in the lower troposphere below ~5 km but has up to 2 K cold bias in
the midtroposphere and a warm bias above 15 km, which may be related to the fact that the instrument will
miss thin (<0.3 optical depth) cloud layers. The mean RH biases are generally within ~20% with an RMS <

Figure 4. Simulated (a) ice water content (IWC) and (b) De profiles overlaid with the sectors in which radiometers and cloud radar have information on shown by
different color tables. The distributions of truth IWC and De are shown in dark red‐white color scale. For radiometer sensitivity, only cloud layers where
the row sum of the radiometer averaging kernels is greater than 0.5 are shown (green‐brown color scale). For radar sensitivity, only cloud layers with radar
reflectivity larger than −20 dB are shown (rainbow color scale).
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30%. The vertical resolution for the retrievedDe and IWC is 0.5 km, mainly due to the addition of the 94‐GHz
radar. The vertical resolution for the retrieved T and RH profiles depends on both the weighting functions
and a priori, which are typically coarse at ~3‐4 km (Jiang et al., 2017). In general, retrievals underestimate
the IWC and De especially for IWC < 0.02g/m3 and De < 40 μm, which occurs usually near the cloud top
and with thin cirrus clouds. As a result, negative biases as large as ‐50% are seen for cloud layers with
optical depth < 0.3, which is consistent with the sensitivity analysis presented in section 3.

Figure 5. Left column: Retrieved vertical profiles of ice water content (IWC), De, cloud layer (500m) optical depth τ, relative humidity (RH), and temperature pro-
files using the simulated top‐of‐atmosphere radiances and radar reflectivity profiles along the cross section at 10°S between 140 and 85°W longitude. Middle col-
umn: The relative differences, in percent, computed as the retrieved values minus the truth values and then divided by the truth values. Differences for relative
humidity and temperature are shown in % and K, respectively. Right column: The mean biases (solid line) and root‐mean‐square (RMS; dashed line) errors (RMSE)
of the mean profiles for the five variables. For IWC, De, and τ, histograms of mean errors are presented.
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5. Summary and Conclusions

A combined platform of radar and multifrequency passive microwave submillimeter radiometers are recom-
mended by the 2017 Decadal Survey as a candidate measurement approach for the Clouds, Convection and
Precipitation (CCP) designated mission.

This study presented a detailed simulation of measurements and their estimated uncertainties from
ENTICE's combined radar and multifrequency radiometer package. ENTICE radiometer's frequency chan-
nels between 118 and 850 GHz are selected to provide measurement capability for simultaneous retrieved
profiles of ice particle effective radius together with IWC, atmospheric moisture. and temperature profiles;
ENTICE's 94‐GHz cloud radar further enables the retrieval for fine‐resolved vertical structure of ice cloud
particle effective radius and water content. Compared to the previous TWICE instrument (Jiang et al.,
2017), ENTICE increases the vertical resolution of ice cloud retrievals from 3‐4 km to 0.5 km and reduces
the bias to <40%.

The combined ENTICE radar and radiometer suite significantly improves state‐of‐the‐art measurements
[e.g., A‐Train; L'Ecuyer & Jiang, 2010] of ice clouds in terms of accuracy, vertical resolution, simultaneous
retrieval of atmospheric state (water vapor and temperature), and new ability to retrieve ice cloud particle
size. For the first time, it demonstrates a pathway toward the quantification of ice cloud radiative effects
and constraining model simulations of ice cloud feedback and associated hydrological processes, contri-
buting to reducing uncertainties of climate predictions. The improved ice cloud measurements by
ENTICE will advance our understanding of ice cloud microphysical processes and lead to improved simu-
lations and predictions of severe storms and climate change. Therefore, ENTICE would be an attractive
option for future missions targeting clouds, convection, and precipitation processes, as called out in the
2017 Earth Science Decadal Survey by the U.S. National Academies.
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