ECE 521: Satellite Communication

Day/Time/Room: Tuesdays and Thursdays, 3.30pm – 4.45pm at ENGR B4
Instructor: Dr. V. Chandrasekar
Prerequisite: ECE 421 or consent of instructor
Course Credits: 03
Textbook: Satellite Communications (fourth edition) by Timothy Pratt, Charles Bostian and Jeremy Allnutt

Course Objective: The objective of this course is to provide focus on modern concepts of satellite communication and its applications including constellations of satellites and geo-navigation. It is very important in the curriculum to provide a course with focus on these topics.

Outline:
I. Introduction
 Function of a communication satellite
 Brief history
 Satellite subsystems
II. Orbital Aspects of Satellite Communication
 Orbital mechanics
 Look angle
 Orbit effects
 Perturbations
III. Satellites
 Subsystems, Orbit Control Systems, Power Systems, Communication Systems, Antennas
IV. Link Budget/Link Design
 Basic transmission theory
 System noise temperature
 Design of links
 Small Earth stations
 Examples of link budget
IV. Modulation and Multiplexing Techniques for Satellite Links
 Modulation methods
 Multiplexing
 Multiple access
 Phone/T.V. transmission
 Digital transmission
 Bandwidth compression
V. VSAT Systems
VI. Propagation on Earth-Satellite Paths and Link Design
Attenuation
Depolarization
Propagation effect not associated with hydrometeors
Propagation effect due to hydrometeors
Mitigation of propagation effects

VII. Earth Station Technology
Satellite antennas
Receiving antennas
System performance
Tracking

VIII. NGSO Satellite Systems
Orbital Considerations
System Considerations
Operational and Proposed NGSO Constellation Designs
System Design Examples

IX. Direct Broadcast Satellite Television and Internet
DBS-TV System Design
NGSO Satellite Systems
Link Budgets for NGSO Systems
Packet and Protocols for NGSO Systems
User Terminal Antennas for Ku-Band, Ka-Band, and V-Band

X. Navigation and GPS
Global Positioning System
Radio and Satellite Navigation
Satellite Signal Acquisition
Differential GPS

Grading and Exams: Homework 33%, Midterm 33%, Final Exam 34%