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Status

« Fall 2009: started (one class per semester)
« Spring 2012: finished last class

« Summer 2012: started research

« Fall 2012: gualifier

« Spring 2014: prelim

« still working for Numerica



Outline

« published research
« 0ngoing research
« plans for future work
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Minimum Energy and Makespan Scheduling

Publications

« Efficient and Scalable Computation of the Energy and Makespan Pareto Front for Heterogeneous
Computing Systems. Kyle M. Tarplee, Ryan Friese, Anthony A. Maciejewski, and Howard Jay Siegel, 6th
Workshop on Computational Optimization (WCO 2013), in the proceedings of the Federated Conference on
Computer Science and Information Systems (FedCSIS 2013), cosponsors: Polskie Towaszystwo Informatyczng
(PTI), iBS PAN, AGH University of Science and Technology, and Wroclaw University of Economics (UE),
Krakow, Poland, Sep. 2013.

o Presentation (2013-09-08)

- Best paper award: 2013 Zdzislaw Pawlak Best Paper Award, by the Award Committee of the 8th
Symposium on Advances in Artificial Intelligence and Applications

« Efficient and Scalable Pareto Front Generation for Energy and Makespan in Heterogeneous Computing
Systems. Kyle M. Tarplee, Ryan Friese, Anthony A. Maciejewski, and Howard Jay Siegel, in Recent Advances
in Computational Optimization, Studies in Computational Intelligence Series, Springer, 2014 to appear

« journal article submitted soon
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Outline

« minimum makespan scheduling

« makespan scheduling simulation results

« comparison to other scheduling algorithms
« scalability analysis and results

« minimum energy/makespan scheduling

« Pareto front generation
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Problem Statement

L 3

L

static scheduling
o single bag-of-tasks
o task assigned to only one machine (task indivisibility)
o machine runs one task at a time
o known deterministic execution times
heterogeneous tasks and machines
desire to minimize makespan
later minimize energy consumption and makespan or maximize profit
goal: efficiently compute high quality schedules for extremely large scale problems
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General Approach

« group similar tasks (task types)
« group similar machines (machine types)
« large problems often have many tasks assigned to individual machines
o small fraction of tasks divided among machines has little impact on makespan
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Applicability

L 3

online batch mode scheduling
o resiliency to stochastic execution times
¢ unknown arrival rates
« schedule to cores instead of machines
« millions of tasks and tens thousands of machines
« scheduler execution times are sub-second
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Makespan Scheduling

Approach

« efficiently compute solutions which bound the makespan

« lower bound uses linear programming (LP) and assumes tasks are divisible
o our approach: determines the number of tasks of each type to assign to groups of machines of each type
o traditional approach: assign individual tasks to individual machines
o LP relaxation for traditional approach is intractable

« upper bound is found by recovering a feasible allocation from the LP
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Linear Programming Lower Bound

Preliminaries

simplifying approximation: tasks are divisible among machines

T; — number of tasks of type |

L

M, — number of machines of type |

L

M — number of tasks of type | assigned to a machine of type |

L

ETC; — estimated time to compute for a task of type i running on a machine of type |
finishing time of machine type | is (lower bound)

1
b

L

« makespan (lower bound):

MSLE = max F]
J
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Linear Programming Lower Bound

Optimization Problem

minimize MS g
Hy, MS g

subject to: Wi Z W = Ti task constraint
j
v Fj=MS g makespan constraint

vi,j ;=0 assignments must be non-negative



Simulation Setup

« HPC system parameters
o ETC matrix derived from actual systems benchmarks
o 9 machine types, 36 machines, 4 machines per type
o 30 task types, variable number of tasks (task type distribution held constant)
o 200 Monte Carlo trials
« experiments used single core of a 2009 MacBook Pro laptop
o using the COIN-OR linear programming solver (third party library in C++)
o lower bound, rounding, and local assignment phases all implemented in C++
e min-min and max-min implemented in C++
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LP-Based Scheduler

Makespan vs Number of Tasks
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LP-Based Possible Improvement

Relative Makespan vs Number of Tasks
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Heuristic Algorithm Comparison

« min-min and max-min are minimum completion time (MCT) based algorithms
« run time optimizations were applied to the vanilla algorithms

o outer min/max is computed on-the-fly instead of as a post process (second step)
o takes advantage of task and machine types where possible

o store best machine assignment for each task type, update only those that are assigned (dirty) last iteration
in each pass

o fixed sized ragged arrays of task counts instead of variable length arrays of task indices
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Heuristic Algorithm Comparison

Relative Makespan vs Number of Tasks
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Heuristic Algorithm Comparison

Relative Run Time vs Number of Tasks
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Algorithmic Complexity

e letthe ETC matrixbe T x M

« linear programming lower bound
o T + M constraints

o TM + 1 variables

o average complexity of simplex algorithm is then (T + M)2(TM + 1)
o independent of the number tasks and machines

« rounding step: T(Mlog M)
o independent of the number tasks and machines

« local assignment step:

o number of tasks for machine type j IS nj = Zi Xij

o worst cast complexity is M max; (T log T +n;log Mj)

« complexity of all steps is dominated by either
o linear programming solver
o local assignment
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Scalability Results

« nominal system
o scaled up version of the previous system
o 3,600 machines composed of 9 machine types
= 110,000 tasks from 30 task types
« averages of 50 trials are shown
« experiments sweep number of
o “tasks
o task types
o *machines
e machine types
« 10 million tasks: 1 second
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Impact of the Number of Tasks
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Impact of the Number of Machines
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Energy-Aware Scheduling

Preliminaries

« simplifying approximation: tasks are divisible among machines
« APG; — average power consumption for a task of type I running on a machine of type |
« APCy; — idle power consumption for a machine of type |

« energy consumed by the bag-of-tasks (lower bound):

E.g = execution energy +idle energy

= E E IJ-ijAPCijE [ Cij + E MjAPCﬂj{MSLB — F]}

] j

Z Z IJ‘iJ'EI :ij(‘ \PCijj — ‘Pcﬂi) N Z MAPC4MS g
I j

« note that energy is a function of makespan when we have non-zero idle power consumption



Bi-Objective Lower Bound

Vector Optimization

L E
minimize ( -
1y, MS 5 MS_g

subject to: Wi Z M = T; task constraint
j

v Fj=M5 g makespan constraint
vi,j ;=0 assignments must be non-negative
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Nomenclature

« objective space: Pareto efficient points, Pareto N
outcomes, Pareto front, Pareto surface

« solution space: efficient points, efficient solutions

makespan

energy
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Weighted Sum Scalarization Algorithm

« step 1 find the utopia (ideal) and nadir (non-ideal) points

« step 2 sweep A between 0 and 1.
o at each step solve the scalar LP problem:

i ELE 4 -[i MSLE

min
AE g AMS, g

subject to all original constraints
o from iteration to iteration only the objective changes slightly
o only need a few more primal simplex steps to achieve optimality

« step 3 remove duplicates (they are consecutive)
« linear objective functions and convex constraints
o convex, lower bound Pareto front
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Outer vs. Inner Approximation

« outer approximation is a polytope that encloses
o not all vertices are feasible solutions

« inner approximation is a polytope that is fully
enclosed by (¥

o all vertices are feasible solutions

o weighted sum solutions are vertices

W

fa(x)
A

inner

nadir

Pareto front

» fi(x)
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Pareto Front Lower Bound Solutions
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Pareto Front Generation Procedure

« step 1 weighted sum scalarization

« step 2 for each solution use "round near"”

« step 3 remove duplicates (they are consecutive)

« step 4 for each solution use "local assignment”

« remove duplicates and dominated solutions

« full allocation is an upper bound on the true Pareto front
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Simulation Results

« simulation setup
o ETC matric derived from actual systems
o 9 machine types, 36 machines, 4 machines per type
o 30 task types, 1100 tasks, 11-75 tasks per type
« Non-dominated Sorting Genetic Algorithm |l
o NSGA-II is another algorithm for finding the Pareto front
o an adaptation of classical genetic algorithms
o seeds
= basic: min energy, min-min completion time, and random
= full allocation: all solutions from upper bound Pareto front
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Pareto Fronts
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Pareto Fronts

Zoomed into the knee
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Convex Filling

Pareto Fronts

weighted sum weighted sum with convex filling
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Pareto Fronts (zoomed)
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Progression of Solutions
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Pareto Front Quality Measure

« Pareto front is between
o lower bound
o upper bound (full allocation)
« compute area between these regions
« algorithm
o compute nadir point of both lower and upper
o compute area of lower polygon
o compute area of upper polygon
o compute area where the true Pareto front can reside as Area(lower) - Area(upper)
« extend the asymptotes of the Pareto front bounds to complete the polygon with the nadir point
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ITlustration of the Regions
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Results

Area Between Bounds

algorithm 9 machine type 6 machine type 2 machine type 10 machine type
nsga 2149 MJ s 1351 MJ s 115 MJ s 2655 KJ s
Ip-based 684 MJ s 339 MJ s 63 MJ s 1011 KJ s

nsga seeded 436 MJ s 306 MJ s 53 MJ s 851 KJ s

Ip with convex fill 231 MJ s 235 MJ s 38 MJ s 762 KJ s

« nsga seeded with Ip-based improves on Ip-based
« convex fill improves on Ip-based the most



Maximum Profit Scheduling

Publications

« Energy-Aware Profit Maximizing Scheduling Algorithm for Heterogeneous Computing Systems. Kyle M.
Tarplee, Anthony A. Maciejewski, and Howard Jay Siegel, Extreme Green and Energy Efficiency in Large Scale
Distributed Systems Workshop (ExtremeGreen 2014), cosponsors: IEEE Computer Society and the ACM, in the
proceedings of the 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid
2014), Chicago, IL, May 2014, to appear.
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Problem Formulation

« let p be the price (revenue) per bag-of-tasks

« let C be the cost per unit of energy

« let E(u) be the energy consumed with schedule u
« let MS(u) be the makespan of schedule u

« profit per bag is p — CE(u)

pcEw) _ p
MS() ~— MS[)

Elu)

C s

« profit per unit time (to be maximized) is

o first term is revenue per unit time
o second term is C times average power consumption
« let Pqax be the maximum average power consumption
o corresponds to the cooling capacity allocated to the HPC system
e long running average is preferred over peak power usage

39777



Optimization Problem

. - cE
maximize P 18 ()

p, MS_ g MSLE{F}
subject to:
Vi Z Wy = T task constraint

i
V] Fi = MSig makespan constraint or machine constraint
i, | Hj =0 assignments must be non-negative

= : :

- P max power constraint (optional)

MS, g
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Conversion to a Linear Program

« recall Ej g = Zizj H; ETC”(APC” -AF’CH]) +Zj MAPGC;MS g
« Objective and the power constraint are non-linear (bad!)

« Objective is ratios of decision variables, M and MS| g (good)

« constraints can be converted to ratios of M;i and MS g

« variable substitution

By L
o Zj < MS.; IS the average tasks per unit time

1 . e
o I + MS IS the number of bags per unit time

« average power consumption becomes

P="Y Y zETC;(APC; - APCy) + > MAPC,
] |
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Linear Program

subject to:

Vi

V]

i, |

maximize pr-cP
Z. T

Z Iij = Tir
j

1— ZI” ETC” < 1
M, 4
Zjj =0
r=0

P < Prax

equivalent to

equivalent to

equivalent to
equivalent to

equivalent to

21 =T
j

1
— Y WETC; <MSig
[

Wy =0
MSLB =0

Eg
MS g

=

42 [ 77



Recovering a Feasible Allocation

« once the linear program is solved compute

« recover the full allocation (from prior work)
o round near algorithm
o local assignment algorithm

43 777



Simulation Setup

« 11,000 tasks composed of 30 task types
« 360 machines composed of 9 machine types
« Pareto front generated from 1,000 points (weights)
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Max Profit Solutions
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Relative Profit Rate vs Number of Tasks

No Idle Power, 100 Monte Carlo Runs over the Bag
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Ongoing Research



Operating Cost Objective

« add an objective to the existing problem to optimize operating cost
« similar to common cloud computing cost models:
e let Cj be the operating cost per time unit of a machine of type |

« then the operating cost is:

Cost= Y Y WETC;C,
]

o Amazon ECZ2 charges a given rate for each machine type, rounding up the number of hours used
o this model charges a given rate for each machine type without rounding
« if G; = 1 then this reduces to total computing time

« this cost objective can be re-cast as a budget constraint
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Machine Failure Model Assumptions

L 3

machine failures are independent
« time between failures is independent of prior failures
« failure of any machine causes the bag-of-tasks to fail

« from "Optimizing Performance and Reliability on Heterogeneous Parallel Systems: Approximation Algorithms
and Heuristics"

o adapted to use the lower bound on completion time {Fj} for groups of tasks and machines
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Reliability Metric Derivation

» let t; be the time of the machine failure

+ let A; be the MTTF of machine type | (exponential distribution)

Pr(machine completes work) = Pr( > F)

=1- Pr{tf = F]}
=1-(1-¢e"7)
ZE_}"JFJ

« let machine failures be independent then

Pr(bag-of-tasks completes) = H ( e—NF } A

j
— H E_M}"JFJ
j

= g~ 2 MAF

50777



Reliability as an Objective

« the reliability index (to be minimized) is

rel = -In Pr(bag completes)

J
b

« relis linear in M;; sO it can be used as another objective function along side energy and makespan

« good schedules will try to reduce rel to increase the probability of the bag of tasks completing with no machine
failures

« decreasing makespan and/or choosing more reliable machines are the scheduler's degrees of freedom
« this is really a specialization of the classic "makespan with cost" problem

SR Ny



Multi-Dimensional Sweeping Algorithms

L 3

consider a m-objective vector optimization problem
« want to scalarize the problem via weighted sums
« let the weigths be @

+ must exclude @ = () from the set of weights so we impose a constraint ZE w; =1
« W is thus in a m — 1 dimensional linear subspace
« two algorithms
o recursively combine pairs of objective functions while adding a new sweep variable
= all sweep variables are swept independently from 0 to 1
= produces duplicate weight vectors

= non-uniform sweeping in the subspace defined by 221 w; =1

» find an orthnormal basis (spanning set) for the null space of 1, and sweep independently in the m — 1
dimensional space defined by the basis vectors

= this sweeps the subspace uniformly (doesn't prefer any objective to any other)

« to ensure the whole space is swept one must sweep from —A to +A where A = \/1 — %
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Comparision of Sweeping Algorithms

Recursive (left), Subspace (right)
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Optimal Capacity Planning

« over subscribed systems eliminate the obvious strategies
o machine utilization: all machines will have full utilization
o number of tasks executed: sub-optimal scheduler
o price/performance: does not take into account all aspects of workload and hardware
« overarching problem: current workload is different than desired/future workload
« quick algorithm to "optimally" determine how many of each type of new machines to add to a system to either
o maximize throughput subject to a budget constraint
o given desired throughput minimize the monetary upgrade cost
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Approach

« build on steady-state problem formulation from Linear Programming Affinity Scheduling (LPAS)
« build a steady-state model of the system and find the theoretical optimal performance
« steady-state schedule is a by-product of the optimization

25 177



Steady-State Problem Formulation

« let w; be the probability that a task of type i that will arrive
o WjisaPMF so 2. wj =1

-

let Pij be the fraction of time a machine of type | should process tasks of type |

. <L i
« task execution rate for task type I is given by Zj Mj ETC, Pij
« let At be the average rate of task execution by the whole system

» let the time utilization for machine | be P; = 2 Pj

56 /77



Problem Formulation

o let Bj be the cost of machine type |

« let the budget be given by Y
« for machines of type | let
° Mj‘:“" be the current number

o Mj"‘i” be the minimum desired number

P Mj"“a” be the maximum desired number

af I !



Maximize Throughput Subject to a Budget
Constraint

Non-Linear Optimization Problem

maximise At

pysAr.M
subjectto: wvi Atw, = Z My ——— 1 Pj (task constraint)
ETC;
V] p; =< 1 (machine constraint)
vi,]j O= P < 1 (decision variable constraint)
V] Mj"“‘” =M = Mj”‘a" (decision variable constraint)

Z (M- M) <y (budget constraint)
j



Maximize Throughput Subject to a Budget
Constraint

Conversion to Linear Optimization Problem
» change of variables, p; M; — p;
_ 1
« machine constraint can be rewritten as:

By P
pjzzpijzz M} = M:j

where: f; = 2 Pi M; = 0 and P = 0 thus we can write:

ﬁ.
pjg'l — H]JE-I =}|?5]£MIJ

« machine constraint upper bound, P = 1 becomes ﬁij < Mj



Maximize Throughput Subject to a Budget
Constraint

Linear Programming Problem

maximise At
ﬁuﬂ }"T! M

. . 1 .
subjectto: wvi Atw, = Z —— (task constraint)
j ETG;

V] p; = M (machine constraint)
vi,] 0= Pi = M (decision variable constraint)
V| Mj”“” =M =< Mj”‘a” (decision variable constraint)

E (M- M) B <y (budget constraint)
j



Minimize Cost Subject to a Throughput
Constraint

Linear Programming Problem

minimize ) (M - M)
By M j
: . 1 .
subjectto: wi, Apw, = Z —— (task constraint)
J. ETC;
Vi, Bj=M (machine constraint)
vi,] O= P = M, (decision variable constraint)

v, Mj"“‘” =M = Mj”‘a"‘ (decision variable constraint)

61777



Heterogeneity Measures

Overview

« goal: find measures of heterogeneity that "best" characterize systems
e Conjectures:
o workload + hardware = system
o characterizations are useful for:
= guiding/choosing scheduling algorithms
= generating test systems
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Definitions

« let ETC be the estimated time to compute matrix

« need weights (relative importance) for the rows and columns of ETC
» let T; be the importance (probability, arrival rate, number) of a task type |
o let Mj be the importance (number of machines) of a machine of type |

+« task easiness

TE, = TZ JETC”

« machine performance

1
ETC;

MP, =M )T,
i

63 /77



Definitions

Abstraction

« focus on task (rows) and machine (column) heterogeneity measures

L

measures for task heterogeity can be applied to machine heterogeneity (and vice versa)

« let X; be the i" task easiness or machine performance
« larger values of X; are generally better

« likewise let w; be the it" task or machine importance
« x and @ are vectors of length N
« goal: measure the heterogeneity of (x, @)
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"Desirable" Properties (1 of 2)

let f (x, @) be some measure of heterogeneity:
 invarianttoscaleinx and @w: vx,@,a>0, >0 f(x,w)=1(ax, Bw)
o 1((1,2,3),w) =1((2,4,6), w)
o f(x,(1,2,3)) =1(x,(2,4,6))
o requires measure to be unitless
« invariant to permutation in x: vx, @, permutation matrix P f(x,w) = {(Px, Pw)
o 1((1,2,3),w) =1((3,1,2),w) =1((3,2,1), ®)
« perfect homogeneity: (1, @) =0

L

= or the weaker condition: vy f(1,w) =f(y, w)
o equality iff y has all identical elements
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"Desirable" Properties (2 of 2)

« bimodal should be more heterogeneous: va>0,b>0 f((a,a,b),1) >1((a, %b ,b),1)
o 1((1,1,3),1)>1((1,2,3),1)
« homogenization by weighting: va #b,a>0,B>0,y > % ,  f((a,b),(qa,B)) =f((a,b), (ya,B))
o 1((1,2),(3,4)) >1((1,2),(6,4))
» Y = 0 also homogenizes the system
o what are all the values of y that homogenize?
« invariant to combination: va, b, a, 3,y f((a,a,b),(q,B,y)) =f((a,b),(a +B,Yy))
« 1((1,1,16),(1,1,1)) =1((1,16),(2,1))
o identical machine or task types can be safely collapsed into one type
o likewise they can be safely replicated into different types
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Empirical Property Tests

scale in x

scale in w

permute
combination
homogeneity
homogeneity with w
bimodal

homogenization

existing measures

new measures

1-R
pass
pass
pass
fail
pass
fail

fail

pass

L—1 cov 1-hg

pass pass pass
pass pass pass
pass pass pass
fail pass fail
pass pass pass
fail pass fail
fail pass fail
pass fail pass

1-h
pass
pass
pass
fail
pass
fail
fail

pass

WSD speed WSD time
fail fail

fail pass
pass pass
pass pass
pass pass
pass pass
pass pass
pass pass

WSD log

pass
pass
pass
pass
pass
pass
pass

pass
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Future Work



Goals

« publish unfinished work
« understand relationships between different approaches (tie together)
« expand applicability of research
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Current Research

« journal for the energy/makespan scheduling work
o review and submit (and repeat)

« optimal capacity planning
o ties back into steady-state scheduling



Incomplete Research

Profit

« online (or steady-state) max-profit scheduling algorithm

« simulations to evaluate performance

« experiment with the non-energy costs and power constraint
« simulate dynamic price and energy costs

F10ff



Incomplete Research

« reliability as a third objective
o subspace method to sweep the free variables in weighted sum
o resolve other issues relating to >2D Pareto front
« online pull-based (on-demand) scheduling
« improvements to LPAS for steady-state scheduling
o recreated all (and more) of my qualifier paper's work
o developed a randomized LPAS algorithm that out performs LPAS and MCT
o needs more testing and development
« estimate ETC using current and prior task's execution data
o feedback of the estimated remaining time to compute
o number of completed ticks (N/M)
o profile common computational benchmarks to demonstrate applicability
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Incomplete Research

Stochastic ETC (and APC)

« goal: minimal model that represents the key properties of a system (i.e. has TMA)

« model a machine as "resources" (CPU, 10 bandwidth)

« model a task as "consuming” or "requiring" differing amounts of "resources”

« derive the probability distribution for ETC for a given task and machine (joint distribution)
« evaluate (statistical) heterogeneity measures against model

« generate test systems from model

NN



Incomplete Research

Heterogeneity Measures

« prove/disprove "desirable" properties for each measure
« develop applicable task/machine affinity measure
« relate these measures back to scheduling algorithm performance
« parameterized tasks
o infinite number of task types
o need a joint PDF over parameter and ETC
o heterogeneity measures via "WSD" or "WSD log" are still possible
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Proposed Timeline

e Spring 2014

o submit LP-scheduling journal paper

o complete research on capacity planning
« Summer 2014

o reliability

o online pull-based scheduling with the LP
« Fall/Spring 2014

o stochastic ETC

o heterogeneity measures

falff



Possible Work Products

« conference: LP-based Pareto front (WCO 2013, published, best paper)

« book chapter: LP-based Pareto front book chapter (Springer, accepted)

« conference: maximum profit scheduling (ExtremeGreen 2014 during CCGrid, accepted)

« journal: LP-based scheduling (Pareto, Min-Min, more systems) (IEEE Transactions PDS, nearly complete)
« conference: optimal capacity planning for HPC

« conference: reliability

« journal: LPAS, LP batch, and others online pull-based scheduling

« conference: ETC estimation via instrumented tasks

« conference: stochastic ETC/APC model

« journal: stochastic ETC/APC and heterogeneity measures
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Questions?



Goals

« publish unfinished work
« understand relationships between different approaches (tie together)
« expand applicability of research
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Current Research

« journal for the WCO work
o review and submit (and repeat)
« optimal capacity planning
o ties back into steady-state scheduling work
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Incomplete Research

Profit

« online (or steady-state) max-profit scheduling algorithm

« simulations to evaluate performance

« experiment with the non-energy costs and power constraint
« simulate dynamic price and energy costs



Incomplete Research

« reliability as a third objective
o subspace method to sweep the free variables in weighted sum
o resolve other issues relating to >2D Pareto front
« online pull-based (on-demand) scheduling
« improvements to LPAS for steady-state scheduling
o recreated all (and more) of my qualifier paper's work
o developed a randomized LPAS algorithm that out performs LPAS and MCT
o needs more testing and development
« estimate ETC using current and prior task's execution data
o feedback of the estimated remaining time to compute
o number of completed ticks (N/M)
o profile common computational benchmarks to demonstrate applicability
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Incomplete Research

Stochastic ETC (and APC)

goal: minimal model that represents the key properties of a system (i.e. has TMA)

model a machine as "resources" (CPU, 10 bandwidth)

model a task as "consuming"” or "requiring" differing amounts of "resources”

derive the probability distribution for ETC for a given task and machine (really need the joint distribution)
evaluate (statistical) heterogeneity measures against this model

generate test systems from model



Incomplete Research

Heterogeneity Measures

« prove/disprove "desirable" properties for each measure
« develop applicable task/machine affinity measure
« relate these measures back to scheduling algorithm performance
« parameterized tasks
o infinite number of task types
o need a joint PDF over parameter and ETC
o heterogeneity measures via "WSD" or "WSD log" are still possible



Proposed Timeline

e Spring 2014

o submit LP-scheduling journal paper

o complete research on capacity planning
« Summer 2014

o reliability

o online pull-based scheduling with the LP
« Fall/Spring 2014

o stochastic ETC

o heterogeneity measures
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Possible Work Products

« conference: LP-based Pareto front (WCO 2013, published, best paper)

« book chapter: LP-based Pareto front book chapter (Springer, accepted)

« conference: maximum profit scheduling (ExtremeGreen 2014 during CCGrid, accepted)

« journal: LP-based scheduling (Pareto, Min-Min, more systems) (IEEE Transactions PDS, nearly complete)
« conference: optimal capacity planning for HPC

« conference: reliability

« journal: LPAS, LP batch, and others online pull-based scheduling

« conference: ETC estimation via instrumented tasks

« conference: stochastic ETC/APC model

« journal: stochastic ETC/APC and heterogeneity measures
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Questions?



