
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 1

Optimization of Background Information and Layer
Thickness for Improved Accuracy of Water-Vapor
Profile Retrieval from Ground-Based Microwave

Radiometer Measurements at K-Band
Swaroop Sahoo, Xavier Bosch-Lluis, Steven C. Reising, Senior Member, IEEE,

and Jothiram Vivekanandan, Senior Member, IEEE

Abstract—Ground-based microwave radiometers operating at
frequencies near the 22.235 GHz (K-band) water vapor absorption
line have been used extensively for remote sensing of water vapor
in the troposphere, both the integrated amount and its profile.
This paper explores the potential to use ground-based, zenith-
pointing K-band radiometer measurements along with optimized
background data sets consisting of radiosonde profiles to detect
dynamic changes and gradients in water vapor profiles. To explore
this capability, the HUMidity EXperiment 2011 (HUMEX11) was
conducted at the U.S. Department of Energy’s (DOE) Atmospheric
Radiation Measurement (ARM) Southern Great Plains (SGP) Site
near Lamont, OK, USA. This enables the choice of appropriate
retrieval parameters to monitor temporal changes in atmospheric
water vapor profiles. The results of this study illustrate that in a
retrieval algorithm both the choice of the size of the background
data set measured near the radiometer measurement time and the
choice of atmospheric layer thickness affect the ability to remotely
sense dynamic changes in water vapor. In general, it is found that
background data sets of larger size provide better accuracy in a
statistical sense but inhibit the ability to detect gradients.

Index Terms—Atmospheric measurements, covariance matrix,
humidity, microwave radiometry, remote sensing.

I. INTRODUCTION

T RACKING dynamic changes in water vapor profiles is
important to predict the timing and location of cloud for-

mation as well as the initiation of convective storms. These
storms develop on a time scale of 30–60 min in locations where
the water vapor is highly variable [1]–[3]. Since convective ini-
tiation is highly sensitive to the amount of total column or,
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equivalently, precipitable water vapor (PWV), it is important
to remotely sense PWV with fine temporal and spatial resolu-
tion. In particular, water vapor profile measurements with fine
resolution in the planetary boundary layer are needed to analyze
detailed, dynamic changes in the atmosphere [4].

Instruments used to measure water vapor profiles at present
include radiosondes and Raman lidar, as well as microwave and
infrared radiometers. Radiosondes provide water vapor mea-
surements with fine vertical resolution (on the order of a few
tens of meters) for the initialization of numerical weather pre-
diction (NWP) models. However, the repeat time of radiosonde
launches is not sufficient to track the dynamic evolution of tro-
pospheric water vapor. Another instrument that can provide
profile information to improve NWP models is Raman lidar
[5]. These measurements have similar vertical resolution to
that of radiosondes in the lowest 3 km of the troposphere and
have temporal resolution of approximately 10 min [6]. Infrared
radiometers, such as atmospheric emitted radiance interferome-
ters (AERI), are useful for retrieval of water vapor and temper-
ature profiles. Similarly, satellite-based microwave radiometer
measurements are used to determine PWV, water vapor profiles,
cloud liquid water, and wet path delay. Finally, ground-based
microwave and millimeter-wave radiometers operate at fre-
quencies near the water vapor absorption lines at 22.235 and
183.31 GHz to retrieve water vapor profiles [7], [8]. These
instruments have fine temporal resolution; however, the accu-
racy of retrieved profiles varies depending on the retrieval
algorithm and the thermodynamic parameter being retrieved.
Westwater [9] described various retrieval techniques for esti-
mation of water vapor and temperature profiles. Solheim et al.
[10] compared the performance of various retrieval algorithms,
i.e., Newtonian iteration method, regression method, neural
networks, and Bayesian maximum probability estimation tech-
nique, for retrieval of water vapor, temperature, and liquid water
profiles. Cimini et al. [7] and Hewison [11] focused on quanti-
fying and improving the vertical resolution of retrieved water
vapor and temperature profiles. Scheve and Swift [12] com-
pared water vapor profiles retrieved from K-band microwave
brightness temperature measurements to those retrieved from
Raman lidar measurements.

In this work, water vapor profiles are retrieved from K-band
radiometer measurements using Bayesian optimal estimation
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TABLE I
REQUIREMENTS BASED ON THE ALGORITHM THEORETICAL BASIS

DOCUMENT FOR THE PLANNED BUT CANCELED NPOESS CMIS [14]
AND FOR THE GROUND-BASED GPS NETWORK DEPLOYED

AT THE ARM SGP SITE [31]

[13] with an emphasis on detecting water vapor gradients in
the lower troposphere that are dynamically evolving. For that
purpose, background data sets of varying sizes are used to
determine the statistical variability of atmospheric water vapor.
The retrieved profiles are compared with water vapor profiles
retrieved from a colocated Raman lidar. These Raman lidar
measurements are assumed to be of high enough quality to be
taken as “truth” for this study. Therefore, the error (i.e., devia-
tion from “truth”) is defined as the difference between a profile
retrieved from microwave radiometer measurements and that
retrieved from Raman lidar.

II. HUMIDITY EXPERIMENT 2011

The HUMidity EXperiment 2011 (HUMEX11) was con-
ducted at the U.S. Department of Energy (DOE)’s Atmospheric
Radiation Measurement (ARM) Southern Great Plains (SGP)
Climate Research Facility in Lamont, OK, USA, for 3 weeks
in the summer of 2011, during the periods of July 7–15 and
August 3–15. This field campaign was designed to assess
the ability to remotely sense dynamic changes and gradients
in atmospheric water vapor profiles retrieved from K-band
microwave brightness temperatures and to compare them with
water vapor profiles retrieved from Raman lidar. Measurements
were performed under various atmospheric conditions dur-
ing clear skies, including stable conditions as well as rapidly
evolving conditions shortly after rain showers in the area.
The measurements were performed after a total rainfall of
12–40 mm over 6–12 h on certain days and when the water
vapor density in the lowest 1 km above ground level (AGL)
was between 8 and 19 g/m3. After precipitation events, the
radiometer was operated after the sky was clear and clouds
had moved out of the radiometer’s field of view. Target accu-
racies for the retrievals were similar to the requirements shown
in Table I for the planned National Polar-Orbiting Operational
Environmental Satellite System (NPOESS) Conical-Scanning
Microwave Imager/Sounder (CMIS), which was later canceled
due to cost and schedule overruns [14].

During HUMEX11, two K-band, multifrequency Compact
Microwave Radiometers for Humidity (CMR-H) profiling [15],
[16] were deployed at the ARM SGP site. One of the two was
colocated with a Raman lidar, enabling precise comparisons of
profiles retrieved from the K-band brightness temperatures to
those retrieved from the Raman lidar data. The other radiome-
ter was deployed 10 km to the northwest, near Lamont, OK,

Fig. 1. Jacobian or weighting functions for the CMR-H frequencies.

USA. These microwave radiometers sampled atmospheric vol-
umes using mechanical scanning over a range of both elevation
and azimuth angles.

The CMR-H K-band radiometers were developed at the
Microwave Systems Laboratory (MSL) in the Electrical
and Computer Engineering Department at Colorado State
University (CSU) using monolithic microwave integrated cir-
cuit (MMIC) technology with low noise amplifier-based front
ends [15]. The radiometers operate at four frequencies near the
K-band water vapor absorption line, i.e., 22.12, 22.67, 23.25,
and 24.5 GHz, with bandwidths of 110, 120, 120, and 200 MHz,
respectively. Jacobians, or weighting functions, for these fre-
quencies are shown in Fig. 1. The profile used to calculate these
weighting functions is the average water vapor profile measured
by radiosondes launched from the ARM SGP site on August 8,
2011. The radiometric resolution (NEΔT) of the CMR-H is
0.2 K for a 3-s integration time. The 3-dB antenna beamwidth
for CMR-H is 3◦–4◦. The radiometer’s system noise temper-
ature at the four measurement frequencies is in the range of
550–800 K. The calibration precision at 298 K (while observing
a microwave absorber at ambient temperature) is approximately
0.2 K for all four frequencies [15].

Calibration of the CMR-H brightness temperature measure-
ments is performed by observing two objects of known bright-
ness temperature. The “warm” calibration target is a microwave
absorber at ambient temperature, and the “cold” calibration
source is the cosmic microwave background temperature of
2.73 K at these frequencies, using tipping curve measurements
extrapolated to zero atmospheres [17].

Furthermore, additional instruments were deployed at the
ARM SGP site, including wind profilers [18], AERI [19],
microwave radiometers [20]–[23], and in situ weather sta-
tion sensors. Radiosondes were launched from the ARM SGP
Central Facility every 6 h. This provides an opportunity to
compare the retrieved results with data from other colocated
instruments.

III. THEORETICAL DISCUSSION

Retrieval algorithms based on Bayesian optimal estimation
have a number of inputs that influence the accuracy of their
results. One of these is the background information covariance
matrix, which describes the statistical variability of measured
water vapor profiles over the time period during which they
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occurred. It is calculated using a background data set, typi-
cally consisting of a collection of water vapor profiles measured
over a certain period of time at a specific location. The number
of elements in the background data set and the relationships
among them determine the values of the background informa-
tion covariance matrix elements, depending on whether they
were measured during the day and/or night and in the same
or different seasons. The importance of the size of the back-
ground data set and the retrieval algorithm used in this paper
are discussed in detail in this section.

A. Initialization Profiles and Background Information

Water vapor profiles from various sources can be used as
initialization profiles and background data, including in situ
measurements from radiosondes and remote sensing measure-
ments from Raman lidar, both of which have fine vertical
resolution. Other potential sources of background data are sta-
tistical data sets and weather prediction model output compiled
over a long time period, e.g., 1–3 years [9].

Radiosonde data have a typical vertical resolution of
10–20 m and therefore can detect fine gradients in the thermo-
dynamic properties of the atmosphere, including water vapor in
the lower troposphere. However, humidity biases in radiosonde
measurements are often greater than 5% throughout the tro-
posphere. Residual dry bias errors in radiosondes are greater
during the day than the night by 5%–7% [24]. The radiosonde
balloon typically takes 25–40 min to reach a height of
15–20 km AGL and may drift horizontally up to tens of km
from the launch site [16], depending on the local wind speed
and direction as it ascends.

Raman lidar measurements have a vertical resolution of 35 m
from 0 to 0.2 km, 39 m from 0.2 to 3.7 km and 78 m from
3.7 to 6 km AGL [25] with a temporal resolution of 10 min.
The relative humidity error in Raman lidar profiles is less than
10% for altitudes below 8.5 km [5] AGL.

The background data set for profile retrieval from radiometer
measurements is typically high-vertical resolution radiosonde
or remote sensing measurements [9] over a time period of
2–3 years. Background data sets are used to derive the statis-
tics of profile variability, and their usefulness and applicability
to retrievals depending upon the location at which and the time
of the year during which they were measured. NWP model out-
puts are another potential source of background data. However,
their spatial and temporal resolution may not be sufficiently fine
to detect changes or sharp gradients in water vapor profiles [26].

B. Analysis Based on Background Information Covariance
Matrix

In a general sense, the retrieval process performs a map-
ping between the measurement space and the retrieval solution
space according to a probabilistic model in the presence of
radiometric measurement noise, model inaccuracies, and rep-
resentativeness errors [11]. To overcome these uncertainties,
knowledge of variability (statistics) of the parameters in the
solution space is required to retrieve the most probable state.

The Bayesian retrieval technique uses background statistics
of the solution space to invert the measurement and retrieve the
most probable solution, as illustrated by Cimini et al. [7] and
Hewison [11] using the 1D-VAR technique as well as Löhnert
et al. [27] using the integrated profiling technique. Specific
retrieval algorithms that use Levenberg–Marquardt (LM) mini-
mization [13] are based on Bayesian retrieval techniques and
retrieve the most probable atmospheric state by considering
both measurements and atmospheric background statistics.

The profile is retrieved based on four information sources [9],
[13], [27]. The first two are the measured brightness tempera-
ture vector (T̄ ′

B) and the covariance matrix of the background

data set of water vapor (Sa). The third is the measurement error

covariance matrix (Sε), determined by the uncertainties of the
measured brightness temperatures. The fourth is the Jacobian

or weighting function matrix (K) [9], which is the sensitivity
of the measured brightness temperatures to changes in atmo-
spheric water vapor as a function of altitude AGL. Weighting
functions depend on the operating frequency of each of the
microwave radiometer channels and on the water vapor content
and temperature of the atmosphere.

The quality of the retrieved profiles depends to a cer-
tain extent upon the second information source above, the
water vapor background information covariance matrix [8].
Therefore, the size and content of the background data set from
which the covariance matrix is calculated need to be systemat-
ically evaluated. Ideally, each element in the background data
set is a sample of the same stationary process [28]. If so, the
joint probability distribution of the atmospheric layers remains
constant in time. Therefore, parameters such as the mean and
covariance of each layer do not change depending on the size of
the background data set after stabilization. Typically, the back-
ground data set is filtered based on location, season and time
of day to ensure its stationarity [28]. Based on the central limit
theorem, as its size increases, the background data set becomes
a normally distributed random process describing a “mean”
atmospheric behavior. However, failure to achieve stationarity
introduces error into the retrieval since the prior statistics are
not consistent with the atmospheric conditions at the time of the
radiometer measurement and therefore will bias the retrievals.

Using a large background data set to determine the back-
ground information covariance matrix improves the descrip-
tion of the higher-order atmospheric statistics, which helps to
improve the accuracy of retrieved water vapor profiles but also
decreases the capability of retrieving or predicting singular (or
so-called “outlier”) events. This happens because the covari-
ance matrix is general and therefore not “customized” for any
particular atmospheric condition. The retrieval error approaches
a constant value, but gradients or inversions in water vapor
profiles will be difficult to detect with high accuracy since
the covariance matrix describes the variability of water vapor
profiles during the entire time period represented by the back-
ground data set. Therefore, both the content and size of the
background data set are very important for the retrieval.

The goal of this work is to estimate water vapor profiles with
acceptable accuracy (quantified in Table I) and atmospheric
layer thickness, and also to be able to detect evolving changes
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and gradients in atmospheric water vapor in the lowest 3 km
of the troposphere. To this end, this part of the study focuses
on optimization of the background data set size. In this case,
the background information covariance matrix will not be gen-
eral but instead will be particular to the current retrieval and
will satisfy the requirement for stationarity, in the sense of a
particular state of the atmosphere. Since the particular back-
ground data set does not describe every atmospheric condition,
the retrieval performance is expected to degrade as a function
of time between the initialization and the retrieval.

However, a small background data set (less than approxi-
mately 10 profiles) will not be able to describe the atmosphere
accurately enough since it will not contain enough data to
provide a sufficient statistical description. Taking this into con-
sideration, it is reasonable to expect that the choice of optimum
background data set size will be one of the factors determin-
ing the ability to detect evolving changes and gradients in water
vapor profiles. The size of the background data set can be cho-
sen based on the application. If the application is to monitor
dynamic changes in water vapor profiles, a small data set can
be chosen to correspond to recent weather conditions. Instead,
if the application requires water vapor profiles with statistical or
seasonal accuracy, a large background data set can be chosen,
often collected over many months or years [9].

C. Retrieval Using the LM Algorithm

For the retrieval algorithm, the same LM optimization
method has been used to estimate atmospheric water vapor
as is used in the 1D-VAR [11]. The LM optimization method
is similar to the Gauss–Newton (GN) optimization technique
used in integrated profiling techniques [27] and in nonlinear
inverse problems. LM is an iterative, nonlinear optimization
algorithm, similar to the GN algorithm [27], [13] but with better
performance for highly nonlinear problems. The main differ-
ence between LM and GN is that LM has a damping parameter
γ that is updated during each iteration based on the ratio of
the actual value of the cost function to that when the problem
was considered to be linear. In the retrieval algorithm, the step
sizes of the iteration for water vapor profiles are in the range of
0.01–0.1 g/m3. The LM algorithm usually converges within
15–20 iterations, similarly to the GN technique, and is shown as

ρ̄i+1 = ρ̄i +

(
(1 + γ)S

−1

a +Ki

T
S
−1

ε Ki

)−1

×
(
Ki

T
S
−1

ε

[
T̄ ′
B − T̄B(ρ̄i)

]− S
−1

a [ρ̄i − ρ̄a]

)
(1)

where
i index of iteration;
Ki kernel function or weighting function matrix;
γ LM factor;
ρ water vapor density profile, where ρi is the initialization

water vapor density profile when i = 1, and T̄ ′
B is the

measured brightness temperature vector;
ρa background profile, the same as the initialization

profile. When the background data set is smaller than

150 profiles, a radiosonde profile taken close to the
measurement time is used as the initialization profile;

TB simulated brightness temperature vector using a
radiative transfer model for the four frequency channels
of CMR-H. The Rosenkranz model is used to calculate
the absorption coefficients used to simulate brightness
temperatures;

Sε measurement error covariance matrix of the CMR-H,
where the main diagonal elements are equal to the
radiometric resolution of each channel [29]. In this
case, measurements at each of the frequencies are
assumed to be independent of each other, so the
off-diagonal elements have been assumed to be zero for

this study. Sε also includes the noise in radiometric
observations, representativeness error and radiative
transfer model errors [11], [30];

Sa background information covariance matrix, with
dimensions depending on the number of atmospheric
layers used for the retrieval and with values based on
the statistics of the background data set profiles.

LM is an iterative process in which the value of γ is chosen to
minimize a cost function J , given by

J =
(
ρ̄− ρ̄b

)T
S
−1

a

(
ρ̄− ρ̄b

)
+
(
T̄B (ρ̄i)− T̄ ′

B

)T
S
−1

ε

×(
T̄B (ρ̄i)− T̄ ′

B

)
(2)

where ρ̄ and ρ̄b are the water vapor profile outputs for each
iteration and initialization profile, respectively.

The value of γ at each iteration is adjusted based on the
change in the value of the cost function J . The final output
profile is chosen based on the convergence criterion given by
[13]

[
T̄B (ρ̄i+1)− T̄B (ρ̄i)

]
TS

−1

δy

[
T̄B (ρ̄i+1)− T̄B (ρ̄i)

]
<<m

(3)

where m is the number of measurements and Sδy is the covari-
ance between T̄ ′

B and T̄B (ρ̄i). The iteration stops when (3)
reaches a value k which is significantly less than m (where
k is set at 0.04), and the resulting profiles are checked for
consistency [11].

IV. SENSITIVITY OF RETRIEVED WATER VAPOR PROFILES

The atmospheric layer thickness and background data set size
have a substantial effect on the root mean square (rms) error and
on the ability to detect dynamic changes in the retrieved water
vapor profiles.

A. Water Vapor Profile Retrievals for Different Layer
Thicknesses

Retrievals were performed for 100-, 200-, 400-, and 500-
m layer thicknesses using the data sources mentioned in
Section III-A as well as the initialization profile. As alluded
to in Section III, initialization profiles were obtained from
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Fig. 2. (a) Raman lidar profile at 17:50 UTC on August 9, 2011; (b) difference
between radiometer-retrieved and Raman lidar-retrieved profiles for 100-, 200-,
400-, and 500-m layer thicknesses.

radiosonde data, with a typical vertical resolution of 10–20 m.
The initialization profiles were vertically averaged to corre-
spond to the layer thickness of the retrieval. For example,
when using an initialization profile of 100-m layer thickness for
the retrieval, the radiosonde water vapor profile was vertically
averaged to 100 m.

The background data set consisted of measurements from
64 radiosondes that were launched during the daytime at the
ARM SGP site during the months of July and August 2011.
Radiosonde data from these 2 months were used as two sepa-
rate background data sets for retrievals during each of the two
respective months. Results described in Sections IV-A–IV-C
are for 40 retrieved profiles using measurements performed
over 3 weeks during the field experiment. These profiles were
retrieved using various layer thicknesses and compared with
Raman lidar profiles to quantify the rms error for each of them.
Fig. 2(a) shows a profile retrieved for August 9, 2011 at 17:50
UTC from Raman lidar measurements, and Fig. 2(b) shows the
associated difference between radiometer-retrieved and Raman
lidar-retrieved profiles for 100-, 200-, 400-, and 500-m layer
thicknesses. Data from a radiosonde launched at 16:30 UTC are
used as the a priori for the retrieval of each water vapor pro-
file from the radiometer measurements. Ground-based in situ
measurements were used throughout this study to constrain the
surface temperature, humidity and pressure for the retrieved
profile.

To calculate the error as a function of height, the Raman
lidar-retrieved values have been averaged to the same ver-
tical layer thickness as the radiometer estimates. Fig. 2(b)
shows that the difference between the radiometer-retrieved and
Raman lidar-retrieved profiles is larger than 1 g/m3 for layer
thicknesses of 100 and 200 m in the lowest 2.2 km of the tropo-
sphere. This difference decreases with increasing altitude AGL.
As the layer thickness is increased, the difference decreases as
well. The profiles with 400- and 500-m layer thicknesses sig-
nificantly smooth out the vertical variations in the water vapor
profile, thereby reducing the error.

The errors in the retrieved profile with respect to the Raman
lidar profile averaged over the lowest 3 km of the troposphere,
i.e., the most significant part of the atmosphere in terms of water
vapor variability, are 19.3%, 16.7%, 13.9%, and 8.2% for 100-,
200-, 400-, and 500-m layer thicknesses, respectively. The total

Fig. 3. Mean total percentage error in PWV (calculated as the difference
between radiometer-retrieved and Raman lidar-retrieved water vapor profiles)
as a function of layer thickness using 64 radiosonde observations as background
information.

error of a profile (hereafter “total percentage error in PWV”)
was determined as the sum of the absolute values of errors at
all levels up to and including 6-km AGL. The total errors of 40
estimated profiles are used to determine the mean and standard
deviation of the total percentage error for each layer thickness
from 100 to 500 m in 50-m increments. The results are shown in
Fig. 3. As the layer thickness increases from 100 to 500 m, the
mean total percentage error decreases from 27% to 13% and the
standard deviation decreases from 4.5% to 2.3%. Fig. 3 shows
an inverse relationship between the layer thickness and the total
percentage error. In other words, the thinner the atmospheric
layers are, the greater the overall estimation error is.

The accuracy of retrieved profiles depends to a great extent
on the quality of the initialization profile, background informa-
tion, and measurement error covariance matrices. Typically, the
retrieved profile follows the trend of the initialization profile. If
the initialization profile (here the radiosonde profile used for the
retrieval) is substantially different from the actual water vapor
profile, the error of the retrieved profile will be large. In that
case, the retrieval process might not be able to capture gradients
or aspects of the actual water vapor profile. So, the initializa-
tion profile needs to have statistical properties that are similar
to those of the actual profile.

B. Variation in Predictability With Change in Background Data
Set Size and Atmospheric Layer Thickness

The retrieval accuracy has been evaluated based on the mean
and standard deviation of total percentage error in the retrieved
water vapor profiles for background data set sizes ranging from
2 to 110 profiles. A background data set containing less than
10 profiles does not have sufficient statistical significance, but
the analysis has been performed to improve understanding of
its impact on the retrieval. The covariance matrices were cal-
culated using background data sets containing 2 to 110 profiles
with an increment of two. Each increment added one profile
taken before the measurement and one taken after. These pro-
files were chosen to be as close to the time of measurement as
possible. For example, for the radiometer measurement at 14:00
UTC on August 8, 2011, the two radiosonde profiles chosen
were at 12:00 UTC and at 18:00 UTC on August 8, 2011. The
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Fig. 4. Mean and standard deviation of percentage error of radiometer-retrieved
profiles with respect to Raman lidar-retrieved water vapor profiles for 100-,
250-, and 500-m layer thicknesses and background data set sizes of (a) 16
elements; (b) 32 elements; and (c) 64 elements.

radiosondes were launched four times daily at 0, 6, 12, and 18
UTC. If two additional profiles were added to the data set, to
use similar times of day to represent diurnal conditions similar
to when the radiometer measurement was taken, they would be
at 18:00 UTC on August 7, 2011, and at 12:00 UTC on August
9, 2011, and so on. This method of choosing an equal number
of radisonde profiles before and after the retrieval time is par-
ticularly applicable to this study. This would not be possible if
the radiometer measurements were used to retrieve water vapor
profiles on a real-time basis. In that case, only radiosonde pro-
files taken before the retrieval time would be available for use
as the background data set.

For small background data set sizes, the time interval
between initialization profile and retrieved profile has a sub-
stantial impact on the retrieval accuracy. The ability to detect
changes in retrieved water vapor profiles is partially determined
by the size of the background data set used and by the qual-
ity and applicability of the a priori. The accuracy depends to
a certain extent on the background data set size and also on
the time interval between the radiometer measurement and the
radiosonde profiles in the background data set, as well as the
layer thickness used for the retrieval. Therefore, the accuracy
of the retrieval for a variety of background data set sizes is
analyzed for varying layer thicknesses. This analysis involved
using a background data set taken close in time to the radiome-
ter measurement so that the background information covariance
matrix would be representative of the variability near this time.

As before, water vapor profiles were retrieved for 40 mea-
surement times while varying the layer thickness from 100
to 500 m as well as the size of the background information
covariance matrix from 2 to 110. Fig. 4(a)–(c) shows the mean
error and its standard deviation calculated using 40 retrievals
for data set sizes of 16, 32, and 64, respectively, and layer
thicknesses of 100 m (left panel), 250 m (middle panel), and

Fig. 5. Mean total percentage error and its standard deviation for retrieved pro-
files (for layer thicknesses of 100 and 500 m) as a function of the size of the
background data set. The total percentage errors for a background data set size
of 1500 (for layer thicknesses of 100 and 500 m) are shown by the long dashed
red and blue horizontal lines at 36% and 13%, respectively.

500 m (right panel). The curve and error bars represent the
mean (bias) error and its standard deviation, respectively. Fig. 4
shows that, for any particular layer thickness studied, as the size
of the background data set increases, the bias of the retrieval
decreases. For any particular background data set, as the layer
thickness increases, the uncertainty of retrieval also decreases.
In addition, there is an optimum background data set size for
minimum standard deviation. The bias is related to the mean
error, and the standard deviation is related to the uncertainty of
the retrieval. Fig. 4 shows that the results are consistent with the
qualitative discussion in Section III-B.

C. Change in Total Percentage Error With Change in
Background Data Set Size

This study was performed to find the optimal background
data set size to minimize the total percentage error while main-
taining the ability to detect changes in the gradients of the water
vapor profile. The total percentage errors were calculated for
retrievals using each background data set size, where the back-
ground data set was taken close to the radiometer measurement
time. The mean and standard deviation of percentage errors for
data set sizes from 2 to 110 (as well as 1500) are shown in Fig. 5
as red and blue curves for layer thicknesses of 100 and 500 m,
respectively.

1) Total Percentage Error for 100-m Layer Thickness:
Fig. 5 shows that for a 100-m layer thickness and a back-
ground data set size of four, the total percentage error is 38.5%.
Although the background covariance matrix calculated from a
data set of four profiles is not statistically significant, it has
been included in the study for completeness. The mean total
error decreases as the background data set size increases and
reaches a minimum of 27% for a background data set size of
40. This is because the retrieved profiles are stationary with
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respect to the background data set of 40 profiles, and the back-
ground data set is related to the current atmosphere. When
the size of the background data set taken close in time to the
radiometer measurement is 40, it is inferred from the mini-
mum error that the statistics used in the covariance matrix agree
with the variability associated with the actual water vapor pro-
file. Throughout Fig. 5, the standard deviation associated with
each total percentage error is shown by the error bars. The total
error increases when the background data set size is greater
than 40 because the retrieved profile is no longer stationary
with respect to the background data set; the a priori statistics
do not describe the water vapor profile accurately since the
background atmospheric conditions have changed.

When the background data set size is larger than 40, the
weather conditions associated with the background data set
are different from those during the radiometer measurement.
For a background data set size larger than a certain thresh-
old, i.e., 1500 profiles as shown in Fig. 5, the mean error
becomes nearly constant at 36% mean total error, as shown by
the long-dashed red horizontal line. Similarly, when a Markov
covariance matrix, which emulates a synthetic atmosphere [13],
is used as a background information matrix, the mean error is
42%, as shown by the short-dashed red horizontal line. The
total error would not have this trend if the selected data set for
background covariance matrix calculation was not related to the
atmospheric condition during the measurement.

2) Total Percentage Error for 500-m Layer Thickness:
Similar to Section IV-C1, Fig. 5 shows that the error for 500-m
layer thickness and a background data set size of four has a
total percentage error of 17%, while the background covariance
matrix for a data set size of four is not statistically significant
but is used for completeness. The error decreases as the back-
ground data set size increases until it reaches a minimum of 9%
for a background data set size of 50–55. After the total error
reaches a minimum, it then begins to increase as the number of
profiles in the background data set increases. The error becomes
nearly constant at 13% (as shown in the long-dashed blue hor-
izontal line) for a background data set size of 1500 or greater,
due to the stationarity effect discussed in Section IV-C1. The
mean error using a Markov covariance matrix as the back-
ground covariance matrix for 500-m layer thickness is 23%, as
shown by the short-dashed blue horizontal line. It is important
to observe that the retrieval errors for 500-m thick layers are
lower than for 100-m thick layers. However, the retrieval for
500-m layer thickness not only averages the error associated
with the retrieval but also averages the important information
about dynamic changes. To retrieve information about dynamic
changes, it is better to use 100-m layers instead of 500-m layers.

A similar analysis was performed by using a background
data set from September 2008, and the background data set
size was varied from 2 to 110 to determine the total mean
error. The results of this analysis are shown in the red curve
in Fig. 6 for 500-m layer thickness. The mean total errors are
substantially larger than those when the background data set is
taken close to the measurement time during July and August
of 2011. This is because the background data set taken from
2008 is not stationary with the atmospheric water vapor dur-
ing the radiometer measurement. The difference between the

Fig. 6. Mean total percentage error for retrieved profile (for layer thickness of
500 m) as a function of the size of the background data set.

errors in Fig. 6 is largest at 16% for a background data set
size of four and decreases as the background data set size is
increased. The difference is smallest when the background data
set size is larger than 110 profiles. This is because the variability
between data sets of four profiles taken at two different times is
very different. However, the variability between data sets of 110
profiles taken at two different times tends to be quite similar.

3) Analysis of Variability Content Associated With Back-
ground Information Covariance Matrix: The covariance
matrix (Sa) is computed using

Sa = E
(
A−

〈
A
〉)(

A−
〈
A
〉)T

(4)

where A is the background data set and 〈A〉 represents the mean

profile computed from the background data set. The matrix Sa

has dimensions of N ×N , where N is the number of layers
(vertical levels) regardless of the number of profiles that have
been used to calculate it (in this study, N = 60 for 100-m and
N = 12 for 500-m layer thicknesses). As the size of the back-

ground data set is increased, the values of the elements of Sa

also change. Fig. 7 shows the Sa for 100-m layer thickness
using background data sets with 2, 40, 64, and 1000 profiles.

An eigenvalue analysis [10] of the background information
covariance matrix was performed to determine its variability
content for the purpose of detecting dynamic changes in water
vapor profiles while minimizing the error. For the eigenvalue

analysis, the length of A is increased from 2 to 110 using the

background data set measured during HUMEX11, and Sa is

calculated for each background data set (A) size. The eigen-
value analysis of the covariance matrix corresponding to each
background data set gives a vector of N eigenvalues. When the
background data set size is varied from 2 to 110, it results in
109 vectors of N eigenvalues each.

The results presented here show the normalized eigenvalue
trajectory [12] for the covariance matrices for layer thicknesses
of 100 and 500 m in Fig. 8(a) and (b), respectively.
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Fig. 7. Covariance matrix (Sa) calculated for 100-m layers (N = 60) using
(a) 2 profiles; (b) 40 profiles; (c) 64 profiles; and (d) 1000 profiles.

Fig. 8. Eigenvalue analysis of the data set as the number of water vapor profiles
is increased from 2 to 110 for layer thicknesses of (a) 100 m and (b) 500 m.
The red curve in (a) represents the trajectory of a normalized eigenvalue as
the number of profiles is increased from 2 to 110. Each curve represents the
trajectory of a different normalized eigenvalue.

The number of curves corresponds to the N layers in the
retrieval, while each curve extends from 2 to 110, i.e., the num-
ber of profiles used to calculate Sa. Trajectories of each curve
represent the evolution of the eigenvalues as the background
data set size increases, where each curve [e.g., red, green, and
blue curves in Fig. 8(a)] represents the trajectory of an individ-
ual normalized eigenvalue as the number of profiles is increased
from 2 to 110. In Fig. 8, as the number of water vapor profiles
in the background data set is increased, the largest eigenvalue
increases and reaches a maximum at approximately 25–35 and
remains above 0.8 for about 35 new profiles thereafter, for both
100- and 500-m layer thicknesses.

A similar eigenvalue analysis was performed using 1400
water vapor profiles as a background data set for calculating
the background information covariance matrix. This data set
included radiosonde launches from the same location during
2008 and 2009 corresponding to different weather conditions
than during HUMEX11. The normalized eigenvalue analysis
results are shown in Fig. 9. It should be noted that the maxi-
mum value is 0.3 for a background data set size of 35–40. The

Fig. 9. Eigenvalue analysis of the data set as the number of water vapor profiles
is increased from 2 to 1400 for layer thicknesses of (a) 100 m and (b) 500 m.
The red curve in (a) represents the trajectory of a normalized eigenvalue as the
number of profiles is increased from 2 to 1400.

maximum eigenvalue is substantially lower than that in Fig. 8.
However, the optimum data set size (the data set that contains
the most variability) is still similar to that in Fig. 8. Increasing
the number of profiles for calculating the background covari-
ance matrix increases the accuracy of the retrieval (average
profile) until the number of profiles in the background data set
reaches 500.

In this work, the eigenvalues are a measure of the variabil-

ity associated with the background covariance matrix (Sa) used
for the retrieval algorithm. In that case, the number of profiles

used to calculate Sa at which the eigenvalues reach a maximum
value has two interpretations.

1) The background data set is correlated with the atmo-
spheric state during the radiometric measurement time,
e.g., in Fig. 8 profiles are close in time to the retrieval, and
the peak indicates maximum variability according to the
current atmosphere, which will provide a better retrieval.
It is clear from the results that when a background data
set with fewer than 10 profiles is used, it does not have
enough statistical significance and the retrieval error is
high, as shown in Fig. 5. However, when the data set is in
the range of 40–60 profiles that have been taken close to
the measurement time (as shown in Figs. 5 and 6), it pro-
vides information about the variability of the water vapor
profile during the radiometric measurement. Therefore,
the retrieval will be useful for detecting dynamic changes,
as shown in Figs. 5 and 6.

2) The background data set is not correlated with the atmo-
spheric state during the measurement time. In Fig. 9, the
maximum would be considered “noise,” i.e., atmospheric
fluctuations that are not related to the radiometric obser-
vations. In this case, the best option is to perform the
retrieval when the data set has enough significance and
the values of the eigenvalues are low (i.e., the size of the
data set needs to be large). Using a large data set has the
effect of averaging out the variability of the atmosphere
(smoothing), as shown in Fig. 7(d) for 1000 profiles. In
that case, the retrieval will tend toward a “standard atmo-
sphere,” and the retrieval algorithm will have good per-
formance when measuring a “standard atmosphere,” i.e.,

the information contained in Sa. However, the retrieval
will have difficulty detecting dynamic changes in water
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vapor because Sa does not contain the necessary infor-
mation to do so. This is where the distinction between
the retrieval accuracy and the ability to detect dynamic
changes is meaningful, i.e., to distinguish between these
two types of effects.

Therefore, as shown in Fig. 8, a background data set size of
25–35 provides maximum information about the variability of
water vapor profiles. For a background data set size greater than
100 profiles, the eigenvalues of the covariance matrix are nearly
constant as the background data set size changes; therefore,
additional profiles provide no new information about water
vapor variability. However, there is a noticeable discrepancy
between the eigenvalue peak at a background data set size of
25–35 (in Fig. 8), and the minimum total error obtained (from
Fig. 5), which occurs at a background data set size of 40–55.
This is because a balance exists between the variability asso-

ciated with the Sa matrix and its significance. This means that
the maximum information is provided by using 25–35 profiles
in the background data set (from Fig. 8). However, this data
set is not sufficiently large to provide the optimum information
about water vapor variability in the atmosphere to minimize the
error of the retrieval.

As already mentioned in the theoretical discussion of the
background information covariance matrix in Section III-B,
the number of independent vectors in the covariance matrix
obtained using only two profiles [Fig. 7(a)] is similar to one,
which is clear from the vertical and horizontal patterns (most of
the rows and columns of the matrix are scaled versions of the
same vector). Therefore, all N eigenvalue trajectories start at
zero, which corresponds to eigenvalues for a background data
set with two profiles. This is due to the fact that limited informa-
tion will be obtained when calculating the covariance matrix of
two consecutive atmospheric profiles since the atmosphere does
not change significantly between the times at which two con-
secutive radiosondes are launched. As a result, the retrieval has
poor performance when using a small number of background

profiles. It is evident that this Sa is not statistically signifi-
cant and is not useful for retrievals, but it has been analyzed
for completeness of the study. On the other hand, when the
number of profiles in the background data set increases [as in
Fig. 7(b) and (c)], the vertical and horizontal patterns disap-
pear (although the covariance matrix has diagonal symmetry).
This improvement results from increasing the number of pro-
files, which takes into account more states of the atmosphere,
so the values of the N eigenvalues, as well as the number of
linearly independent vectors, increase. Increasing the number

of profiles in the background data set used for computing Sa

above a certain value causes the vertical and horizontal patterns
to reappear [as in Fig. 7(d)], with a consequent reduction in the
number of linearly independent vectors (or information about
water vapor variability). It can be observed that the difference

between the Sa for 40 profiles [Fig. 7(b)] and that for 1000
profiles [Fig. 7(d)] has a substantial impact on the quality of the

retrieval. Using the Sa in Fig. 7(b) results in the retrieval assign-
ing more variability to the layers at 2–3 km altitude, while using

the Sa in Fig. 7(d) results in assigning more variability to the

Fig. 10. Time series of retrieved water vapor profiles for 100-m layer thickness
and background data set sizes of 40 and 1400, in comparison with Raman lidar
profiles.

lower layers at 0–1 km altitude. Therefore, there is a substan-

tial difference between results using Sa calculated using 40 and
1000 profiles.

From the total percentage error analysis in Fig. 5 and the
eigenvalue analysis of the background data covariance matrix
in Figs. 8 and 9, it has been confirmed that the optimum size of
background data set is approximately 40 and 60 for 100- and
500-m layer thicknesses, respectively. However, these specific
optimum sizes can change for different layer thicknesses, time,
location, background statistics (a priori profile and background
error covariance), and season of retrieval.

To determine the ability to sense dynamic changes in water
vapor profiles, retrievals from radiometer measurements were
performed for 100-m layer thickness and background data set
sizes of 40 and 1400 profiles. Results of the retrieval for August
13, 2011 are shown in Fig. 10, in which they are compared
with Raman lidar-retrieved profiles. The profiles retrieved using
a background data set size of 40 profiles (pink curves) track
the inversions in the humidity profile at 500–600 m at 15:10
UTC and at 1300–1600 m at 21:10 UTC. Similarly, the slight
inversion at 1400–1600 m at 20:00 UTC is also detected.
However, the profiles retrieved using background data set sizes
of 1400 profiles (blue curves) follow a trend generally sim-
ilar to the Raman lidar-retrieved profiles but do not include
the fine gradients and inversions in the lowest 2 km of the
troposphere.
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Fig. 11. Total percentage error as a function of time between radiosonde launch
and radiometer measurement for 100- and 500-m layer thicknesses as well as
background data set sizes of 16 and 64.

These results show that the retrieval using a background data
set size of approximately 40 profiles for 100-m layer thickness
is optimal in this case to retrieve water vapor profiles and also
detect the gradients. However, this background data set of 40
profiles applies to weather conditions during the HUMEX11
experiment. The optimal number of profiles might be different
for other weather conditions and locations.

V. VARIATION IN ACCURACY WITH TIME BETWEEN

INITIALIZATION PROFILE AND MEASUREMENT

The retrieval accuracy varies significantly with respect to the
time interval between initialization profile (from radiosondes)
and the radiometer measurement. This is particularly evident
for small background data set sizes (in the range of 50–100
profiles) to detect evolving changes in atmospheric water vapor
profiles.

Retrievals were performed and errors were calculated for two
layer thicknesses of 100 and 500 m for each retrieval time and
background data set sizes of 16 and 64. As shown in Fig. 11,
the errors were computed for 40 radiometer measurements as
a function of time after the corresponding radiosonde launch.
The total percentage error at 500-m vertical layer thickness is
lower than that at 100-m layer thickness for most cases.

Total errors are minimum when the radiometer measure-
ments are close in time to the radiosonde launches. This is
because the shape and values of the initialization profile are
similar to those of the actual atmospheric profile at the retrieval
time. Total errors for 500- and 100-m vertical layer thickness
are in the range of 7%–15% and 12%–22%, respectively, for a
time range of 0–150 min after the radiosonde launch (for back-
ground data set size of 64). Retrievals for 100-m layer thickness
which are the longest in time (4–5 h) after the radiosonde
launches have errors in the range of 22%–30%. The largest
error corresponds to 100-m layer thickness and a background
data set size of 16. Conversely, the smallest error corresponds
to the 500-m layer thickness with background data set size
of 64. As shown in Fig. 11, as radiometer measurements are
performed longer in time after the radiosonde launch, the per-
centage error increases. The errors are still less than the errors

shown in Table I when the a priori data used for the retrieval
are taken within 150 min of the radiometer measurement time.
Finally, the likelihood of sensing dynamic changes and gradi-
ents in the water vapor profile decreases as the elapsed time
since the launch of the most recent radiosonde.

VI. SUMMARY AND DISCUSSION

Various analyses have been performed to show that the size
of the background data set as well as the layer thickness in
a retrieval play an important role in determining the accuracy
of estimated profile and the ability of the retrieval to sense
dynamic changes. This particularly applies to the case when
the background data set is correlated with the atmospheric state
during the radiometric measurement, i.e., profiles that have
been taken close in time and that represent the variability asso-
ciated with the actual water vapor profile during the radiometric
measurement. Therefore, there exists an optimal background
data set size which provides minimum retrieval error. On the
contrary, if a background data set taken close in time to the
radiometric measurement is not available, the best performance
is obtained by using a large background data set taken over
a long period of time representing seasonal variability. This
makes the retrieval tend toward a “standard atmosphere.”

Eigenvalue analysis of the covariance matrix for data set
sizes of 110 and 1400 profiles for both 100- and 500-m layer
thicknesses show that maximum variability occurs for data
set sizes of approximately 25–35 profiles. However, the max-
imum accuracy is achieved by using a data set of 40–60
profiles. Therefore, there is a balance between the ability to
achieve maximum accuracy and to use a background data set
with maximum variability, to provide the maximum amount
of information to sense dynamic changes. This is because the
variability of a background data set can be associated not only
with dynamic changes in the atmosphere but also with noise.
To reduce the effect of noise, it is necessary for the back-
ground data set to have statistical significance. Normally, this
is achieved by increasing the data set size to greater than 25–35
profiles. Therefore, the optimal background data set for mini-
mal retrieval error has to be short enough to be close in time to
the measurements but long enough to be statistically significant.

Under the assumption that the background data set is cor-
related with the atmospheric state during the radiometric mea-
surements, both the eigenvalue analysis and accuracy show that
continuing to increase the data set size above a certain value
does not improve the retrieval accuracy. Instead, additional pro-
files provide information on the average state of the atmosphere.
Large background data sets provide better accuracy in a statis-
tical sense, but dynamic changes cannot be detected. Therefore,
a large background data set is less than optimal for sensing
dynamic changes in the atmosphere.

In this study, water vapor profiles retrieved from radiometer
measurements have confirmed that retrievals using thin atmo-
spheric layers and an optimal background data set size taken
close to the measurement time have a greater likelihood of sens-
ing dynamically evolving changes in water vapor profiles than
larger background data sets do with thicker layers. Therefore,
optimum background data set sizes with thin atmospheric layers
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can be used to retrieve water vapor profiles on days when the
weather is evolving rapidly, while large background data sets
with thicker layer can be used when the weather is more nearly
constant in time. Therefore, depending on the weather condi-
tions, background data set sizes and layer thicknesses can be
chosen appropriately.
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