1. ECE 471A (ECE 480A2): Semiconductor Physics

2. 1 credits: 2-75 minute lecture sessions/week – 5 weeks

3. Carmen Menoni

5. Course Information
 a. Fundamentals of semiconductor electron, hole states and motion: bandgap, effective mass, carrier density, Fermi level, doping, drift and diffusion
 b. Prerequisites: MATH 340 or MATH345; PH142
 c. Selected Elective: Computer Engineering; Electrical Engineering; Lasers & Optical Engineering

6. Goals for the Course
 a. Course Learning Objectives
 i. Understand the fundamentals in the behavior of optical devices: lasers, and detectors, and of light propagation through experiments
 ii. Acquire basic skills for working with modern optics components through weekly experiments
 iii. Enhance skills for record keeping of laboratory experiments
 iv. Present technical results
 b. Student Outcomes
 1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics

7. Topics Covered
 Electronic states of semiconductors
 E vs. k plots, direct and indirect bandgaps
 Density of states, effective mass, statistical distributions, Fermi-Dirac integral
 Maxwell-Boltzmann distribution
 Equilibrium carrier concentrations, equilibrium thermal generation, intrinsic carrier concentration, dopants, extrinsic carrier concentration,
 Relationship between carrier concentrations and Fermi level
 Drift currents
 Velocity-field relationship, carrier scattering and mobility, semiconductor resistors.
 Diffusion, diffusivity
 Einstein relationship
 Band diagrams of homogeneous semiconductors