1. ECE 571/575: VLSI System Design/Experiments in VLSI System Design I

2. 4 credits total: 2-75 minute lecture sessions/week, 1 credit weekly lab assigned

3. Sourajeet Roy; Steve Undy

5. Course Information
 a. Design of integrated circuits at the system level including cell design, digital systems, parallel architecture, systolic arrays. Set of labs designed to enhance students’ understanding of the materials in lecture
 b. Prerequisite: ECE 451; Concurrent registration in ECE 571 and ECE 575
 c. Selected Elective: Electrical Engineering; Computer Engineering

6. Goals for the Course
 a. Course Learning Objectives
 i. Describe basic cell design in VLSI
 ii. Describe the entire process of VLSI chip design
 iii. Design a D-FF in VLSI
 iv. Design a synchronous circuit and determine its timing characteristics
 v. Design a more complex logic circuit using the static, dynamic and pass transistor logic styles
 vi. Utilize various design stages from behavioral modeling using Verilog and their simulation environment, to logic and circuit design, and finally to layout and design verification.
 vii. Evaluate the performance and the power requirements of static logic, dynamic logic, and pass transistor logic circuits
 viii. Use HP workstations for all the design activities workstations
 b. Student Outcomes
 1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
 2. An ability to apply the engineering design process to produce solutions that meet specified needs with consideration for public health and safety, and welfare, as well as global, cultural, social, environmental, and economic factors
 3. An ability to communicate effectively with a range of audiences
 4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
 6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
 7. An ability acquire and apply new knowledge as needed, using appropriate learning strategies
7. Topics Covered
 VLSI design methodology
 Current trends in VLSI system design
 MOS transistor theory and MOS VLSI processing technology
 Performance characteristics and performance optimization of CMOS
 Layout of MOS ICs
 IC circuit design techniques: static, dynamic, and pass transistor logic (PTL)
 Power and timing analysis of VLSI circuits
 Clock skew and clock distribution
 Floorplanning, placement, routing, DRC and ERC
 Testing and design for testability
 IC packaging technology