
Ph.D Defense: Energy- and Thermal-aware Resource Management
for Heterogeneous High-performance Computing Systems

Department of Electrical & Computer Engineering

Colorado State University

Fort Collins, Colorado, USA

Mark Oxley

January 27, 2016

Presentation Outline

Introduction and Overview

Energy-aware Robust Resource Allocation

Rate-based Power and Thermal-aware Resource Allocation

Energy and Co-location Aware Geographical Load Distribution

Online Energy and Thermal-aware Resource Allocation

Summary of Contributions

2

Motivation for Energy-aware Computing

increasing processing speed of high-performance computing (HPC)
systems important for a great number of fields

rapidly comprehend biological processes through protein-folding

decrease time required to accurately predict weather patterns

better/faster optimization of manufacturing processes

enhancing performance increasingly difficult as energy consumption increases

highest-performing supercomputer on Top500 list is Tianhe-2 system (China)

peak power consumption of 17.8 MW (approx. $17 million per year in energy)

extrapolating to exascale results in $500 million per year ($1.37 million per day)

2013 - U.S. data centers consumed ~$9.0 billion in energy

equivalent energy-cost of quadruple that for all Colorado households

projected 2020 – U.S. data centers to consume ~$13.7 billion in energy

energy-aware management of HPC systems is of paramount importance!

3

Energy vs. Performance Trade-offs in HPC

CPU level

dynamic voltage and frequency scaling (DVFS)

can reduce core voltage and clock frequency to reduce CPU power
at cost of reducing performance (can save energy)

“dark silicon”

deactivating cores to increase clock frequency in others

node level

heterogeneity

some high performance/high energy nodes

some low performance/low energy nodes

HPC systems add more nodes over time, resulting in heterogeneity

facility level

cooling infrastructure – can use as much energy as compute nodes

must keep facility cool enough to prevent damage to components

colder facility = high air conditioning energy consumptionhh aaaiiiiiiiiiiiiiiiiiiiiiiiiiiirrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr ccccccccccccccccccccccccccccccccccccooooooooooooooooooooooo

4

Energy-aware Resource Management

resource management – in context of HPC, refers to process of assigning
and scheduling workloads to resources (e.g., compute nodes)

intelligent energy-aware resource management
exploits performance vs. energy trade-offs

heterogeneous resources

DVFS configuration of compute cores to performance states (P-states)

P-states are discrete DVFS operating points
(clock frequency vs. voltage)

cooling system

the research presented today contributes novel ideas to the field of resource
management strategies for heterogeneous HPC systems

proposes energy- and thermal-aware resource management techniques
to help fulfill the needs of future HPC systems

5

Presentation Outline

Introduction and Overview

Energy-aware Robust Resource Allocation

Rate-based Power and Thermal-aware Resource Allocation

Energy and Co-location Aware Geographical Load Distribution

Online Energy and Thermal-aware Resource Allocation

Summary of Contributions

REFERENCES:

Mark A. Oxley, Sudeep Pasricha, Howard Jay Siegel, and Anthony A. Maciejewski, “Energy and
Deadline Constrained Robust Stochastic Static Resource Allocation,” The First Workshop on

Power and Energy Aspects of Computation (PEAC 2013), pp. 761-771, Sep. 2013.

Mark A. Oxley, Sudeep Pasricha, Anthony A. Maciejewski, Howard Jay Siegel, Jonathan
Apodaca, Dalton Young, Luis Briceño, Jay Smith, Shirish Bahirat, Bhavesh Khemka,
Adrian Ramirez, and Yong Zou, “Makespan and Energy Robust Stochastic Static Resource
Allocation of a Bag-of-Tasks to a Heterogeneous Computing System,” IEEE Trans. Parallel and

Distributed Systems, Vol. 26, No. 10, pp. 2791-2805, Oct. 2015.

6

Architecture Model

collection of heterogeneous compute nodes

each compute node contains homogeneous multicore processors

each multicore processor contains homogeneous cores

cores DVFS-enabled, allowing cores to operate in individual P-states

7

Problem Statement

collection of independent tasks

all tasks known a priori

“bag-of-tasks” model

common deadline and energy budget to complete all tasks

a task’s execution time is uncertain

important to account for this uncertainty

definitions

makespan-robustness – probability of finishing all tasks by deadline

energy-robustness – probability of meeting the energy budget

goals of resource management techniques:

problem 1

maximize makespan-robustness

obey energy-robustness constraint

problem 2

maximize energy-robustness

obey makespan-robustness constraint

8

Heuristics Outline

resource allocation (solution) defined as a
complete allocation of tasks to cores and P-states

proposed heuristics

greedy

Minimum Expected Energy

Min-Min Completion Time

Min-Min Balance

search techniques

Tabu Search

Genetic Algorithm (GA)

Genetic Algorithm with
Local Search (GALS)

9

Search Techniques Overview

Tabu Search: guided search using “memory”
to avoid regions of solution space previously searched

uses combination of long-hops and short-hops to search solution space

long-hops – large jumps in the solution space

short-hops – small jumps in the solution space

avoids “Tabu” regions by keeping track of long-hop areas (memory) and
jumping to new areas if region had already been searched

GA: based on steady-state Genitor algorithm

chromosome represents possible resource allocation

gene in chromosome represents mapping of task to core and P-state

uses selection, crossover, and mutation to mimic the evolutionary
process that breeds “better” solutions over a number of generations

GALS: enhances genetic algorithm with short-hops (local search)
from Tabu Search heuristic

10

Constrained Optimization

Tabu Search and GAs typically designed to
optimize for unconstrained objective

several constraint-handling methods adapted from literature used in
combination with proposed heuristics to help determine “better” solutions

static penalized objective function

penalize infeasible solutions based on distance from constraint

penalty weight remains constant (static) over course of search

dynamic penalized objective function

penalize infeasible solutions based on distance from constraint

penalty weight changes (dynamic) over course of search

superiority of feasible solutions

any feasible solution better than any infeasible solution

if both solutions infeasible, superiority given to one closest to feasibility

if both solutions feasible, superiority given to one with greatest objective

11

Results – Comparison of Techniques

results shown for maximizing makespan-robustness
under energy-robustness constraint

Tabu Search heuristic in combination with
dynamic penalty function provided best results

penalty functions can sometimes prefer infeasible solutions with large
objective value over feasible solutions with small objective value

allows exploration into infeasible region,
giving better feasible solution in the end

all heuristics/constrained optimization methods
met energy-robustness constraint

12

Summary of Contributions

design and analyses of resource management techniques for

maximizing makespan-robustness with energy-robustness constraint

maximizing energy-robustness with makespan-robustness constraint

enhanced system model over prior work that considers

real system specifications for CPU voltage and frequency of P-states

obtained from SPECpower data

overhead power of server components (other than CPU)

workload with tasks of varying degrees of memory-intensity

analysis of effectiveness of techniques on two different-sized platforms

sensitivity analysis of our techniques against degree of heterogeneity

13

Presentation Outline

Introduction and Overview

Energy-aware Robust Resource Allocation

Rate-based Power and Thermal-aware Resource Allocation

Energy and Co-location Aware Geographical Load Distribution

Online Energy and Thermal-aware Resource Allocation

Summary of Contributions

Mark A. Oxley, Eric Jonardi, Sudeep Pasricha, Anthony A. Maciejewski, Gregory A. Koenig, and Howard Jay
Siegel, “Thermal, Power, and Co-location Aware Resource Allocation in Heterogeneous High Performance
Computing Systems,” 5th International Green Computing Conference (IGCC 2014), 10 pp., Nov. 2014.

Mark A. Oxley, Eric Jonardi, Sudeep Pasricha, Anthony A. Maciejewski, Gregory A. Koenig, Patrick J. Burns,
and Howard Jay Siegel, “Rate-based Thermal, Power, and Co-location Aware Resource Management for
Heterogeneous High Performance Computing Systems,” 14 pp., under review.

14

Thermal-Aware Computing

in some cases,~50% total HPC energy costs from cooling infrastructure

power consumed by compute nodes dissipated as heat that must be
removed by computer room air conditioning (CRAC) units

can save significant energy by raising thermostat temperature of CRAC

what temperature can we set CRAC to without damaging components?

redline temperature guidelines exist for compute nodes

thermal-aware computing important in energy-aware computing!
15

cold air supply

hot air return

racks of compute nodes

computer room air

conditioner (CRAC)

energy consideration important, but still have to do the work

in many systems, some tasks more important than others

want to give those tasks priority

tasks have varying reward earned for completing them (priority)

performance goal:

maximize reward earned

multicore systems experience co-location interference

performance degradation from cores competing for shared resources

shared resources can be last-level cache, main memory (DRAM), etc.

slower execution of tasks = less reward

Performance in Multicore HPC Systems

16

core 1 core 2 core 3 core 4

Problem Statement

a heterogeneous HPC system with a dynamic workload in steady-state

task arrival rates, temperatures at compute nodes,
and power dissipation are in steady-state

objective: given a set of tasks with reward for completing them, design resource
management techniques to assign a workload to HPC compute nodes that

maximize total reward earned (performance)

subject to

(a) power budget

– do not want to spend more than budgeted for

(b) thermal constraints

– compute nodes cannot exceed safe operating temperature threshold

17

HPC Configuration

compute node racks arranged in hot aisle/cold aisle fashion

computer room A/C (CRAC)

draws in hot air, expels cold air
into a hollow floor chamber

heterogeneous across compute nodes

e.g., different CPUs, main memory,
fans, number of cores

complicated air flow patterns, heat
recirculates back to compute nodes

power/thermal aware HPC models

heterogeneous compute nodes

power and performance

workload

arrival rates, reward

thermal conditions

heat recirculation, CRAC power
18

Overview of HPC Facility Power Dissipation Models

power consumed by facility consists of both
(a) compute system, and (b) cooling system

(a) power consumed by a node consists of

overhead power (constant)

e.g., main memory, disks, fans, network interface card

power consumed by all cores within that node

cores are DVFS-enabled, allowing P-state functionality

(b) power consumed by CRAC units function of

constants

density of air, specific heat capacity of air, air flow rate of CRAC

variables

inlet and outlet temperatures of CRAC unit (amount of heat removed)
and efficiency of CRAC unit (more efficient at higher thermostat settings)

19

Workload Model

set of T task types, each task type i defined by

i – arrival rate for tasks of type i (tasks per second)

ri – reward for completing task of type i

priority level for different task types

estimated computation speeds (ECS) known for
task type i on cores in node type j in P-state p, ECS(i,j,p)

tasks per second a node type can execute tasks (reciprocal of execution time)

20

P-state PK node type 1 node type 2 node type 3

task type 1 0.05

task type 2

task type 3

task type 4

P-state P1 node type 1 node type 2 node type 3

task type 1 0.05

task type 2

task type 3

task type 4

P-state P0 node type 1 node type 2 node type 3

task type 1 0.05 0.07 0.03

task type 2 0.04 0.06 0.05

task type 3 0.10 0.08 0.11

task type 4 0.01 0.02 0.02

example ECS matrix (tasks per second)

.
.
.

i ri

task type 1 10 5

task type 2 5 4

task type 3 20 10

task type 4 15 1

example workload characteristics

Performance Measure – Reward Rate

for each task type i and core k, we want to assign (decision variables)

DF(i,k) – desired fraction of time core k
spends executing tasks of type i

PS(i,k) – P-state of core k when executing tasks of type i

another decision variable considered is TCout(j),
the thermostat temperature of CRAC unit j

define CT(k) as the compute node type to which core k belongs

ER(i,k) is the execution rate of tasks of type i on core k

in steady-state, maximizing reward equivalent to maximizing reward rate (RR)

given NC total cores in the system, total reward rate is

)),(),(,(•),(=),(kiPSkCTiECSkiDFkiER

21

Co-Location Interference

cores within a multicore processor
often share last-level cache (LLC) memory

LLC is typically L3, L1 and L2 are private within cores (not shared)

memory-intensive workloads compete for resources when
co-located on cores that share cache memory (co-location interference)

memory-intensity defined as defined the ratio of last-level
cache misses to the total number of instructions executed

tasks that access memory often put more load on shared resource

co-location interference can cause severe performance degradation

problem compounds for massively multi-core architectures

22

execution time of TT1:
alone: 10 seconds
with TT2: 11 seconds

 with TT3: 20 seconds

Co-Location Interference – Example

intelligent resource allocation can mitigate such effects

intuition: assign tasks with high memory-intensity with tasks of
low memory-intensity at same time on cores that share LLC

avoid executing highly memory-intensive workloads at same time

ex. task type 1 is highly memory-intensive, and task type 2 is not memory-intensive

little contention for memory resources

task type 3 is highly memory-intensive, causing heavy contention

execution rates (and therefore reward rate) affected by co-location interference

we employ models calculated from real data to calculate execution rates
when under effects of co-location interference

23

task type 1 task type 2 task type 3

HPC Thermal Modeling (Brief)

use concept of thermal influence indices to characterize
relationship between heat sources and sinks

estimates recirculation of heat between compute nodes and CRAC units

e.g., thermal index aij represents percentage
of heat transferred from node i to node j

derived using computational fluid dynamics (CFD) simulations

obtain matrix of thermal indices (aij values)

can then predict temperatures at all inlets
and outlets for a given resource allocation

check if thermal constraints violated

24

Framework for Power, Performance,

and Thermal Aware Resource Management

25

oobjectiveve

maximize reward ratetete

constraintsts

total power ertotal poweer
(compute and cooling)g)

Models

temperature thresholdsds

workloadadad

system performancece

compute powerer

cooling powerer

thermalal

Resource Management
Algorithms

Resource M
Algor

solutionsolution
tasksk-

s
k-to

sos
oto-

utionluolso
oo-core desired tastasskskkk ttoototooooo ore desore desirecococc

fractions of time
d diredired

memections
DF

ons
DFDF(

ns
FF i

ns o
FF((,
s o
((ii k

oo
ii kk)

mtimf tf ofo
kkkkkk))))DDFFF((ii kkkk))

tasksksk-kk-tooootototo-
FF((ii,,kkDFFDD

oooooo-core P
kkk

PPPP-
k))
PPPP-statesesesotooo c

PS

coc
PSPSP (

oreo
SSS((i,k

e e
,kki,i)

stssPP
kkkkkk))(,,,)(,,,)

CRAC thermostat RAC therm
settings

smos
gsgssettin

TC

etti
CCout

tintin
ou (
nn

out j

ngnngn
outout(()

ggsgg
((jjjjj((())

Resource Management Algorithms

designed three techniques to solve problem

greedy heuristic

assigns task types to the most “efficient” node type and P-state pairing
(defined by ratio of computation speed to power dissipated)

genetic algorithm (GA)

for this problem, designed

– custom chromosome structure to capture decision variables

– crossover and mutation operators for breeding

– local search technique performed on
offspring to guarantee constraints

non-linear programming approach (NLP)

MINLP – NP-Hard optimization

mixed-integer: discrete P-state means integer decision variables

nonlinear: power consumed by a CRAC unit non-linear with respect to the
CRAC thermostat temperature decision variable

requires relaxations to be solved in reasonable amount of time

26

Simulation Setup

two platform sizes

small – one CRAC, 1,080 compute nodes

large – two CRAC units, 4,320 compute nodes

three heterogeneous node types

Lenovo TS140 (4-core), HP Z600 (6-core), and HP Z820 (12-core)

workload consists of benchmarks from PARSEC suite

computation speeds, power consumption, co-location interference model
coefficients obtained from running benchmarks on node types

48 trials (results show average with 95% confidence intervals)

arrival rates and reward earned from task types varies among trials

27

= 36 nodes

Results — Workload Experiments (Small Platform)

examined effects that different workload environments
have on our resource management techniques

(a) CPU intensive workload (low memory intensity)
(b) memory intensive workload
(c) hybrid workload (mix of CPU intensive and memory intensive tasks)

reward rate normalized with maximum reward rate obtainable (left figure)
RR – reward rate (considers co-location interference)
NERR – naïve estimated reward rate (does not consider co-location interference)

NLP algorithm slightly outperforms other heuristics at low memory-intensities,
more pronounced at higher memory-intensities

may be more worthwhile to just employ simple greedy heuristic when system
experiences little interference, or if results needed quickly

considering co-location interference in objective significant with high memory-intensity

28

Results — Scalability (Hybrid Workload)

an example of some pros/cons to optimization techniques

figure (a) shows smaller platform size (1,080 node system),
figure (b) shows larger platform size (4,320 node system)

red text shows execution time of techniques

NLP can achieve best results, but slow

algorithm takes 4 hours to run on small problem,
unable to finish within two weeks on large platform size (excluded)

greedy heuristic desirable if results needed rapidly (small steady-state intervals)

29

Conclusions and Contributions

designed and analyzed new performance measure to capture
co-location interference effects in reward rate calculation

designed new techniques for power/thermal-aware resource allocation

greedy technique

GA

NLP

analyses of problems and solutions associated with co-location and
thermal-aware resource management in different environments

different workload types

isolation of cold-aisles (in thesis)

thermal and power constraint sensitivity analyses (in thesis)

NLP gives superior results, but can take long time to get solutions

may not matter if steady-state of system does not change often

e.g., if steady-state changes week-to-week,
four hours to obtain solution is reasonable

if steady-state changes every hour, consider using greedy technique

30

Presentation Outline

Introduction and Overview

Energy-aware Robust Resource Allocation

Steady-state Power and Thermal-aware Resource Allocation

Energy and Co-location Aware Geographical Load Distribution

Online Energy and Thermal-aware Resource Allocation

Summary of Contributions

31

REFERENCE:

Eric Jonardi, Mark A. Oxley, Sudeep Pasricha, Anthony A. Maciejewski, and Howard Jay Siegel,
“Energy Cost Optimization for Geographically Distributed Heterogeneous Data Centers,”
Workshop on Energy-efficient Networks of Computers (E2NC 2015), 6 pp., Dec. 2015.

Geographically Distributed Data Centers

32

distributing data centers geographically is
becoming popular among data center operators

can reduce operating expenditures by exploiting time-of-use (TOU) pricing

examples

Google – 14 major data center locations

Amazon Web Services – 30 major data center locations

Time-of-Use Electricity Pricing

electricity prices vary based on time of day

higher demand during business hours = higher prices

geo-distributed data centers can be located in different time zones

can exploit TOU pricing, e.g., 12 PM in New York when it’s 9 AM in California

intuitive money savings: allocate/migrate workload to
New York or California based on current electricity prices

33

Problem Statement

study assumes system is undersubscribed

enough computing resources available across
data centers to service all tasks in workload

we consider two-level hierarchy for load distribution

geo-distributed level

decide amount and type of workload
that is distributed to each data center

goal: exploit TOU pricing and renewable energy available at data centers

data center level

maps workload assigned to it from
geo-distributed level to compute cores

goal: exploit heterogeneity (different compute node types) and DVFS P-states

objective: for a set of geographically distributed data centers,
design geographical load distribution techniques that

minimize total monetary energy costs

ensure all tasks complete

34

Resource Management Heuristics

compare three new heuristics with prior work [Goudarzi, Hadi et al., CLOUD ‘13]

two new heuristics based on force directed load distribution (FDLD)

improves prior work based on FDLD by considering co-location interference to
varying degrees of accuracy when making decisions

one new heuristic based on a genetic algorithm load distribution (GALD)
(a) FDLD using simple overprovisioning (FDLD-SO)

based on prior work [Goudarzi, Hadi et al., CLOUD ‘13]
accounts for interference by overprovisioning compute resources to all task types

(b) FDLD using task-aware overprovisioning (FDLD-TAO)
uses basic knowledge of task type memory intensity to overprovision for interference

(c) FDLD using full co-location knowledge (FDLD-CL)
uses full knowledge of co-location interference model to overprovision for interference

(d) GALD using full co-location knowledge (GALD-CL)

uses full knowledge of co-location interference model to overprovision for interference
can also make DVFS decisions

35

H. Goudarzi and M. Pedram, “Geographical load balancing for online service
applications in distributed datacenters,” in CLOUD ’13, June 2013, pp. 351–358.

Cost Comparison of Heuristics

examined energy cost of four data center group using
different load distribution techniques over 24-hour period

GALD-CL outperforms all other heuristics

GALD-CL can make DVFS decisions

FDLD can be susceptible to local minima

of the FDLD variants, FDLD-CL does best on average

uses co-location interference models to more-accurately predict performance
degradation instead of simply over-provisioning number of cores

36

Conclusions and Contributions

proposed a hierarchical framework to minimize energy cost
for geographically distributed data centers

holistic optimization important for green computing

considers TOU pricing and renewable power to minimize energy costs

designed three new heuristics for geo-distributed resource management

FDLD-CL resulted in 10% lower total cost than prior work

GALD-CL resulted in 37% lower cost than prior work

37

Presentation Outline

Introduction and Overview

Energy-aware Robust Resource Allocation

Steady-state Power and Thermal-aware Resource Allocation

Energy and Co-location Aware Geographical Load Distribution

Online Energy and Thermal-aware Resource Allocation

Summary of Contributions

38

REFERENCE:

Mark A. Oxley, Sudeep Pasricha, Anthony A. Maciejewski, Howard Jay Siegel, and Patrick J.
Burns, “Online Resource Management in Thermal and Energy Constrained Heterogeneous High
Performance Computing Systems,” 12 pp., Jan. 2016, under review.

Problem Statement

given a set of dynamically arriving tasks that are unknown until arrival,
design resource management techniques for HPC that

objective: maximize reward earned for completing tasks
 by their individual deadlines

subject to:

(hard) daily energy budget constraint

(assume facility discontinues operation until next period of time)

(soft) outlet temperatures of compute nodes cannot exceed a threshold
(if a compute node exceeds threshold, all cores on node are throttled)

new considerations

online resource management

requires fast mapping decisions

floor vent opening control

uses solutions generated offline
to assist online mapper

39

Overview of Thermal Management Strategies

brief description of thermal management strategies in HPC

overcool

operate cooling system at low temperature at all times to ensure reliability

reactive throttling

operate cooling system at higher temperature at all times, react to
overheating compute nodes by throttling cores using DVFS

proactive (predictive)

predict thermal implications of assigning tasks to different cores,
and set CRAC thermostat accordingly

40

advantages disadvantages

overcool

reactive throttling

proactive

simple, guarantees reliability,
 avoids unexpected throttling

simple, saves cooling energy

saves cooling energy,
 avoids unexpected throttling

uses significant amount
 of cooling energy

unexpected throttling can lead
 to missed task deadlines

requires complicated air flow
 models, time-consuming decisions

Challenges and Proposed Solution

proactive thermal management offers significant benefits in reducing cooling
energy and avoiding unexpected throttling, at cost of complexity and time

must consult thermal model to obtain thermal implications of
assigning tasks to different cores around the facility

fast mapping decisions desired for online strategies

proposed solution: offline-assisted online resource manager

determine (offline) estimates for

where to place tasks in facility

what temperature to set CRAC thermostat

generate a large number of these offline estimates (called templates)

have templates for several varying workload and facility parameters

use these offline-generated templates to assist online mapper by

reducing search space through limiting where tasks can be placed

selecting a CRAC thermostat setting that is appropriate for the limited
number of cores that are allowed to execute tasks

41

Resource Management Framework

42

numerous templates generated offline and stored in template database

Resource Management Framework

43

numerous templates generated offline and stored in template database

resource manager handles two types of events

mapping event – uses information about dynamically arriving tasks to decide
which cores execute tasks, and P-states of those cores

templates provide allowable core vector (cores that are allowed to execute tasks)

Resource Management Framework

44

numerous templates generated offline and stored in template database

resource manager handles two types of events

mapping event – uses information about dynamically arriving tasks to decide
which cores execute tasks, and P-states of those cores

thermal management event – decides CRAC thermostat settings
 and floor vent opening configurations

templates provide CRAC thermostat settings and floor vent openings

Templates Overview

goal of templates is to assist online resource manager
in making proactive thermal-aware decisions by providing

set of allowable cores that online mapping heuristics
can consider when mapping tasks

CRAC outlet temperatures and floor vent openings

template generation is performed offline to create a
number of templates that are stored in a database

each template reflects a different steady-state solution for
various dynamic states of the HPC facility and workload

optimization performed using similar method to NLP
from rate-based thermal-aware research

during runtime, proposed framework chooses template
based on state of data center to assist resource manager

45

Templates – Input Parameters

(a) weighted workload arrival rate

one parameter that represents average of how much “work” is arriving

(b) number of cores already executing tasks in each quadrant of facility

represents current state of facility allocation

(c) power constraint

represents energy left in budget vs. time left in day (energy = power x time)

ex. if abundance of energy left in budget but day is about to end,
choose template that uses a large steady-state power constraint

would give larger number of allowable cores with higher power budget

parameters discretized into logical set of values to keep the number of templates
that have to be generated to a reasonable number

number of templates expands exponentially with respect
to number of input parameters

46

Combining Dynamic Scheduler with Templates

at a task mapping event (e.g., every 60 seconds), choose template using
arrival rates of tasks over past 60 seconds to obtain allowable core vector

number of cores in each node that are allowed to execute tasks

at a thermal management event (e.g., every five minutes), choose template
using arrival rates of tasks over past five minutes to get CRAC outlet
temperatures and floor vent opening combinations

provides good estimate for amount of cooling required to
prevent nodes from reaching threshold temperature

47

Comparison Mapping Techniques

(a) consolidation strategy
assigns unmapped tasks in arbitrary order to a core within the system that is not
currently executing tasks (ties solved by assigning task to first core in list)
cores are ordered in list starting with all cores in quadrant 1(from left-to-right by
rack, and from bottom node to top node in each rack), then quadrant 2, etc.

(b) load balancing by node (LBBN)
assigns unmapped tasks in arbitrary order to node that is currently executing the
least number of tasks (ties solved by assigning task to first node in list)
random core within that node selected to execute task

(c) load balancing by rack (LBBR)
similar to LBBN, except to rack that is currently executing least number of tasks
random node/core within rack selected to execute task

48

Greedy Deadline-aware Online Mapping Heuristic

(1) drop all tasks in unmapped batch that cannot meet deadline

(2) obtain allowable core vector from template database

(3) get set of idle allowable cores

set of allowable cores that are not currently executing tasks

(4) sort unmapped batch of tasks in descending order by reward

(5) while unmapped batch is not empty and set of idle allowable cores not empty

select first task in unmapped batch

find node type/P-state combination (from list of idle allowable cores)

that gives lowest energy and still meets deadline

assign task to that core and P-state

remove task from unmapped batch,

remove core from idle allowable core set

49

Thermal Management Techniques

thermal management techniques provide CRAC thermostat temperatures
and floor vent opening control combinations

floor vents can be either open, partially open, or closed configuration

overcooling

set CRAC thermostat temperature to low enough temperature that
compute nodes do not overheat under high-heat scenarios (22 C)

floor vents set to open configuration

throttling

set CRAC to a constant higher temperature (28 C) and
allow throttling mechanism to manage overheating nodes

floor vents set to open configuration

templates

obtain CRAC thermostat settings and floor vent
opening configurations from template database

50

Studied Workloads Patterns

examined different arrival patterns

(a) constant arrival rate

tasks come into the system at
a constant arrival rate

(b) bursty arrival rate

periods of high traffic followed
by periods of low traffic

(c) sinusoidal arrival rate

more tasks arrive during day,
slowdown at night

obtained from parallel
workload archives

51

Simulation Setup

one CRAC unit, 30 server racks with 36 compute nodes per rack

total of 1,080 compute nodes

three heterogeneous node types

Lenovo TS140 (4-core), HP Z600 (6-core), and HP Z820 (12-core)

7,160 total cores

workload consists of benchmarks from PARSEC suite

execution times and power consumptions
obtained from running benchmarks on node types

const = 6.0, low = 3.0, and high = 9.0 – arrive according to Poisson process

deadlines set to average execution time for that task type
across all node types in Pmid P-state

12 trials (results show average with 95% confidence intervals)

each trial varies in actual arrival times of tasks and
task types of those tasks

52

= 36 nodes

Results – Constant Arrival Pattern

compared reward earned (left) and energy consumed (right)
using several energy budget values

proposed greedy w/ templates thermal management significantly outperforms
other techniques at smaller energy budgets

exploits DVFS, reduces cooling energy consumed (compared to throttling)

greedy w/ templates makes better use of that energy

while earning more reward than other techniques53

Results – Bursty Arrival Pattern

similar results as constant arrival pattern
consolidation technique analysis

overcooling technique significantly outperforms throttling
consolidation of tasks results in hotspots, causes large number of missed
deadlines due to frequent throttling when operating facility at higher temperature

LBBN and LBBR analysis
throttling technique significantly outperforms overcooling
spreading tasks spatially through facility reduces hotspots
allows CRACs to operate at higher temperature
without frequently inducing throttling mechanisms

more energy can be used for computing and earning reward
54

Results – Sinusoidal Arrival Pattern

uses real trace from MetaCentrum2 HPC system

significantly lower arrival rate compared to other workload arrival patterns

given enough energy to operate facility for entire day, all techniques earn all reward

throttling better than overcooling – not a large enough number of tasks to generate
significant heat and trigger throttling mechanisms

can save energy and still earn all reward when using proposed
greedy mapping technique with templates thermal management

55

Results – Analysis Over Time (Bursty Workload)

compared three thermal management techniques when
using greedy mapping heuristic (energy budget set to 12,000 MJ)
power dissipation increases and decreases with arrival rate

more tasks being executed = more compute power dissipated
more heat = more cooling power dissipated (efficiency of CRAC)

power dissipation comparison: overcooling > throttling > templates
all available energy used up at different times (19.5 hours, 23.5 hours, 24 hours)56

Conclusions and Contributions

studied problem of online energy- and thermal-aware resource management

maximize reward collected under energy constraint

proposed novel offline-assisted online resource management framework

greedy online mapping heuristic

offline optimization method for generating templates

large number of templates generated offline and stored in database for
online resource manager to access and obtain thermal information

number of cores in each node that are allowed to execute tasks

CRAC thermostat temperature

floor vent opening configurations

provided useful analysis of our proposed approach under
different workload environments and energy budget values

including comparison with three mapping schemes
and two thermal management strategies from prior work

57

Presentation Outline

Introduction and Overview

Energy-aware Robust Resource Allocation

Steady-state Power and Thermal-aware Resource Allocation

Energy and Co-location Aware Geographical Load Distribution

Online Energy and Thermal-aware Resource Allocation

Summary of Contributions

58

Thesis Contributions

extensive modeling work for power dissipation, P-states,
temperatures, and workloads for today’s heterogeneous HPC facilities

design and analysis of energy-aware resource management techniques
for workloads with uncertain task execution times

design and analysis of power and thermal-aware resource management techniques
to avoid co-location interference in a rate-based problem

provided assistance for geo-distributed load distribution problem to minimize
monetary energy cost to execute workloads

real-time energy and thermal-aware resource management framework

offline-assisted online technique

greatly improved amount of reward gained within energy budget over prior work

addressed challenges (e.g., prohibitively high cost of energy consumption in HPC
systems) and examined trade-offs in performance and energy for HPC systems

proposed solutions in resource management domain that are robust, thermal-
aware, and energy-aware that would be of great use to HPC community

59

Questions and Discussion

60

