ECE202 Circuit Theory Applications
Course Syllabus for Spring 2022,
Updated 1/21

Class time: TH 2:00-3:15 Engr 100
Office hours: in-person or via Zoom, listed on Canvas, or as individually arranged
All Zoom links are posted on Canvas

Instructor: Olivera Notaros, olivera@colostate.edu
Lab TAs: Kailee Mitsuyasu, kaimits@rams.colostate.edu
Andrew (Drew) Weeks, aweeks5@rams.colostate.edu
Class Assistant: Andrew Helmreich, achelm@rams.colostate.edu
Math foundations TA: Yifan Yang, yifan.yang@colostate.edu
KI / RED TA: Aaron Murphy, ajmurph@rams.colostate.edu

Please send questions to instructor, TAs and CA via email; do not send messages through Canvas, as replying to Canvas messages is tedious.

Homework office hours: Mon 11-12 and Fri 10-12 in-person and Zoom link, simultaneously, for now
Upcoming lab office hours: Mon 12:30 – 1:30 Zoom link, the week of the new lab
To makeup missed lab, or get additional help for previous lab: Fri 12:30 – 1:30 Zoom link, every week
Instructor's office hours: tbd, via Zoom, or as arranged
Recitations (optional): Fri 2:00 – 3:30; place tbd, schedule is on Canvas/Modules/Calendar
Math Foundations lectures Mon 12:00-12:50, Stadium 1207

Connect for textbook: not required; recommended for your personal learning

To access and read textbook from ECE103, go to https://www.mheducation.com/ and type old username and password. The book should be visible.

Alternate method, that may work: To register McGrawHill textbook go to: https://connect.mheducation.com/class/o-notaros-ece202
Course: CSU ECE202 SP22

Rough outline of the topics taught and most important dates:
1/18 First class
First-order circuits and step response (ch.7), LSM1
Second-order circuits and step response (ch.8), LSM1
Sinusoids and phasors (ch.9), LSM2
Sinusoidal steady-state analysis (ch.10), LSM2
AC power analysis (ch.11), LSM3A
Three-phase circuits (ch.12), LSM3B
Magnetically coupled circuits (ch.13), LSM4
Frequency response (ch.14), LSM5
Filters (ch.14), LSM6
Laplace transform and convolution (ch.15), LSM7
Use of Laplace transform and convolution to solve circuits (ch.16), LSM7
asap, by 1/30 Team members’ names and project title, if known, due (e-mail instructor)
Subject of an email: ECE202: Team members info
1/31 Preliminary project proposal due (one upload to Canvas per team) Before 2/14 Meet w/ assigned EIR Mentor 3/7 Mid-project report due (one upload to Canvas per team) 3/8 Attend KI-1 lecture in ECE202 2:00-3:15 3/8 Attend KI-1 lecture in ECE303 3:30-4:45 Before 4/19 Meet w/ assigned EIR Mentor 4/20 Course project demos in BC Infill – most likely 5:30-7:30 pm - time tbd 4/21 Course project report due (one upload to Canvas per team) 5/3 Attend KI-2 lecture in ECE202 2:00-3:15 5/3 Attend KI-2 lecture in ECE303 3:30-4:45 Dates of exams: 2/22, 4/12 (monitor Canvas for potential changes) Final exam: Tue, 5/11, 6:20 – 8:20 pm (based on CSU exam schedule), may be extended – tbd

Grading policy:
20% Lab 10% Homework 35% Partial exams and/or quizzes 20% Final exam 10% Course project 5% Knowledge Integration (KI) 2% course bonus for Math Foundation (extra credit)

Late work policy:
One day late: -50% More than one day late: no credit

Passing ECE202 laboratory is mandatory! You must attend all labs, turn-in all lab assignments, and get an overall-passing grade.

Labwork grading policy:
10% Pre-lab work (individual) 20% Lab work (individual) 70% Lab report (team)

Homework:
Homework must be uploaded to Canvas on time and in presentable condition. Solutions with no work shown will be assumed wild guesses and therefore receive no credit. Late homework may be submitted within 24 hours from the assigned due time for (-50%) of the earned grade. Please use highlighter or colored pencil to color-in/mark numbers of problems you have worked on.

Homework grading policy:
At least 50% will be based on the number of questions attempted; shown work must make sense The rest of the percentage, usually 50% will be based on the correctness of the questions chosen by instructor for grading

Course project should be completed in groups of two or three students. It will be discussed in detail during first lecture and more info will be posted on Canvas before second lecture.

Course project grading policy:
20% Proposal and Mid-project report 25% Final report
15% Creativity and design 30% Demo
15% Meetings w/EIR Mentor
Project grade total: 105%

Knowledge integration (KI)
KI grade consists of three components: pre-work, video presentation, and self-reflection. Video presentations are peer-assessed. The KIs are performed with ECE 303.

Math foundation
Math foundation extra credit consists of two components: attending lectures and solving problem sets.
- 1% extra credit for any student who attends at least seven math foundation lectures,
- 1% extra credit for any student who receives an average grade of 85% or more on math foundation problem sets.

CSU Student Conduct Code and the Academic Integrity Policy should be followed. Working with the group of classmates is highly encouraged in our course. In order to avoid any misunderstandings, always list names of colleagues you have worked with, and any resources you may have used to complete the assignment (write this information below your name on the first page of the assignment).
Use of solution manual is strictly forbidden. If cheating or plagiarism is found on exams or assignments, a zero will be given to the exams or assignments.

Exams will be in-person, in the classroom. Calculators are allowed. Formula sheet is allowed: one-sided, hand-written letter-size paper with formulas and/or notes is allowed on partial exam; two-sided, single letter-size paper is allowed on the final exam.
Our course topics are divided into seven Learning Studio Modules (LSM). Demonstrating competency in each LSM is required. Competency is assessed through exam questions. Students who do not demonstrate competency in an LSM will be notified after the corresponding exam and will be given the opportunity to gain competency by completing remedial course-related work, assigned by the instructor. Completing the remedial work in a satisfactory fashion establishes student's competency in the corresponding LSM, but does not affect student's grade. However, if the remedial work is not completed in a satisfactory fashion, student will automatically receive grade F in the course.

Grades will be assigned from A through F, with plus or minus categories (no C-, D+, and D-)
F: 0-60; D: 60-70; C: 70-77; C+: 77-80; B-: 80-83; B: 83-87; B+: 87-90; A-: 90-93; A: 93-97; A+: 97 and up
ECE202, Spring 2022
Lab Procedures and Expectations

Spring 2022 is planned to have face-to-face Labs. All students are expected to show-up for the lab session they have registered for. Anyone missing a lab session due to justified reasons, must email TA and arrange for alternate plans and submission dates.

Face-to-face lab sessions are offered on:
- Mon 2:00-4:50
- Tue 8:00-10:50
- Wed 9:00-11:50
- Wed 5:00-7:50
- Thu 8:00-10:50

Timeline for each lab:
- Lab assignment will be posted well in advance.
- Students need to download the assignment and finish Pre-lab section before coming to the Lab. This is important, to prepare students for lab work
- Read lab assignment and steps before lab session
- You may choose to work on parts of the lab even before session starts, and come to your lab session to collaborate with other students and get help from TA
- Showing TA your connected circuit and results is mandatory. Students that do not show for lab session will be marked as absent, and receive no credit, even if they submit report.
- Lab report will be due on Friday of the following week, midnight.

There are three components of each lab grade:
- Pre-work (individual) should be completed before the lab session. Student must show TA their work at the beginning of lab session, and TA will assign 0/5/10 points
- In-Lab (individual) work will depend on preparedness for the session (if student has read directions and is aware of needed steps) and if all materials are in-place to complete the lab – up to 20 points
- Due to covid restrictions, every student will work on the lab individually. However, TA will assign teams of two, and lab report will be team upload. If any one of the team members misses the lab session, then the remaining student will submit their own work. Names of students submitting the report must clearly be stated on the front page.

Below is one example of the calendar representing a random lab:
Students must attend one of the Mon-Fri lab sessions
Lab report is due on Canvas the following Friday at midnight
Last-minute TA help Friday 12:30-1:30 pm

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Office hour</td>
<td>Face-to-face</td>
<td>Face-to-face</td>
<td>Face-to-face</td>
<td>Last-minute Zoom help</td>
<td>Lab due at 11:59 pm</td>
</tr>
<tr>
<td></td>
<td>12:30-1:30;</td>
<td>8:00-10:50</td>
<td>9:00-11:50</td>
<td>8:00-10:50</td>
<td>12:30-1:30; Lab due at 11:59 pm</td>
<td></td>
</tr>
</tbody>
</table>
Office hours:

Instructor (Olivera):
Instructor will be available during Tuesday and Thursday class time to answer questions. Any students wishing to talk to the Instructor during other times should send an email to arrange a different meeting time. Additional office hour will be set and announced on Canvas and updated on this Syllabus.

Class Assistant (Andrew):
Andrew’s primary goal is to help students follow academic content of the course: help with understanding material taught in class, help with homework assignments and preparation for the exam.

Any homework and class-related questions should be emailed to Olivera and Andrew, in a single email.

Teaching Assistants (Kailee, Drew):
TAs are primarily responsible for Labs. If you have any lab-related questions, please email your TA.