Instructor: Prof. Carmen S. Menoni
Class Schedule: Monday and Wednesday, 5-6.15 PM – ENGR B105
Office: Engineering EC101E and ERC B325, tel: 491.8659
Office Hours: By appointment – send a message to Prof. Menoni to arrange to meet
Text: Optical Properties of Solids, Mark Fox, Oxford University Press

Notes from the instructor. All class material is on CANVAS

Course description: Basic optical phenomena in solids, linear and nonlinear optical properties
Course credits: 3
Prerequisites: PH441 with a C-or better, or equivalent – (only applies to undergraduates)

Grading:
* In class midterm 40%
* Journal paper reading and discussion 15%
* In-class problem solving & Labs 15%
* Research Paper/Project 30% (written report and oral presentation)

• Papers will be assigned during the course and students will present them in class. The presentation will be 10 minutes long.
• In-class problem solving: Regularly after a chapter is covered, there will be a problem solving session in-class. Students will be asked to discuss a particular problem within the set. Submission of the solutions in canvas is required. The grading is mainly based on the presentation in class. There are some weeks in which a lab will be conducted instead of problem solving.
• Research paper/project: Each student will pick a paper of interest to critique. To earn the full grade students submit a written paper and deliver a 10 min oral presentation in class.
• Snow days: Classes which are canceled due to snow, will need to be recovered.
• Emails to Prof. Menoni: please use as heading ECE 574 – carmen.menoni@colostate.edu

All electronic devices must be turned off during the class period.
<table>
<thead>
<tr>
<th>Course Outline</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I) Optical materials</td>
<td>Characteristics optical physics of the solid state</td>
</tr>
</tbody>
</table>
| II) Basic Concepts of the Optical response | The oscillator model
Kramer-Kronig relations
Dispersion
Optical anisotropy
Experimental techniques to determine optical constants |
| III) Linear optical properties of materials | Semiconductors, 3D and low dimension
Dielectrics and metals
Excitons |
| IV) Emission | Luminescence, Photoluminescence, Electro-luminescence |
| V) Polarization and electric/magnetic field effects| Frank-Keldish effect – DC Stark effect – Kerr effect – Faraday effect – Magneto-optics effect |
| VI) Nonlinear response and multiphoton processes | Two photon spectroscopy
Light scattering
Photoelectron spectroscopy |
| VII) Optical processes of impurity atoms in solids | Laser crystals
NV centers |
| VIII) Light-matter interactions | Ultrashort pulse laser-matter interactions |
| IX) Current topics | Laser Fusion: intense light/matter interactions |