ECE 103: DC Circuit Analysis

IN

Differential and Integral Calculus

 Differentiate and integrate exponentials, polynomials, and trigonometric functions

Complex Numbers

- Resolve complex numbers into Cartesian or polar representatives
- · Do complex algebra

Graphics, Functions

 Understand elementary theory of functions (continuity, monotinicity, inversion, etc.)

Pre-requisites

• MATH160 with a minimum grade of C

Concepts:

- Electrical variables and systems of units
 - Charge
 - · Resistance, Capacitance, Inductance
 - · Current and voltage
 - · Power and energy
- Ohm's Law
- · Kirchhoff's Law
- Series and parallel connections
- Circuit Analysis
 - · Nodal and Mesh analysis
- · Circuit theorems
 - Thevenin and Norton equations
- Source transformation
- · Operational amplifiers
 - Ideal Op Amp, OpAmp circuits
- Source-free RC/RL circuits
- Step response RC/RL circuits
- · Source free RLC circuits

Applications:

- DC voltage and current power supply design
- Summing amplifier
- · Differential amplifier
- Digital to analog converter
- Cascade amplifiers
- First order RC, RL circuits
- Delay circuits

Tools:

MATLAB

OUT

Circuit Analysis

- Use node and mesh analysis, source transformation and linearity to determine node voltage and loop currents
- Find Thevenin and Norton Equivalent Circuits
- Analyze basic OpAmp circuits
- Analyze RL and RC circuits

Laboratory Skills

- Analyze measurements
- Command of lab and measurement procedures
- · Write lab reports
- Be proficient with basic lab instrumentation like multimeters and oscilloscopes

Modeling and Simulation

- · Has introduction to MATLAB
- Understand the role of modeling and simulation