ECE 445: Digital Logic Synthesis

IN

Boolean Algebra

• Understand fundamentals of Boolean logic and algebra

Logic Gates and Circuits

 Understand representation of logic as gate-level schematics, and logic circuit implementations

Algorithms and Optimization

- Understand algorithms and data structures
- Understand differences between tractable and intractable problems
- Has basic knowledge of algorithms/methods to solve optimization problems

Programming Language and HDL

• Has (basic) knowledge of a programming language (e.g., Python) and HDL

Pre-requisites

• ECE102 with a minimum grade of C

Concepts:

- Overview of logic synthesis
- Introduction to VLSI CAD and design automation flow
- Hardware description language (HDL)
- · Binary decision diagram
- Satisfiability
- Two-level logic minimization (exact and heuristic methods)
- Multi-level logic synthesis (including algebraic techniques)
- Boolean decomposition
- Delay optimization (including timing analysis)
- Sequential logic optimization (including two- and multilevel encoding)
- · Technology mapping
- Physical synthesis (standard cell mapping and technology mapping on FPGAs)
- New directions in logic synthesis

Applications:

· Complex but optimized digital computers and systems

Tools:

- HDL compilation and synthesis
- · Boolean SAT tools
- Two-level and multi-level optimization tools (e.g., ESPRESSO)
- ABC (A System for Sequential Synthesis and Verification)

OUT

Algorithms for Logic Synthesis and Optimization

 Understand, design, and apply algorithms for digital logic minimization

Design Verification and Tools

 Understand modern approaches to logic design and verification of digital circuits

Technology Mapping

• Understand technology-mapping to both ASICs and FPGAs

Design Automation Flow

 Use a variety of design and simulation tools to design and validate complex logic circuits