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Abstract—In this letter, a novel 1/f noise mitigation technique is 

presented to improve the receiver 1/f noise performance of a 670 

GHz receiver. Time domain 1/f noise  corrected samples are 

compared with samples obtained without the correction. Spectral 
domain analysis shows that the 1/f noise  mitigation method 

improves the receiver noise performance by 19 dB in the receiver 

under test. The presented 1/f noise mitigation technique can be 

applied to any direct-detection receiver in the THz frequency 

range . 

 

Index Terms— 1/f Noise, Calibration, Low-Noise Amplifier, 
Millimeter-wave Radiometer, Passive Imaging, THz Receivers 

I. INTRODUCTION 

CE clouds, covering more than half of the Earth’s surface at 

any given time, regulate the weather and climate through 

radiative feedback and precipitation. The interaction of ice 

particles with radiation at THz frequencies strongly depends on 

the ratio of the ice particle size to observation wavelength. The 

amount of radiation received by a THz range radiometer 

instrument viewing the Earth is expected to decrease as a result 

of scattering by the ice particles in the upper atmosphere. This 

property can be exploited using measured brightness 

temperatures in the THz range to retrieve information on the 

size distribution of ice particles in the upper troposphere and 

lower stratosphere [1], [2]. 

Recent developments in transistor technologies have 

extended the operating frequency of amplifiers into the THz 

range [3]. This, in turn, has provided the capability of 

developing uncooled (non-cryogenic) THz integrated receivers 

for atmospheric remote sensing instruments [3], [4]. The 

stability, accuracy and sensitivity of these receivers are critical 

for the reliability and quality of radiometric data [5].  

Flicker noise, often called 1/f noise, can degrade the stability 

of receivers by generating stationary random gain fluctuations 

with a spectral power density function inversely proportional to 

frequency [6]. Heterodyne receivers, which perform 

amplification at a lower intermediate frequency (IF) that is 

substantially lower than the RF frequency, are less susceptible 
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to 1/f noise, but at a cost of higher power consumption and 

volume compared to a direct-detection receiver. Direct-

detection receivers, which perform all of the amplification in 

the THz range, suffer from significantly higher 1/f noise [7]. As 

a result, high 1/f noise can be a challenge in direct-detection 

THz receivers, causing degradation of the radiometric 

performance. 

The addition of a Dicke switch is useful for reducing 1/f noise 

in radiometers [5], [8]. However, only limited work on switches 

has been done at THz frequencies [9]. This, in turn, makes 

Dicke-switching architecture impractical for radiometry in the 

THz range. Therefore, a significant need exists to address 1/f 

noise in THz direct detection receivers. 

The proposed mitigation technique relies on tracking the 

rapid gain variations in the radiometer due to 1/f noise and 

correcting them by generating a baseline state in the first 

amplification stage of the low noise amplifier (LNA). The 

proposed 1/f noise mitigation method can be applied to any 

receiver, but it is especially valuable for THz receivers since 

any switch inserted between the antenna and the low-noise 

amplifiers will add high insertion loss at these high frequencies, 

making them impractical for use in radiometric applications. 

This study demonstrates a novel 1/f mitigation technique on 

the 670 GHz receiver of the Tropospheric Water Vapor and 

Cloud Ice (TWICE) 6U-Class small satellite instrument. The 

technology developed for TWICE is expected to enable global 

observations of upper tropospheric and lower stratospheric 

water vapor, as well as information on the cloud ice particle size 

distribution using submillimeter wave-to-THz channels at 240 

GHz, 310 GHz, 670 GHz and 850 GHz, in addition to water 

vapor sounding channels near 183 GHz and 380 GHz [10]. 

II. THE 1/F NOISE MITIGATION TECHNIQUE 

The block-diagram of the TWICE 670 GHz direct-detection 

receiver with the proposed technique is shown in Fig. 1. The 

packaged integrated receiver used in this study was designed 

and manufactured at Northrop Grumman Corporation [4], [11]. 

The command and data handling (C&DH) system shown in Fig. 
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1, designed, tested and demonstrated at Colorado State 

University, is used to test the receiver performance for 

atmospheric remote sensing applications [10]. This study 

focuses on the 1/f noise performance of the integrated receiver 

and presents a new mitigation technique.  

In the diagram shown in Fig.1, the feed horn antenna receives 

THz radiation from the scene, which is amplified by the LNAs 

and bandlimited by the bandpass filter. The amplified THz 

radiation, which can be characterized as a scene brightness 

temperature, is then detected by a GaAs Schottky Zero Bias 

Detector manufactured by Virginia Diodes Incorporated (VDI). 

The analog output voltage of the 670 GHz integrated receiver 

is then sampled by the analog-to-digital converters (ADCs) of 

the data acquisition circuitry on the C&DH board of the TWICE 

receiver [10]. Digital averaging is performed on the digitized 

samples output by the ADCs before the data are sent to the on-

board computer (OBC) for further processing.  

All semiconductor devices have 1/f noise.  In the direct-

detection receiver shown in Fig. 1, 1/f noise contributors 

include the three MMICs (each with eight transistor stages) and 

the GaAs Schottky detectors.  Each of these contributes to the 

cumulative 1/f noise of the direct detection receiver.  Note that 

direct-detection receivers output a DC voltage proportional to 

the received power, and are therefore are particularly 

susceptible to 1/f noise.  In Fig. 1, we adjust the gate bias of the 

first transistor stage between the on and off states of the 

transistor.  Therefore, as graphically illustrated in Fig. 1, a 

switching mechanism is implemented in the receiver to switch 

the first transistor stage of the first LNA periodically on and off 

with a digital switching signal from the FPGA on the C&DH 

board.  

In this design, gain tracking is performed by changing the 

state of the LNA faster than the 1/f noise gain variations to 

reduce the effects of 1/f noise on the resulting radiometric 

brightness temperatures. Therefore, two different receiver 

output levels, referred as LNAON and LNAOFF, are generated 

based on the LNA switch control position as the signal switch 

control denoted Fig. 1. It should be noted that the radiometer 

does not have any reference matched load or any similar 

calibration source that can be measured, as used in a Dicke-

switching radiometer [5], [8]. In the proposed technique, the 

receiver always measures only the antenna signal in both the 

LNAON and LNAOFF states. The 1/f noise variations modulate 

both states of the acquisition independent of the scene currently 

viewed by the antenna. If the switching frequency of the first 

transistor state is faster than the 1/f noise frequency, receiver 

gain variations can be tracked by comparing the acquired 

samples of the two states, LNAON and LNAOFF [12].  

   
Fig. 1. Block diagram of the RF receiver showing the strategy of the 1/f noise mitigation technique. 
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Fig. 2. The 670 GHz receiver Y-factor measurements: The receiver output without 1/f noise mitigation technique (top) and 

with 1/f noise mitigation technique (bottom). 
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III. 1/F NOISE MITIGATION TECHNIQUE RESULTS 

The described 1/f noise mitigation technique has been applied 
to the TWICE 670 GHz receiver. During the test, Y-factor 

measurements have been performed using the 670 GHz 
integrated receiver, while the C&DH board performs digital 

acquisition of the analog receiver output at 16-bit resolution and 
50 kSPS sampling rate. The first stage LNA control signal is a 
square wave at a frequency of 5 kHz. In addition, the C&DH 

system synchronizes data acquisition with the receiver LNA 
gain stage control signal used for 1/f noise mitigation. 
The upper panel in Fig. 2 shows the sampled output voltage 

acquired from the integrated 670 GHz receiver while the LNA 
switch is set to the ON state during Y-factor measurements. The 

antenna is viewing an ambient blackbody target at room 
temperature, followed by another blackbody target submerged 
in liquid nitrogen (LN2) at 77 K and then the ambient blackbody 

target again. To apply the 1/f noise mitigation technique to the 
collected samples, the output voltage temperature is calculated 
by comparing the LNA ON and OFF state samples, as shown in 

(1),where 𝑄𝑂𝑁 and 𝑄𝑂𝐹𝐹 are the samples acquired during the 

LNA first stage ON and OFF states, respectively, and 𝑀 is the 

number of samples averaged. The corrected digitized receiver 
output is shown in the lower panel in Fig. 2. Based on these 
time series measurements, the power spectral density (PSD) 

curves are calculated for the receiver outputs, both with and 
without the 1/f noise mitigation applied. Results are shown in 

Fig. 3. For the uncorrected case, the 1/f noise dominates the 
PSD curve, in which the broadband spectrum is not visible for 
the half-side spectrum domain plot shown up to 125 Hz, 

corresponding to a sampling time of 4 ms. With the correction 
applied, a 19 dB improvement in the stability is shown by 
applying the 1/f noise mitigation technique.  

The calibrated antenna temperature plot obtained from 
ambient blackbody target measurements by the 670 GHz 

receiver is provided in Fig. 4 for the 1/f noise uncorrected and 
the corrected cases. The radiometric resolution is improved to 
0.88 K from 4.75 K for the case studied at 50 ms integration 

time. After 1/f noise mitigation, the radiometric resolution can 
be further reduced using longer integration times [8]. 

IV. CONCLUSIONS 

A novel 1/f noise mitigation strategy for THz range receivers 

has been presented. The application of the proposed approach 

relies on controlling the receiver gain variation by tracking the 

1/f noise in the system.  

This new technique has been demonstrated using the 670 

GHz TWICE integrated receiver. The 670 GHz time series 

measurements have shown that the technique significantly 

corrects for gain variations. The PSD curves show that the 1/f 

noise mitigation technique provides 19 dB of improvement in 

the radiometer receiver output. The new 1/f noise mitigation 

technique can provide high accuracy imaging for THz range 

receivers.  
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Fig. 4. The calibrated antenna temperature measurements 

over an ambient target of the 670 GHz. 

 

 
Fig. 3. The normalized PSD analysis of radiometric acquisition with and without 1/f noise correction of the 670 GHz receiver. 
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