ECE 102: Digital Circuit Logic

IN		OUT
	Concepts: • Introduction to Digital Systems • Number, character, and information representation	Number Systems and Binary Representations
High School Math	 Boolean Algebra Algebraic simplification Duality Minterms and Maxterms Karnaugh maps 	 Understand fundamentals of number systems Understand binary representation of information
Algebra Triconomotory	Combinational Logic Design	Binary Logic
• Trigonometry	 Two-level and multi-level networks Design using NAND, NOR Multiplexers, decoders ROM, PLA, PLD based design Adder and multiplier design Introduction to hardware description language (HDL) Sequential Circuit Design Latches and Flip-flops Counters Mealy and Moore circuits 	 Know the rules of Boolean algebra Construct and use truth tables Derive canonical expansions of Boolean logic functions Optimize logic using K-maps and algebraic techniques Logic Circuit Analysis and Synthesis
Pre-requisites	Analysis of synchronous sequential networks	• Implement logic circuits at gate- and
• None	 Synthesis of synchronous sequential circuits State graphs and tables Reduction of state tables Design graphing 	register-transfer level to meet given specifications Finite State Machines
	 Design examples Applications: Adder/subtractor design Array multiplier ALU design Processor design 	 Has knowledge of FSMs and sequential building blocks Design, analyze, and optimize an FSM starting with design specifications Programmed Logic
	 Tools: CAD tools for design, simulation and debugging, FPGA based implementation 	 Understand the role of HDL in logic synthesis Implement logic in programmable devices (PLA/PLD, FPGA)

Revised 2/2024