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Abstract—Spaceborne interferometric synthetic aperture radar
(SAR) (InSAR) imaging has been used for over a decade to moni-
tor tectonic movements and landslides, as well as to improve digital
elevation models. However, InSAR is affected by variations in
round-trip propagation delay due to changes in ionospheric total
electron content and in tropospheric humidity and temperature
along the signal path. One of the largest sources of uncertainty
in estimates of tropospheric path delay is the spatial and tem-
poral variability of water vapor density, which currently limits
the quality of InSAR products. This problem can be partially
addressed by using a number of SAR interferograms from subse-
quent satellite overpasses to reduce the degradation in the images
or by analyzing a long time series of interferometric phases from
permanent scatterers. However, if there is a sudden deformation of
the Earth’s surface, the detection of which is one of the principal
objectives of InSAR measurements over land, the effect of water
vapor variations cannot be removed, reducing the quality of the
interferometric products. In those cases, high-resolution informa-
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tion on the atmospheric water vapor content and its variation with
time can be crucial to mitigate the effect of wet-tropospheric path
delay variations. This paper describes the use of a ground-based
microwave radiometer network to retrieve 3-D water vapor den-
sity with fine spatial and temporal resolution, which can be used
to reduce InSAR ambiguities due to changes in wet-tropospheric
path delay. Retrieval results and comparisons between the inte-
grated water vapor measured by the radiometer network and
satellite data are presented.

Index Terms—Digital elevation models, humidity measurement,
microwave radiometry, moisture, remote sensing.

I. INTRODUCTION

S PACEBORNE interferometric synthetic aperture radar
(SAR) (InSAR) imaging has been used for over a decade to

monitor tectonic movements and landslides on the centimeter
scale. InSAR makes use of the difference in phase between
two SAR images taken at different times or from different
viewing angles to produce an interferogram [1]. The spatial and
temporal variability of water vapor, pressure, and temperature
introduce changes in the round-trip propagation delay of the
signals transmitted and received by the radar. The effect of
water vapor variability can be reduced by averaging a large
number of interferograms [2], just as the effect of uncorrelated
noise decreases when averaging independent samples. It can
also be estimated by analyzing a long time series of interfero-
metric phases of very stable and coherent permanent scatterers
(PSs), i.e., the PS technique [3]. However, intervening sudden
surface deformation prevents such averaging and multi-image
approaches. In these cases, the availability of high-resolution
spatial and temporal information on atmospheric water vapor
would be useful to mitigate its effect on SAR interferograms.
This paper focuses on measurements performed during the
Mitigation of Electromagnetic Transmission errors induced by
Atmospheric WAter Vapor Effects (METAWAVE) experiment
sponsored by the European Space Agency (ESA). As part of
METAWAVE, the Microwave Systems Laboratory at Colorado
State University (CSU) deployed a network of Compact Mi-
crowave Radiometers for Humidity profiling (CMR-H) to mea-
sure the 3-D water vapor density over Rome, Italy.

This paper discusses the METAWAVE experiment and
presents 3-D water vapor retrieval results. A comparison is

0196-2892/$26.00 © 2011 IEEE
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Fig. 1. Schematic depiction of three CMR-Hs scanning the atmosphere over
Rome, Italy, in azimuth and elevation angles. Each radiometer scanned eleva-
tion angles from 30◦ to 80◦ at three different azimuth angles, i.e., along the two
baselines connecting it with the other two radiometers and along the median of
those baselines.

presented between retrievals from measurements using the
network of CMR-H, those using other spaceborne instruments,
and results from a numerical weather prediction model. In
Section I, the background of the METAWAVE experiment is
discussed. Section II describes the experimental setup of the
field experiment and the instruments used therein, i.e., the
CMR-H, the Moderate Resolution Imaging Spectroradiometer
(MODIS), and the Medium Resolution Imaging Spectrometer
(MERIS). Section III summarizes the 3-D water vapor retrieval
technique. Section IV discusses the results of the experiment,
focusing on the 3-D water vapor field retrieved from the
radiometer network and on the comparison of the integrated
water vapor from the CMR-H network with that from MODIS
on National Aeronautics and Space Administration (NASA)’s
Aqua satellite, as well as with that from MERIS on ESA’s
Environmental Satellite (Envisat). Conclusions and future work
are discussed in Section V.

II. EXPERIMENT DESCRIPTION

As part of the METAWAVE experiment, the Microwave
Systems Laboratory at CSU deployed in Rome, Italy, a ground-
based network of scanning CMR-H [4] that were custom built
at CSU to observe 3-D water vapor density with fine spatial
and temporal resolution. Three CMR-Hs were deployed in
a triangular topology to implement a three-node network of
scanning radiometers, as shown in Fig. 1. The three radiometers
were located at the Sapienza University of Rome (Engineering
Faculty) and the Tor Vergata University of Rome, as well as a
third location, Picco Tre Signori. Table I gives the latitude and
longitude of the locations of the radiometers in Rome.

TABLE I
LOCATIONS OF GROUND-BASED COMPACT MICROWAVE RADIOMETERS

DEPLOYED IN A NETWORK IN ROME, ITALY

Fig. 2. Map showing the locations of the three nodes of the network of
CMR-Hs deployed in Rome, Italy, during the METAWAVE experiment in
September and October 2008.

The three radiometers scanned the atmosphere above the
triangular network in azimuth and elevation angles, as shown in
Fig. 1. A scanning strategy was chosen for maximal coverage
of the atmosphere above the network with a repeat period of
10 min. Each radiometer viewed three azimuth angles and
ten angles in elevation from 10◦ zenith angle to 30◦ above
the horizon, i.e., elevation angles of 30◦ to 80◦. The three
azimuth angles scanned by each radiometer are represented by
yellow segments on the map in Fig. 2. These ground-based
measurements were performed from September 20, 2008 to
October 3, 2008, a period that included a number of overpasses
of MODIS on NASA’s Aqua satellite and of MERIS and the
Advanced Synthetic Aperture Radar (ASAR) on ESA’s Envisat.
A photograph of the deployment of a CMR-H on the terrace of
the Sapienza University of Rome is shown in Fig. 3.

A. CMR-H

Developed using state-of-the-art monolithic-microwave-
integrated-circuit technology, the CMR-H [4] is a low-mass,
low-power, and small-volume microwave radiometer that mea-
sures simultaneously at four optimally selected K-band fre-
quencies near the 22.235-GHz water vapor absorption line,
i.e., 22.12, 22.67, 23.25, and 24.5 GHz. Table II shows the
specifications of the CMR-H. The radiometer has a radiometric
resolution (NEΔT) of 0.2 K for an integration time of 3 s
[4]. The CMR-H has been deployed and tested during previous
experiments in which its ability to retrieve atmospheric water
vapor has been demonstrated [5].

In this paper, a network of CMR-Hs is implemented in
order to demonstrate its capability to retrieve water vapor with
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Fig. 3. Deployment of CMR-H on the terrace of Sapienza University of Rome
for the METAWAVE experiment.

TABLE II
SPECIFICATIONS OF THE CMR-H

quality comparable to that of well-known water vapor observa-
tions, including the MODIS and MERIS integrated water vapor
products.

B. MODIS

The MODIS instrument has 36 channels spanning the spec-
tral region between 0.4 and 15 μm. Five channels in the near-
infrared region of 0.8–1.3 μm are used for remote sensing of
water vapor. Water vapor absorption channels with decreas-
ing absorption coefficients are centered at 0.936, 0.940, and
0.905 μm, respectively. The strong absorption channel at
0.936 μm is most useful under dry conditions, while the
weak absorption channel at 0.905 μm is most useful un-
der very humid conditions or low solar elevation angles [6].
The retrieval technique relies on comparing the magnitude
of solar radiation reflected from the ground at absorbing
and non-absorbing channels in order to detect its absorption
by water vapor from the surface to the sensor. The equiva-
lent total vertical amount of water vapor is retrieved from a
comparison between the reflected solar radiation in the ab-
sorbing channel with that in nearby nonabsorbing channels.
MODIS has a spatial resolution of 1 km, but operational

Fig. 4. Vertical plane scanned by the radiometer is divided into grid cells to
perform the 3-D water vapor retrieval.

integrated water vapor (IWV) data are available at a 5-km
resolution [6].

C. MERIS

MERIS’s main objectives are to observe ocean color to
understand the ocean carbon cycle and to estimate cloud type
and albedo, top and bottom of atmosphere vegetation indices,
and other geophysical parameters [7]. MERIS retrieves total
columnar atmospheric water vapor over the entire Earth once
every three days. MERIS has 15 programmable spectral fre-
quency bands, two of them in the near-infrared and referred to
as the water vapor channels, i.e., the absorption-free band at
885 nm and the absorption band at 900 nm. MERIS retrieves
the total water vapor column based on differential absorption
between these two nearby water vapor bands. MERIS near-
infrared water vapor products are available at a full resolution
of 300 m and at a reduced resolution of 1200 m [7], [8].
Finer spatial resolution than previous polar orbiting instruments
makes MERIS very useful to the meteorological community for
observing integrated water vapor on a global basis with a spatial
resolution of hundreds of meters. The MERIS product with full
resolution was used for comparison with data from the CMR-H
network.

III. RETRIEVAL OF 3-D WATER VAPOR DENSITY

Three-dimensional water vapor density is retrieved from
the brightness temperatures measured by the CMR-H network
using algebraic reconstruction tomography, optimal estimation,
and Kalman filtering [5]. This process is briefly summarized
here. The vertical plane scanned by the radiometer is divided
into grid cells, as shown in Fig. 4.

A water vapor profile from radiosonde(s) is used as an
a-priori or reference profile. Assuming the reference atmo-
spheric state, a radiative transfer equation in discrete form
is used to calculate the brightness temperature at each mea-
surement frequency that would be measured by a radiometer
pointing at each elevation angle. The difference between the



3284 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 49, NO. 9, SEPTEMBER 2011

measured and calculated brightness temperatures is termed the
variation in brightness temperature. The absorption coefficient
in each of the grid cells is calculated using state-of-the-art
absorption models [9]–[11]. The variation of the brightness
temperature at each elevation angle and the variation of the
absorption coefficient in each grid cell are related by the
elements of the Jacobian matrix. Calculating the absorption
coefficient from the brightness temperature variation and the
Jacobian matrix is an ill-posed problem because the number of
measurements is less than the number of grid cells at which
the absorption coefficient needs to be known. For that reason,
the deviation of each absorption coefficient from its reference
value is calculated using Bayesian optimal estimation. The
absorption coefficient retrieved in this way for each of the four
brightness temperature measurement frequencies is fit to the
Van Vleck–Weisskopf model [12] of the water vapor absorption
line to retrieve the water vapor density in each of the grid cells.
In addition, spatial interpolation (kriging) is used to retrieve the
water vapor density in each of the unsampled locations. The
3-D water vapor can be retrieved with a vertical spatial resolu-
tion of 0.5 km and with a similar horizontal spatial resolution
[5]. The water vapor densities are retrieved at 20 equally spaced
vertical levels from 0.5 to 10 km. The maximum retrieval
altitude is approximately 10 km. The temporal resolution of the
retrieved water vapor field is dependent on the time required
to scan the spatial volume measured by the three radiometers.
In the case of the METAWAVE experiment, the 3-D water
vapor field can be retrieved with a temporal resolution of
approximately 10 min.

IV. EXPERIMENTAL RESULTS

Radiometric measurements were performed at the four mea-
surement frequencies of 22.12, 22.67, 23.25, and 24.5 GHz.
The measured brightness temperatures were used to retrieve the
3-D water vapor field in the volume scanned by the radiometers.
The results of the METAWAVE experiment are discussed in
detail in the following sections.

A. Three-Dimensional Water Vapor Density Results

The 3-D water vapor density field was retrieved from bright-
ness temperatures measured by the three CMR-Hs during the
METAWAVE experiment. Horizontal slices of the retrieved
water vapor density at altitudes of 0.5, 2.0, and 3.0 km above
ground level at 21:30 Coordinated Universal Time (UTC) on
September 20, 2008, near the overpass time of the ASAR on
Envisat, are shown in Fig. 5. The size of each pixel in this
figure is 500 m × 500 m. The water vapor profile from a
radiosonde launched at 21:30 UTC on September 20, 2008, was
used as the a priori for retrieving the 3-D water vapor field. The
spatial variability of water vapor densities in each horizontal
slice is approximately 23.8%, 17.0%, and 5.0% at 0.5-, 2.0-,
and 3.0-km altitudes, respectively. This shows that atmospheric
water vapor densities with significant dynamic range have been
retrieved, demonstrating the ability of the CMR-H network to
sense substantial variability in water vapor density.

Fig. 5. Water vapor density from CMR-H observations at three altitudes above
ground level. The vertical axis is not to scale.

TABLE III
RMS ERRORS OF RETRIEVED WATER VAPOR DENSITY IN VARIOUS

ALTITUDE RANGES, EXPRESSED AS PERCENTAGES

B. Error Analysis of Retrieved 3-D Water Vapor Field

An estimate of uncertainty in the retrieved water vapor
density profiles is given by the error covariance matrix S [13]

S = Sρv
− Sρν ,TB

S−1
TB

STB ,ρν
(1)

where Sρν
is the prior covariance matrix of the water vapor

density profiles based on the climatological variability of water
vapor density during the period of the METAWAVE exper-
iment, STB

is the error covariance matrix of the measured
brightness temperatures with respect to a reference or a-priori
profile [5], Sρν ,TB

is the error cross-covariance matrix for
water vapor density and measured brightness temperatures,
and STB ,ρν

is the error cross-covariance matrix for measured
brightness temperatures and water vapor density. The error
calculation shows that prior variability in water vapor density is
reduced due to the inclusion of measurements. The amount by
which it is reduced is directly related to the correlation between
water vapor density and measured brightness temperatures,
given by the cross-covariance matrices Sρν ,TB

and STB ,ρν
, and

inversely related to the variation in the measurements, given
by STB

.
The square root of each main diagonal element of S rep-

resents the rms error of each retrieved water vapor density.
Since the error covariance matrices depend upon variable water
vapor density profile and instrument characteristics, lower and
upper error bounds were calculated. These bounds of rms error
in retrieved water vapor density in various altitude ranges are
given as percentages in Table III.
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Fig. 6. Comparison between the 2-D water vapor retrieved from the CMR-H network and MM5 model results. (a) On September 20, 2008. (b) On October 3,
2008.

Fig. 7. Comparison between integrated precipitable water vapor from the CMR-H network and MODIS on September 29, 2008.

The minimum value of the retrieved water vapor density is
approximately 1× 10−3 g/m3. It should be noted that this is
most relevant at the maximum altitude of the retrieval (i.e.,
10 km), where the error is greater than 13%.

C. Comparison of 2-D Water Vapor Results From
CMR-H and MM5 Model Output

The 2-D water vapor output from the Mesoscale Model 5
(MM5) was compared to the 2-D water vapor densities retrieved
from the CMR-H network. The MM5 numerical weather pre-
diction model has a horizontal resolution of 1 km on the
inner domain and a variable vertical resolution [14]. Fig. 6(a)
and (b) shows comparisons of the 2-D water vapor from the
MM5 model and from the CMR-H network for September
20, 2008, at 21:40 UTC and October 3, 2008, at 10:10 UTC,
respectively.

The measurement time interval or temporal resolution of
the radiometer retrievals is 10 min. In the lowest 2 km of the
troposphere, the CMR-H network retrievals show greater water
vapor density and more variability than the MM5 model output
on both days. At altitudes of 3 km and higher in Fig. 6(a), the
water vapor densities for both CMR-H network retrievals and
MM5 model output range from 1 to 4 g/m3. Again, at altitudes
of 3 km and higher, Fig. 6(b) shows values for CMR-H network
retrievals ranging from 2 to 5 g/m3 and MM5 model outputs

ranging from 2 to 4.5 g/m3. Thus, the water vapor density
in the middle and upper troposphere is nearly the same for
CMR-H network retrievals and MM5 model output for these
cases. As shown in Fig. 6(a), the MM5 model output has a
maximum water vapor density of approximately 8 g/m3, while
the CMR-H network retrievals have a maximum value of
approximately 9.5 g/m3. Fig. 6(b) shows larger values of water
vapor density on October 3, 2008, than those of Fig. 6(a) on
September 20, 2008. From these results, we conclude that the
CMR-H network retrievals exhibit similar spatial variability
and average values to those of the MM5 numerical weather
model output.

D. Comparison of Integrated Precipitable Water Vapor
From CMR-H Network and MODIS

A comparison of the vertically integrated precipitable water
vapor (IWV) retrieved from the CMR-H network with that from
the MODIS instrument on NASA’s Aqua satellite is presented
here. The 3-D atmospheric water vapor densities retrieved
from the CMR-H network have been vertically integrated to
obtain IWV at each latitude/longitude location. Then, these
IWV results have been decimated to a spatial resolution of
1 km in order to compare them with the IWV from MODIS.
From Fig. 7, it is evident that the CMR-H and MODIS IWV
retrievals exhibit similar water vapor densities.
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Fig. 8. Comparison between integrated precipitable water vapor from the CMR-H network and MERIS on September 29, 2008.

This analysis was performed to compare the average IWV
of the CMR-H network retrievals with the average IWV of the
MODIS retrievals. In Fig. 7, the average IWV from MODIS
is 1.23 cm, while the average of the CMR-H network re-
trievals is 1.28 cm. It should be noted that the MODIS wa-
ter vapor products have an accuracy of 5%–10% [6]. Since
the average values of IWV retrieved from the CMR-H net-
work and from MODIS agree more closely than the ac-
curacy of MODIS water vapor retrievals, we conclude that
the CMR-H network retrievals yield a good average value
of IWV.

E. Comparison of Integrated Precipitable Water Vapor
From CMR-H Network and MERIS

A comparison of the IWV values retrieved from MERIS
on ESA’s Envisat and the CMR-H network is presented here.
Spatially and temporally coincident MERIS IWV and CMR-H
network IWV were used for the comparison. A comparison of
the IWV from the CMR-H network retrievals with the MERIS
retrievals for September 29, 2008 at 09:50 UTC is shown in
Fig. 8. The a priori for the CMR-H network retrieval shown in
Fig. 8 is an average of the water vapor profiles from radiosondes
launched at 6:00 UTC and 12:00 UTC on September 29, 2008,
from Pratica di Mare, a station located about 25 km southwest
of the center of the CMR-H network in Rome. The CMR-H
IWV data have a horizontal resolution of 500 m. Since
the full-resolution products of MERIS have been used, the
CMR-H network retrievals have been interpolated to produce
water vapor images with a 300-m spatial resolution. There are
394 pairs of colocated spatial samples from MERIS and the
CMR-H network on September 29, 2008 from 09:40 UTC–
09:50 UTC. The average IWV value of the CMR-H network
retrievals is 1.29 cm, while the average IWV of the MERIS
retrievals is 1.30 cm.

Fig. 9 shows the correlation between the IWV from MERIS
retrievals and those from the CMR-H network retrievals. The
solid line represents the best fit between the two sets of
data. The correlation coefficient is 0.64. A linear fit yielded
the relationship MERIS IWV = 1.009 ∗ (CMR-H IWV) +
0.016 cm. The mean of the difference between the two data sets
(i.e., bias) is 0.01 cm. The standard deviations of the MERIS
and CMR-H network retrievals are 0.023 and 0.034 cm, respec-

Fig. 9. Scatter plot for CMR-H and MERIS integrated precipitable water
vapor on September 29, 2008.

tively. The absolute value of the difference in IWV between the
MERIS and CMR-H network retrievals is approximately 0.1 to
0.6 mm.

A similar comparison was performed for September 30,
2008, from 09:15–09:25 UTC, as shown in Fig. 10. Similar
to the previous case, the a priori for the CMR-H network
is an average of the water vapor profiles from radiosondes
launched from Pratica di Mare at 6:00 UTC and 12:00 UTC
on September 30, 2008. Again, there are 394 pairs of colocated
spatial samples from the MERIS and CMR-H network. The
correlation between the IWV from the MERIS retrievals and
that from the CMR-H network retrievals is shown in Fig. 11. In
contrast to Fig. 9, the IWV data are scattered widely on both
sides of the linear fit, whereas in Fig. 9, the data are close to
the best fit line. Correspondingly, a somewhat lower correlation
coefficient of 0.51 is observed. A linear fit yielded the rela-
tionship MERIS IWV = 0.975 ∗ (CMR-H IWV)− 0.032 cm.
The mean of the difference between the MERIS and CMR-H
network data is −0.0151 cm. The standard deviations of the
IWV data from MERIS and CMR-H network retrievals are
0.034 and 0.028 cm, respectively. The absolute value of the
difference in IWV between the MERIS and CMR-H network
retrievals is approximately 0.2 to 0.75 mm.

The mean values and ranges of the differences between the
two IWV data sets show quite good agreement in moderately
humid conditions. The absolute value of the difference between
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Fig. 10. Comparison of integrated precipitable water vapor from the CMR-H network and MERIS on September 30, 2008.

Fig. 11. Scatter plot for CMR-H and MERIS integrated precipitable water
vapor on September 30, 2008.

the MERIS and CMR-H network data in both of the two cases
considered is between 0.1 and 0.75 mm, while the error of
water vapor content for MERIS over land is 1.65 mm rms [15].
Since the differences between the IWV from MERIS and
CMR-H network retrievals are significantly smaller than the
error of MERIS retrievals, the CMR-H network retrievals com-
pare very well with MERIS retrievals. Therefore, in comparison
to well-known satellite data products, the CMR-H network
retrievals have good potential to correct for variations in wet
tropospheric delay in InSAR imagery.

V. CONCLUSION AND FUTURE WORK

Results from brightness temperature measurements from a
ground-based CMR-H network during the METAWAVE ex-
periment demonstrate the ability to retrieve 3-D water vapor
with high accuracy. The retrieval technique achieves a vertical
and horizontal resolution of 500 m and a time resolution of
approximately 10 min. These retrievals use water vapor profiles
from nearby radiosondes as the a priori. Comparisons between
retrievals from CMR-H network-measured brightness temper-
atures and infrared differential-absorption measurements from
the MODIS and MERIS instruments aboard polar-orbiting
satellites show that CMR-H network retrievals of 3-D water
vapor show good potential to correct InSAR imagery for vari-
ations in wet tropospheric delay. Additionally, in contrast to
the poor temporal coverage of polar-orbiting satellites, CMR-H

networks have the potential to provide water vapor data contin-
uously with 500-m spatial and 10-min temporal resolution for
all of the locations where they are deployed.

From the comparison of the CMR-H network data with the
MERIS data, it has become clear that MERIS and CMR-H net-
work retrievals agree well under moderately humid conditions
and can be used to retrieve columnar water vapor content with
a difference of 0.1 to 0.75 mm for geographically collocated
pixels. These results demonstrate the capability of the CMR-H
network to retrieve IWV with high spatial and temporal reso-
lution, while maintaining quality comparable to that of mature
water vapor products. More comparisons need to be performed
in order to validate the 3-D water vapor density retrievals from
CMR-H network brightness temperature measurements and to
determine definitively whether or not such retrievals can be
used to correct InSAR images for variations in wet tropospheric
path delay.

A good method to compare and validate the available
CMR-H network and MERIS data would be to correct
an interferogram retrieved from Envisat’s ASAR using the
CMR-H network 3-D water vapor density retrievals as well as
the MERIS IWV retrievals and then to compare the two cor-
rected images. As already discussed, interferograms in the form
of contour maps are derived from subsequent SAR overpasses
[1]. These interferograms exhibit artifacts due to temporal and
spatial variations in atmospheric water vapor, which are one
of the major factors limiting the use of SAR interferograms.
Therefore, to create accurate interferometric products of re-
gions with significant amounts of integrated water vapor, a
technique of averaging interferograms from subsequent satellite
overpasses has been developed. This technique consists of
averaging to smooth the random effects of the atmosphere and
reduce the standard deviation of the related error in the inter-
ferometric phase [2] [16]. At least 20 to 30 SAR overpasses are
required for this approach to be effective. In order to monitor
tectonic movements and landslides, any information on excess
path due to water vapor at a spatial resolution comparable to
that of the radar would be useful to reduce the number of
interferograms necessary to determine the surface displacement
that has occurred. The retrieved excess path can be converted
into phase delay and removed from the interferometric phase
to mitigate the errors due to the wet troposphere. During the
METAWAVE experiment, the water vapor field retrieved from
the CMR-H network has been compared to those retrieved
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from spaceborne remote sensing instruments, including MERIS
and MODIS, for validation purposes. It was not possible to
directly compare the CMR-H water vapor fields with the InSAR
interferograms from Envisat data because Envisat provides
one interferogram after each 35-day repeat cycle, when it is
again in the same orbit over the same geographic location. In
comparison, the CMR-H network data were collected for a
period of approximately 15 days. Multiple Envisat overpasses
occurred over the experiment site during that period of time, but
with different orbits, one ascending and one descending, from
which an interferogram could not be derived. Therefore, addi-
tional experiments are needed to fulfill this objective.
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