Logout Sycke Wilson to end your session. (http://www.acns.colostate.edu/single-sign-on-using-shibboleth/#1471272725675-5603b487-ebab)

Important information for Students: All students should fill out a student-specific symptom checker each day before coming to class (https://covidrecovery.colostate.edu/daily-symptom-checker/). In addition, please utilize the symptom checker to report symptoms, if you have a positive test, or exposed to a known COVID contact. If you know or believe your have been exposed or are symptomatic, it is important for the health of yourself and others that you report it through this checker. You will not be in trouble or penalized in any way for reporting. If you report symptoms or a positive test, you will receive immediate instructions on what to do and CSU's Public Health Office will be notified. Once notified, that office will contact you and most likely conduct contact tracing, initiate any necessary public health requirements and/or recommendations and notify you if you need to take any steps.

For the latest information about the University's response, please visit the CSU COVID-19 site (https://covidrecovery.colostate.edu/)

Please familiarize yourself with the required public health precautions before arriving on campus: https://covidrecovery.colostate.edu/public-health-precautions-during-the-semester/.

ECE 604: Nonlinear Optics Fall 2020 Syllabus

General Info

Instructor:Jesse W. Wilson
Office[MS Teams chat: jessew]

Office Hours: TBD; please fill out doodle poll

E-mail: jesse.wilson@colostate.edu

Phone: [voice over MS Teams]

Lecture time: MWF, 1:00--1:50 PM Mountain Time;

Location: Engineering B4

- Lectures in person and live streaming via MS Teams until Fall break.,
- Lectures live online via MS Teams (after Fall break).
- Recordings will be made available on Echo360, typically < 4 hours after live lecture.

Prerequisite Background: Electromagnetics, optics, partial differential equations.

Course Description: Nonlinear optical science has revolutionized laser sources of radiation. With nonlinear optics, a bright, coherent radiation source at a particular frequency can be transferred to a new frequency through nonlinear interactions in matter. This course will introduce the principles of nonlinear optics, symmetry properties and various order nonlinear phenomenon. Upon completion of the

course, students will be able to design an experimental apparatus that will produce efficient frequency conversion.

Course Materials

Required Text: *Introduction to Nonlinear Optics*, by Geoffrey New, Cambridge University Press 2011, ISBN 78-0521877015.

Other Helpful References:

- Introduction to Modern Optics. Grant R. Fowles, Dover Publications. 1989
- Physics of Light and Optics. Peatross & Ware. Brigham Young University. Available online at http://optics.byu.edu/textbook.aspx (http://optics.byu.edu/textbook.aspx).
- Nonlinear Optics, Third Edition by Robert W. Boyd, Academic Press 2008, ISBN 978-0-12-369470-6.
- The Principles of Nonlinear Optics (Wiley Classics Library) by Y. R. Shen, ISBN

Required Software

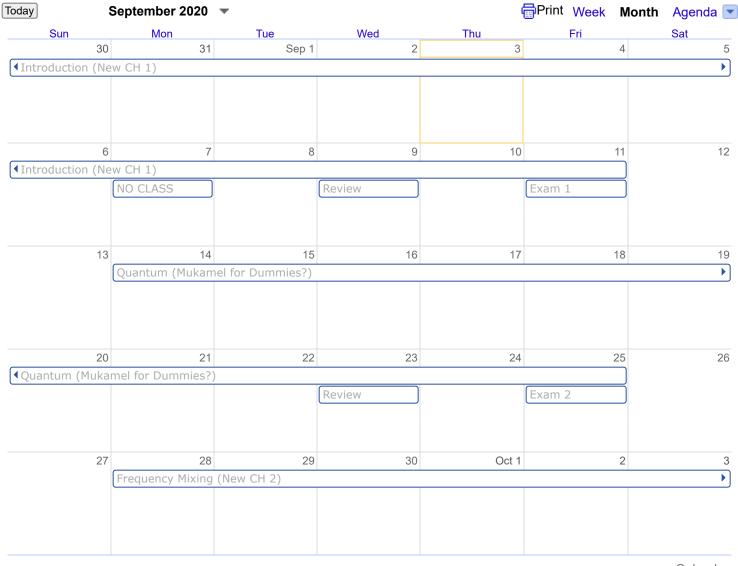
- SNLO from AS-Photonics (http://www.as-photonics.com/snlo) (free).
- Wolfram Player (https://www.wolfram.com/player/) (free)

Recommended Software

- <u>Mathematica</u> (https://www.wolfram.com/mathematica/pricing/students/) (student licenses start at \$54/semester)
- MATLAB (Installed on all ETS computers; available for your home computer through <u>CSU's license</u>
 (https://www.mathworks.com/academia/tah-portal/colorado-state-university-40638290.html)

Grading and Homework

Grading [not finalized]:


- Quizzes: 10%
- Homework and Numerical Simulations, 25%
- Exams, 40%;
- Final Paper and Presentation, 25%

Homework Policy: Due by end of due date, by upload to Canvas. A correct homework solution is a narrative that describes the physical situation, the equations and variables used and their physical importance, and finally draws a conclusion in a way that builds intuition about the topic under study. A mere list of equations will not be graded. Although late or improperly done homework will not be accepted, one ``redo" will be allowed during the semester. Each homework must be submitted as a single PDF file via canvas.

Date	Details
Fri Aug 26, 2016	Quiz P3 (https://colostate.instructure.com/courses/111095/assignments/1296473) due by 11:59pm
Mon Aug 29, 2016	Quiz 01 (https://colostate.instructure.com/courses/111095/assignments/1296461) due by 11:59pm
Wed Aug 31, 2016	Quiz 02 (https://colostate.instructure.com/courses/111095/assignments/1296462) due by 11:59pm
Fri Sep 2, 2016	HW 01 (https://colostate.instructure.com/courses/111095/assignments/1296436) due by 11:59pm
Fri Sep 9, 2016	Quiz 03 (https://colostate.instructure.com/courses/111095/assignments/1296463) due by 11:59pm
Mon Sep 12, 2016	Quiz 04 (https://colostate.instructure.com/courses/111095/assignments/1296464) due by 11:59pm
Fri Sep 16, 2016	HW02: index perturbations, Kerr lensing, and noncollinear phase matching (https://colostate.instructure.com/courses/111095/assignments/1296438)
Wed Sep 28, 2016	② Quiz 05 (https://colostate.instructure.com/courses/111095/assignments/1296465) due by 9:22am
	Quiz 06 (https://colostate.instructure.com/courses/111095/assignments/1296466) due by 11:59pm
Fri Sep 30, 2016	HW03: Wave propagation, phase matching due by 11:59pm (https://colostate.instructure.com/courses/111095/assignments/1296441)
Fri Oct 14, 2016	HW04: ode45, coupled SHG equations, QPM due by 11:59pm (https://colostate.instructure.com/courses/111095/assignments/1296442)
Fri Nov 11, 2016	☐ Quiz 08 (https://colostate.instructure.com/courses/111095/assignments/1296469) due by 11:59pm
Mon Nov 14, 2016	② Quiz 07 (https://colostate.instructure.com/courses/111095/assignments/1296467) due by 10:14am

Topics and Schedule:

ECE604 FA2020

Events shown in time zone: Mountain Time - Denver

Calendar

Course Summary:

Date	Details	
Mon Aug 22, 2016	Quiz P1 (https://colostate.instructure.com/courses/111095/assignments/1296471)	due by 11:59pm
Wed Aug 24, 2016	Quiz P2 (https://colostate.instructure.com/courses/111095/assignments/1296472)	due by 11:59pm

Date	Details
Fri Nov 18, 2016	HW05: Birefringent Phase Matching due by 11:59pm (https://colostate.instructure.com/courses/111095/assignments/1296444)
Mon Nov 28, 2016	Quiz 09: Index ellpisoids and normal surfaces due by 11:59pm (https://colostate.instructure.com/courses/111095/assignments/1296470)
Fri Dec 2, 2016	HW06: Polarization-resolved nonlinear phenomena due by 11:59pm (https://colostate.instructure.com/courses/111095/assignments/1296446)
Fri Dec 9, 2016	HW07: SHG Azimuth Angle (https://colostate.instructure.com/courses/111095/assignments/1296449) due by 11:59pm
Mon Sep 3, 2018	HW03: Intensity-dependent refractive index (https://colostate.instructure.com/courses/111095/assignments/1296440)
Mon Sep 10, 2018	HW04: SH phase slip (https://colostate.instructure.com/courses/111095/assignments/1296443) due by 11:59pm
Fri Sep 21, 2018	HW05: SHG conservation of energy (https://colostate.instructure.com/courses/111095/assignments/1296445) due by 11:59pm
Mon Sep 24, 2018	HW06: SHG intensity calculation (https://colostate.instructure.com/courses/111095/assignments/1296447) due by 11:59pm
Mon Oct 1, 2018	Project Proposal (https://colostate.instructure.com/courses/111095/assignments/1296460) due by 11:59pm
	HW07: QPM (https://colostate.instructure.com/courses/111095/assignments/1296448) due by 11:59pm
Mon Oct 8, 2018	HW08: Parametric Gain (https://colostate.instructure.com/courses/111095/assignments/1296451) due by 11:59pm
Mon Oct 15, 2018	Midterm 1 (https://colostate.instructure.com/courses/111095/assignments/1296458) due by 11:59pm

Date	Details
Mon Oct 22, 2018	HW09: deff under type II phase matching due by 11:59pm (https://colostate.instructure.com/courses/111095/assignments/1296452)
Mon Oct 29, 2018	HW10: Poynting Walkoff (https://colostate.instructure.com/courses/111095/assignments/1296454) due by 11:59pm
Mon Nov 5, 2018	HW11: Circular-polarized THG (https://colostate.instructure.com/courses/111095/assignments/1296455) due by 11:59pm
Mon Nov 12, 2018	HW11: Gaussian beams, revisited (https://colostate.instructure.com/courses/111095/assignments/1296456) due by 11:59pm
Fri Nov 16, 2018	Midterm 1 Extra Credit (https://colostate.instructure.com/courses/111095/assignments/1296459) due by 11:59pm
Mon Nov 26, 2018	HW12: Raman photon flux conservation due by 11:59pm (https://colostate.instructure.com/courses/111095/assignments/1296457)
Tue Dec 11, 2018	Final Project Presentation (https://colostate.instructure.com/courses/111095/assignments/1296435) due by 11:59pm
Fri Aug 28, 2020	HW01: Introductory Reading (https://colostate.instructure.com/courses/111095/assignments/1296437) due by 11:59pm
Fri Sep 4, 2020	HW02: SFG Polarization E^2 Expansion due by 11:59pm (https://colostate.instructure.com/courses/111095/assignments/1296439)
Fri Sep 11, 2020	HW03: New 1.5 phase matching? (https://colostate.instructure.com/courses/111095/assignments/1339747) due by 11:59pm
	Final Grade, Curved (https://colostate.instructure.com/courses/111095/assignments/1296434)