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Abstract 

 

 Soil characteristics are critical variables in various settings from vehicle mobility and terrain 

trafficability to crop viability. Predicting these characteristics has become more important as climate and 

weather patterns change. Two defining aspects of soil characterization are soil moisture and soil 

strength. Methods have been proposed to estimate both and are being tested at Maxwell Ranch, 

however, these methods depend upon soil texture, which is difficult to observe and estimate across 

highly variable regions. The study area was Maxwell Ranch in North-Central Colorado, a highly 

topographically variable region. Lab analysis determined soil textures and their respective classifications 

from collected soil samples. The resulting data was analyzed via linear regressions and multiple linear 

regressions. The objective of this report is to assess the predictability of soil texture based on 

relationships to vegetation and topography in a highly variable region. Several relationships between 

soil textures, topography, and vegetation were observed. The natural log of contributing area was 

positively correlated and slope was negatively correlated with percent fines across most regions. 

Eastness was positively correlated and summer sun exposure was negatively correlated with particle 

diameter percentiles and percent gravel. Vegetation type played a significant role in correlation, with 

grass and shrub-type vegetation correlating while tree-type vegetation did not. Multiple linear 

regression weighed slope, curvature, Eastness, winter sun exposure, and vegetation the most heavily 

across most regions. 

 

  



Introduction 

 

 Assessing vehicle mobility is a challenge in any application requiring a vehicle to traverse natural 

terrain. Evaluating and predicting that trafficability is crucial to agriculture, forestry, and military 

applications. Military applications have driven the need for further evaluation, as concerns about terrain 

trafficability led to the first formal mobility analyses after soft, wet soils caused vehicle immobilization in 

World War II (Rula and Nuttall, 1971). The U.S. Army and the North Atlantic Treaty Organization (NATO) 

developed several iterations of a military mobility model dubbed the NATO Reference Mobility Model 

(NRMM) to assist in military operations planning. The most recent iteration is termed the Next-

Generation NATO Reference Mobility Model (NG-NRMM) and updated equations and methods to 

incorporate computer technology and model advancements (Bradbury et al., 2016). Within all these 

models, three major concepts are involved in the study of terrain trafficability: the vehicle, the driver, 

and the terrain (Rula and Nuttall, 1971). Within terrain, slope, soil texture, general vegetative cover, soil 

moisture content, soil strength, surface roughness, soil types and distributions, and other obstacles 

(e.g., vegetation, water) are analyzed to determine optimal routing and attainable speeds. Soil strength 

is a critical variable in the evaluation and prediction of off-road vehicle mobility. Soil strength is 

controlled by several soil characteristics, including texture (percentage of sand, silt, and clay), density, 

water content, and organic matter content. Therefore, accurately characterizing soil textures is essential 

to vehicle mobility analysis. 

 Determining soil textures comes with considerable difficulty. They are the result of a complex 

web of environmental and management factors that can form seemingly random outcomes. Within 

environmental factors alone come several reasons for the difficulty of determination: complexity, 

variability, scale, measurement methods, and soil horizons (Channarayappa, 2019). Soil is a complex, 

three-dimensional matrix of mineral particles, organic matter, air, and water, and can be influenced by 

factors such as climate, geology, topography, vegetation, and human activities. Variability is highly 

dependent on location and scale, as soil textures vary significantly across short extents, with 30% of 

spatial variability occurring under 1 km, and 50% occurring under 10 km (Paterson et al., 2018). Soil 

textures are typically determined through laboratory analysis, with different methods potentially 

yielding different results, making comparing data from different studies challenging. Soil horizons are 

the different layers within soils, which can have drastically different properties (e.g., the texture of 

topsoil may differ from the texture of subsoil due to variations in organic matter and mineral content) 



(Channarayappa, 2019). These variables make soil texture determination difficult and warrant an 

investigation into the potential correlation between soil textures and their inputs.  

Remote sensing is defined as the acquisition and measurement of information with a device not 

in contact with features under surveillance (Khorram, 2012). This surveying and data collection 

technique typically refers to aircraft or satellite technologies that record electromagnetic energy. All 

objects have a particular emission and/or reflectance property, known as a spectral signature, and thus 

can be distinguished from other objects. The advantages of these systems are the ability to capture large 

areas with a single observation, a regular cycle of observation to observe changes, and precise 

geographic location mapping. Remote sensing data is generally input into Geographic Information 

Systems (GIS), which can be used to store, manipulate, and analyze the data (Khorram, 2012). For 

example, red and near-infrared light are wavelengths that can be measured and processed to estimate 

vegetation in a grid cell. Several advancements in these technologies and methodologies have made the 

prediction of soil textures more accurate if not infallible. Accurate is defined by comparison to in-situ 

field reference data (Khorram, 2012). Spectroscopy, the measurement and analysis of spectral 

signatures, has been shown to have accuracy and quality similar to traditional soil analytical methods 

when predicting soil physical and chemical properties (Kopačková et al., 2017, Pinheiro et al. 2017). 

However, while some properties were estimated with high accuracy, others were poorly predicted. A 

methodological advancement in the combination of hyperscale digital elevation mapping (DEM) and 

local morphometric variables (LMV) has led to even more accurate predictions of soil texture, but there 

are severe limitations around terrain variability (Riza et al., 2021). DEMs are models of various 

topographic attributes (e.g., slope), and hyperspectral DEMs use a wider spectrum of light compared to 

the standard DEMs assigning primary colors to each pixel. Local morphometric variables are 

mathematical parameters that describe the shape and characteristics of a particular location on the 

earth’s surface (Florinsky, 2016). These are commonly derived from DEMs and can be used to quantify 

local terrain features (e.g., slope, aspect, curvature, elevation). The combination of these as described 

by Riza et al. (2021) lead to improved soil texture prediction accuracy, but high levels of terrain 

variability cause a substantial decrease in that accuracy. The objective of this report is to determine the 

predictability of soil texture based on potential relationships to vegetation and topography in a highly 

variable region. 

 

  



Methodology 

 

 The research area for this report was Maxwell Ranch in North-Central Colorado as shown in Fig. 

(1.1). It is a 4000-hectare cattle ranch 53 km northwest of Fort Collins, Colorado. It is in the Laramie 

foothills at the transition between the mountains and plains, and has thin soils derived from weathered 

granite and sandstone and herbaceous vegetation with scattered shrubs (Mountain Mahogany) and 

trees (Ponderosa Pine). This ranch was chosen for its high variability in topography, vegetation, and 

geographic location. Eighty-six selected soil collection sites captured all unique soil topography and 

vegetation across the ranch. Site locations included both wet and dry peaks and valleys. Several streams 

run through the ranch, with several collection sites located near running water. The ranch was split into 

four segments (Fig. 1.2): Regions A (Fig. 1.3), B (Fig. 1.4), C (Fig 1.5), and D (Fig 1.6), with A and D 

bordering the north and south edges of the ranch respectively with B and C being central northeast and 

central southwest respectively (Fig. 1.2). Weather in the region differed from region to region. Wind 

generally blew out of the southwest, with some gusts coming from directly south or east. Storms also 

came out of the southwest, but cloud cover often split at the western border of regions C and D, 

circumventing the ranch entirely and leading to anecdotally drier land than the surrounding ranches. 

Region A’s vegetation consisted of shrubs and grasses, with several areas of deep, marshy grasses. 

Region B’s vegetation was unique amongst the regions, consisting mostly of tree cover with some thinly 

spread shrubs and two grassy, stream-adjacent sites. Region C’s vegetation was spread thinly across 

much of the region, with half the sites having sparse grasses, nearly half the sites having tree cover, and 

two points in deep, marshy grasses. Region D’s vegetation was mainly shrubs with two sites in deep 

grasses. Regions A and C were the only ones with multiple collection sites in marshy grasses. Regression 

analysis was conducted collectively over the entire ranch and subsequent analysis was performed over 

individual regions. Ranch-wide assessments give context and characterization for the whole area and 

can give insight into the accuracy of regional representation. Regional assessments capture and weigh 

variability on a smaller scale and can reveal relationships that may be dampened or nonexistent in the 

study of the entire area. Collectively, these assessments capture trends in variable predictability and 

characterizes these trends in terms of how broadly soil textures can be predicted. 



 

Fig. 1.1. Maxwell Ranch located in North-Central Colorado (Obtained from Sami Fischer and Matt 

Bullock) 

 

Fig. 1.2. Maxwell Ranch delineated into Regions A, B, C, and D (Obtained from Sami Fischer and Matt 

Bullock) 

 

  



   

Fig. 1.3. Region A on the Northern Edge of the Ranch 

   

Fig. 1.4. Region B on the Central Northeast Area of the Ranch 

   

Fig. 1.5. Region C on the Central Northwest Area of the Ranch 

   

Fig. 1.6. Region D on the Southern Edge of the Ranch 

 



Topographic characteristics and vegetation are independent variables and have a considerable 

impact on mobility. Within the broad scope of terrain characteristics provided by Rula and Nuttall 

(1971), this report will study the independent variables slope, contributing area, elevation, orientation, 

curvature, and general vegetative cover. Slope, contributing area, and elevation are pulled directly from 

the Terrain Analysis Using Digital Elevation Models (TauDEM). The values for these variables are given in 

the form of grid cells. Slope is evaluated in the direction of steepest descent and reported as the 

elevation change over the grid cell (Tarboton, 2004). Contributing area refers to the summation of a grid 

cell’s contribution and the contributions upslope that drain into it, resulting in the area draining to 

testing locations. The natural log of contributing area was used to normalize the data. Aspect is a GIS 

output raster derived from an input elevation raster and refers to the compass direction a slope is facing 

(Hofmann-Wellenhof et al., 2001, Eberly, 1991, Krakiwsky et al., 1971, Lancaster, 1986, Ligas, 2011). 

Orientation, while generally being interchangeable with aspect, will be defined in this report as a 

calculation involving both slope and aspect that results in a value describing how much exposure a slope 

has to a given direction, referred to as the “Northness” and “Eastness” of a given slope. For instance, if a 

given slope has a larger Northness value, it will be more exposed to the north. Northness is calculated: N 

= Slope * Cos (Aspect) and is related to the amount of shading or sun a point receives. Eastness is 

calculated: E = Slope * Sin (Aspect) and is related to wind exposure as the wind on the ranch generally 

comes from the west. Insolation refers to the quantity of solar radiation received on a surface, and its 

intensity is heavily influenced by aspect and slope (Lee, 1964). Potential Solar Radiation Index (PSRI) is 

the ratio of insolation on a sloping surface to the insolation on a horizontal surface at the same location 

and time. While its intended purpose is to be an estimator of evapotranspiration, it is a function of 

watershed orientation and thus an important measure of topography. Two dates were selected to 

maximize and minimize the angle of incident solar radiation in the 06/21/2022 Summer Solstice and 

12/21/2022 Winter Solstice (WS) respectively. Vegetation indices, the last two sets of independent 

variables considered in this report, are Normalized Difference Vegetation Index (NDVI) and Soil Adjusted 

Vegetation Index (SAVI). NDVI quantifies vegetation greenness through a ratio between the red (R) and 

near-infrared (NIR) reflectances via the calculation: (NIR - R) / (NIR + R) (Masek et al., 2006; Vermote et 

al., 2016). SAVI is a corrected vegetation index that accounts for the influence of soil brightness where 

vegetative cover is low using a soil brightness correction factor. Three sources of these vegetation 

indices were included in this report with no overlap in dates: Sentinel-2 (S2), Landsat (LS), and Planet 

Cube Sat (PCS). Different dates were used to represent changes in vegetation over time and the selected 

dates were those with a clear image with low cloud cover. LS has a 30 m resolution, S2 has a 10 m 



resolution, and PCS has a 3 m resolution. All are delivered from USGS as GIS single-band products. 

Single-band products are the simplest version of a raster file with there being only a single layer of raster 

values. 

  

 

   

Fig. 1.7. Left to Right: Handheld GPS recording at each soil collection location, Soil collection with a 

trowel, Bulk density volume measurements with a Rubber Balloon 

 

 

Fig. 1.8. USDA Soil Classification Triangle (METER, 2021) 

 

  



Field and Laboratory Analysis Methods 

 

Soil texture characterization is composed of several American Society for Testing and Materials 

(ASTM) standards, which are published voluntary consensus technical standards that define various 

procedures to obtain specific data used in texture characterization. ASTM D6913-09 dictates minimum 

soil mass collection based on the largest particle size and separates the mass of particles of a sample 

between 75 mm and 75-μm into size ranges. ASTM D7928-21E01 determines the mass of particles of a 

sample under 75-μm via a sedimentation process using a hydrometer. ASTM D2216-10 determines the 

water content of a sample through a reduction in mass by oven-drying (110°C) and subsequent 

calculation. Once these procedures are complete, the series of data output from the hydrometer is used 

via Fig. (1.8) to determine USDA soil texture classification. ASTM D2487-17e1 utilizes data on particles 

under 75-μm to determine USCS soil classification. These ASTMs result in a series of soil texture data 

that are evaluated for relationships with the topography of their respective soil collection locations. 

The “Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve 

Analysis” (ASTM D6913-09) dictates minimum soil mass collection based on the largest particle size and 

separates the mass of particles of a sample between 75-mm and 75-μm into size ranges. The minimum 

allowable moist soil mass is based on visual maximum particle size as defined in Table (1.1). Due to field 

limitations of individual persons’ carrying capacity and soil collection bag sizes (1 kg), the minimum mass 

had to be modified. The ASTM calls for 3 kg for samples whose largest particle was retained on the 25.4 

mm sieve and 10 kg for those whose largest particle was retained on the 38.1 mm sieve. Standard soil 

collection moist masses for this report varied between 600-800 grams due to visual estimation of 

sufficient mass per bag. 100-150 grams of the total sample for each location were prepared for the 

mechanical sieve via taring (weighing the sample container) and weighing the moist sample. These 

samples were oven-dried to a standard 110 ± 5°C and weighed with the loss of mass considered water 

loss. The samples are then washed over a No. 200 sieve (75 μm), which removes any particles smaller 

than 75 μm in diameter. These smaller particles can cause significant errors in the mechanical sieve 

results by adding masses to any given sieve layer. Once washed, the samples are oven-dried and 

weighed again before being manually sieved through the 38.1 mm and 25.4 mm sieves. The 76.2 mm 

sieve was not used because no sample contained particles large enough, and thus this sieve could be 

skipped. The processing through the two sieves was completed manually due to the ease of passing 

these sieves and the mechanical sieve not being required. The remaining sample was placed into a sieve 

stack and masses collected on individual sieves were recorded (Table 1.2) and used for USCS 



classification (ASTM D2487-17e1). Classification procedure dictates a fine-grained soil if 50% or more dry 

mass passes the No. 200 sieve, a coarse-grained soil if 50% or more dry mass is retained on the No. 200 

sieve, and further sub-classifications are defined within those (Table 1.2). 

 

Table 1.1. Minimum Requirements for Mass of Test Specimen, and Balance Readability (ASTM 

D6913-09). Note: Balance Readability is the precision of a balance.  

Maximum Particle Size (100 % 

Passing) 

Method A: Water Content 

Recorded to ± 1 % 

Method B: Water Content 

Recorded to ± 0.1 % 

SI Unite Sieve 

Size 

Alternate 

Sieve Size 

Specimen 

Mass 

Balance 

Readability (g) 

Specimen 

Mass (g) 

Balance 

Readability (g) 

75.0 mm 3 in. 5 kg 10 50 kg 10 

37.5 mm 1-1/2 in. 1 kg 10 10 kg 10 

19.0 mm 3/4 in. 250 g 1 2.5 kg 1 

7.5 mm 3/8 in. 50 g 0.1 500 g 0.1 

4.75 mm No. 4 20 g 0.1 100 g 0.1 

2.00 mm No. 10 20 g 0.1 20 g 0.01 

 

  



Table 1.2. Sieve Stack Sizes used for USCS particle distribution. 

Sieve No. USCS 

Classification 

1-1/2" (38.1 mm) Gravel 

1" (25.4 mm) 

3/4" (19.0 mm) 

3/8" (9.5 mm) 

#4 (4.76 mm) 

#10 (2 mm) Coarse Sand 

#20 (841 μm) Medium Sand 

#40 (400 μm) 

#60 (250 μm) Fine Sand 

#100 (150 μm) 

#200 (75 μm) 

Pan 

Sample removed 

in washing 

Fines 

 

The “Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using 

the Sedimentation (Hydrometer) Analysis” determines the particle-size distribution of materials finer 

than the No. 200 (75-µm) sieve (ASTM D7928-21E01). This ASTM’s results must be combined with a 

sieve analysis (ASTM D6913-09) to obtain a complete particle size distribution for a sample. This method 

is performed on material passing the No. 10 (2 mm) sieve and requires at least 15 g of material in the 

sedimentation specimen. A targeted mass of 45-50 g of moist mass per sample was determined 

sufficient for this test. Each sample was mixed with 5 ± 0.1 grams of sodium hexametaphosphate 

(dispersing agent) with approximately 100 mL of deionized water and transferred into the mixing cup 

(Fig. 1.9). Hydrometers measure the density and specific gravity of a liquid at a certain depth. A 

dispersing agent is required to break up the fine-grained particles of a sample so that the liquid mixture 

can be more representative of the sample mass’s true characteristics. Additional deionized water was 

added to fill the mixing cup approximately half full and mixed for 1 minute. This dispersed sample was 

then transferred to a metered sedimentation cylinder (graduated glass cylinder capable of holding up to 

1000 mL accurately) and filled to the 1000 mL mark with deionized water. The samples were turned tip 



over tail and back for 1 minute and left overnight for temperature equilibrium and deflocculation. 

Deflocculation is the dispersal of soil into very fine particles. After 24 hours, the samples would be 

turned tip over tail for 1 minute and a hydrometer would be placed into the sedimentation cylinder. The 

hydrometers used were the PARIO Automated Hydrometers (METER, 2021) from METER Group AG (Fig. 

1.10). 

Hydrometer measurements are based on Stokes’ Law, which defines particle sedimentation 

velocity as a function of particle size and density (Durner, 2017). The hydrometer method relies on 

measuring temporal changes in particle concentration or density of a suspended liquid at a selected 

depth, or measurement location. PARIO uses a method based on the pressure in the suspension at a 

measurement location, which is a measure of the particles in suspension above the measuring depth. 

The observed data is compared to a simulated series of data and yields a high-resolution particle size 

distribution (Durner, 2017). This data must go through a final post-processing step to determine sand 

content via a final fit to measured sieve fractions for the cumulative particle size distribution to be 

correct. To obtain the sieve fractions, the sample from the hydrometer is washed through the No. 35 

(500 μm), No. 60 (250 μm), and No. 270 (53 μm) sieves. These three samples are transferred into three 

tared containers, oven-dried at 110 ± 5°C, and weighed again to obtain the mass percentage of each 

size distribution (Table 2.3). These percentages are input back into the PARIO program as sieve fractions 

and the data, once fitted, gives the USDA classifications .  

Table 2.3. USDA Sand Particle Size Classifications Used for PARIO Post-Processing 

Particle Size USDA 

Classification 

53 – 250 μm Fine Sand 

250 – 500 μm Medium Sand 

500 – 2000 μm Coarse Sand 

 



 

Fig. 1.9. Dispersion Cups of Apparatus (ASTM D7928-21E01) 

 

Fig. 1.10. PARIO Automated Hydrometer from METER Group AG (METER, 2021) 

 

 These procedures produce a range of soil particle sizes and soil classifications for USCS and 

USDA. To characterize the relationship between the particle sizes and topography, several 

representative diameter percentiles were chosen. These percentiles are written in the form “D10” for 

the 10th percentile particle diameter of a given sample, and an effective range of particle sizes is 

achieved by subtracting the 10th percentile from the 90th percentile in the form “D90-10”. Two final soil 



variables are determined via the Cosby et al. (1984) calculation that uses USDA classification 

percentages to estimate porosity and hydraulic conductivity. Porosity is calculated: 50.5 − 0.142 ∗

(% Sand)– 0.037 ∗ (% Clay). Hydraulic Conductivity in mm/day is calculated: 

(𝑒−0.6+0.0126∗(% 𝑆𝑎𝑛𝑑)−0.0064∗(% 𝐶𝑙𝑎𝑦) ∗ 2.54 ∗ 10 ∗ 24)/0.00164042. While these are both derived from 

% Sand and % Clay, there are several ways hydraulic conductivity and porosity’s trends could diverge. 

While generally if pores are large and well-connected, water can flow through the soil easily and 

hydraulic conductivity will be high, this is not always the case. If the pores are small or not well-

connected, water may not be able to flow as easily, and hydraulic conductivity will be lower. Clay 

particles can also restrict water flow, resulting in high porosity and low hydraulic conductivity. These 

particle size distributions, soil classifications, and pedotransfer function outputs sum to 14 dependent 

variables: D10, D30, D50, D60, D90, D90-10, percent gravel (USCS), percent sand (USCS), percent fines 

(USCS), percent sand (USDA), percent silt (USDA), percent clay (USDA), porosity, and hydraulic 

conductivity. General sizing terms for classifications are defined in Table (2.4) and used throughout the 

report. Any percent sand will have its respective classification stated (e.g., percent sand (USCS)). 

 

Table 2.4. General Sizing terms for USDA and USCS Classifications 

Particle Size USCS 

Classification 

USDA 

Classification 

Large Gravel Sand 

Medium Sand Silt 

Small Fines Clay 

 

 Correlation and Regression 

 

 Correlation analysis is the process in which variable relationships are assessed. In this case, the 

independent variables are the topographic characteristics while the dependent variables are the soil 

textures. Correlation analysis relies on covariance-- the variables being related in some way (Reid, 2014). 

Pearson r is a commonly used form of correlation that assumes a linear relationship and quantifies the 

strength of that linear relationship with variable r, which ranges from -1 to 1 indicating a positive or 

negative correlation. The significance (α) of r is the magnitude of Type 1 error rate, which is the 

probability that the null hypothesis (there is no correlation) was incorrectly rejected and thus correlation 

was mistakenly assumed. While the choice of α is somewhat arbitrary, 0.05 is a commonly accepted 



standard, indicating the null hypothesis is erroneously rejected 5% of the time. Regression expresses the 

relationship in the form of an equation, outputting a regression line (form Y’ = bX+a with Y’ representing 

the predicted value) (Reid, 2014). The square of correlation (r2), defined as the coefficient of 

determination, measures the proportion of variance in one variable that is accounted for in another 

variable. For example, given a 0.2 coefficient of determination, knowing a given topographic 

characteristic accounts for 20% of the variability away from the mean of the corresponding soil texture. 

In this case, 80% of the variability of soil textures would not be accounted for and thus the relationship 

would not be strong. P-values measure the probability of getting a value at least as extreme as current 

data and are used in conjunction with the selected α. If the p-value is greater than α, the null hypothesis 

(there is no correlation) is accepted. If the p-value is less than α, the null hypothesis is rejected, and 

predictions of the dependent variable will be more accurate than the mean of the dependent variable 

regardless of the value of the independent variable. Together, p-values and coefficients of 

determination will give a measure of whether correlation exists and how well the regression accounts 

for variability. However, regression is a measure of association, not causation, meaning it is not a 

measure of cause and effect. 

 Variable predictability can be improved through the inclusion of multiple predictor variables 

(Reid, 2014). For instance, knowing both slope and elevation can improve the likelihood we can 

accurately predict particle size over only knowing slope. A common extension of linear regression that 

includes these additional variables is Multiple Linear Regression (MLR). MLRs expand on the linear 

regression equation to include these additional variables (form Y’ = b1X1+ b2X2+b0), where each b value is 

defined as the regression weight for a given variable, also known as the slope. The intercept term (b0) 

represents the value of the dependent variable when all dependent variables are equal to zero. In 

contrast, the regression coefficients (b1, b2, etc.) represent the change in the dependent variable that is 

expected for a unit change in each independent variable while holding all other independent variables 

constant (Reid, 2014). If the intercept term is significantly higher than any of the coefficients, it indicates 

that the baseline value of the dependent variable is relatively large compared to the effect of each 

independent variable. This may suggest that there are other factors beyond those indicated in the 

model that are driving the baseline value of the dependent variable. The relative magnitude of the 

intercept and regression coefficients can depend on the scale of the variables in the model; thus, each 

data series was standardized to remove the effect of large differences between the ranges of each 

variable. A second round of standardization was performed on each series of intercepts and coefficients 

for each dependent variable. Standardizing a data point includes subtracting the mean of the dataset 



and dividing by the standard deviation of that dataset. This process scales the mean of a dataset to zero 

with a standard deviation of one. Simple linear regression, a form of MLR where all predictors are 

evaluated concurrently with any predictor not significantly enhancing the overall prediction being 

dropped, was used for this report. Like linear regression, there is not sufficient justification for 

concluding output is proof of causation but is sufficient for plausibility. 

 

Results 

Maxwell Ranch USDA Classification Output 

 

 

Fig. 2.1. Maxwell Ranch USDA Soil Classification Output 

 

Linear Regressions 

 

The simple linear regression analysis yielded correlation (r) and significance (p) values that 

indicate correlation strength and existence, respectively. Relationships where the null hypothesis is 

rejected (correlation exists) are considered for correlation strength via Pearson r, which considers 

negativity. This r ranges from -1 to 1 indicating a positive or negative correlation, with values closer to -1 

or 1 being stronger fits. As there are no strictly defined categories of r outside these general rules, an 



arbitrary scale is defined in Table (2.1) for simplicity. After each series of tables, significant regressions 

are displayed with their coefficients of determination (r2).  

Table 2.1. Absolute Value Strength of Regression Line Fit 

|r| Strength of Fit 

r < 0.3 None 

0.3 < r < 0.5 Weak 

0.5 < r < 0.7 Moderate 

r > 0.7 Strong 

 

Ranch-wide analysis is considered first and captures all variability in the ranch, but, due to larger 

sample size, dampens the effect of unique sites on the regression and could lead to incorrect 

relationship inferences if analyzed alone. Regional analysis is conducted after, and, with regional 

samples being wholly representative of their respective regions, they better capture unique trends 

within those regions than the collective ranch-wide analysis. It is important to characterize these unique 

trends as they may not be captured in ranch-wide analysis. Relationships or the lack thereof from these 

regions are used in conjunction with ranch-wide results to analyze relationships across the topography 

of the ranch. 

Color scales were arbitrarily chosen for better visibility of both strength and significance. Each r 

table (e.g., Table (2.2)) has a three-color scale with red at -0.5, yellow at 0, and green at 0.5. These 

values were chosen to better distinguish those relationships of moderate to strong correlation. Each p-

value table (e.g., Table (2.3)) has a two-color scale of green at 0.05 and red at 0.06 to better display both 

relationships with significance and those bordering α. These scales are consistent across all regions. 

 

 Ranch-Wide Analysis 

 

 When considering the entirety of Maxwell Ranch, there are several noteworthy relationships as 

seen in Table (2.3). Their respective correlation strengths are seen in Table (2.2). The natural log of 

contributing area (Fig. 3.1) had a weak positive relationship with percent fines and percent clay and a 

weak negative relationship with percent gravel. This is expected, as smaller particles will be more 

impacted by the differential transport of grain sizes (smaller particles travel more readily than large 

particles) than larger particles. Some common causes of this transport are erosion, animal activity, wind, 

and drainage. The larger that area is, the more likely it is that smaller particles will travel down the 



slope. Slope (Fig. 3.2) had a weak to moderate positive relationship with particle percentiles and percent 

gravel and a weak to moderate negative relationship with percent fines. These are expected, as the 

steeper a slope is, the more likely the fines will transport, leaving larger grain sizes behind. Elevation 

(Fig. 3.3) was weakly negatively correlated with hydraulic conductivity. This could be from more wind 

gusts present at higher elevation, moving smaller particles that would impede the transport of water. 

Northness (Fig. 3.4) was weakly negatively correlated with percent sand. Summer sun exposure (Fig. 3.5) 

had a weak to moderate negative correlation with particle percentiles and percent gravel and a weak 

positive correlation percent sand and percent fines. Both Northness and summer exposure are expected 

as sun exposure breaks down molecules in organic matter and soil aggregates. Winter sun exposure, 

however, is only correlated with the 10th particle diameter percentile. A potential explanation for 

summer sun correlating with more percentiles and classifications while winter sun did not is 

temperature variability. Temperature influences several soil and vegetative properties (e.g., physical 

weathering, soil organism activity, and changes in rate of chemical reactions in the soil) with high 

variability in temperature affecting soil structure and composition. Temperature generally fluctuates 

more in summer months than in winter, and this could explain the existing correlation between summer 

sun exposure and the lack of correlation with winter sun exposure. Vegetation (Figs. 3.6, 3.7, 3.8, 3.9, 

3.10) had a weak to moderate positive relationship with percent fines, percent clay, and porosity, and 

weak negative relationships with percent sand and hydraulic conductivity. These are expected as larger 

particles are less likely to provide stability for vegetation to grow and vegetation somewhat negates 

particle movement. Vegetation is often connected with soil stability (e.g., trees preventing landslides), 

specifically in that grasses retain smaller particle sizes well, and the retention of those small particles will 

result in greater porosity. However, a common clay side-effect is poorly connected or clogged pores that 

limit water movement and is seen in Table (2.3) in the negatively correlated hydraulic conductivity.  

Table 2.2. Ranch-Wide Linear Regression Strength of Correlation (r) Values 

 

Ranch-wide: r ln(CA) Slope Elevation ln(aspect) S*Cos(A) S*Sin(A) Curvature
S2 PSRI 

SS

S2 PSRI 

WS

S2 NDVI 

05262022

S2 NDVI 

06152022

LS NDVI 

06142022

PCS NDVI 

06132022

PCS NDVI 

08062022

D10 -0.064 0.284 -0.129 0.068 0.140 -0.205 0.024 -0.338 0.220 -0.184 -0.114 -0.096 -0.183 -0.134

D30 -0.138 0.376 -0.029 -0.120 0.204 0.102 -0.049 -0.421 -0.060 -0.022 0.035 0.030 -0.022 0.041

D50 -0.181 0.402 0.064 -0.073 0.181 0.111 -0.111 -0.409 0.005 -0.077 -0.025 0.009 -0.078 0.009

D60 -0.187 0.394 0.101 -0.043 0.171 0.113 -0.121 -0.383 0.034 -0.106 -0.048 0.003 -0.096 -0.004

D90 -0.187 0.394 0.101 -0.043 0.171 0.113 -0.121 -0.383 0.034 -0.106 -0.048 0.003 -0.096 -0.004

D90-10 -0.246 0.443 0.132 0.019 0.151 0.017 -0.137 -0.402 0.023 -0.150 -0.087 0.034 -0.074 -0.012

% Gravel (USCS) -0.215 0.415 0.042 0.040 0.104 0.005 -0.121 -0.407 0.117 -0.205 -0.133 -0.023 -0.183 -0.095

% Sand (USCS) -0.039 -0.175 -0.137 -0.002 -0.252 0.037 0.072 0.246 -0.076 0.132 0.135 0.031 0.140 0.067

% Fines (USCS) 0.351 -0.412 -0.033 -0.025 0.109 -0.001 0.192 0.350 -0.063 0.215 0.149 0.058 0.183 0.103

% Sand (USDA) -0.160 0.146 -0.189 0.056 -0.046 0.019 -0.188 -0.118 0.049 -0.305 -0.208 -0.176 -0.199 -0.198

% Silt (USDA) -0.043 -0.106 0.054 -0.109 0.035 0.033 0.054 0.095 -0.053 -0.041 -0.115 -0.140 -0.094 -0.122

% Clay (USDA) 0.250 -0.077 0.186 0.042 0.022 -0.059 0.185 0.052 -0.007 0.435 0.388 0.374 0.355 0.383

Porosity 0.122 -0.146 0.170 -0.072 0.046 -0.008 0.169 0.120 -0.053 0.243 0.145 0.113 0.142 0.135

Ks [mm/d] -0.184 0.144 -0.225 0.067 -0.006 0.018 -0.180 -0.117 0.075 -0.369 -0.255 -0.243 -0.254 -0.258



Table 2.3. Ranch-Wide Linear Regression Significance (p) Values 

 

 

 

Fig. 3.1. Natural Log of Contributing Area Regression Curves 

Ranch-wide: p-

values
ln(CA) Slope Elevation ln(aspect) S*Cos(A) S*Sin(A) Curvature

S2 PSRI 

SS

S2 PSRI 

WS

S2 NDVI 

05262022

S2 NDVI 

06152022

LS NDVI 

06142022

PCS NDVI 

06132022

PCS NDVI 

08062022

D10 0.557 0.007 0.231 0.527 0.193 0.055 0.825 0.001 0.040 0.086 0.289 0.373 0.088 0.212

D30 0.199 0.000 0.788 0.265 0.057 0.343 0.650 0.000 0.577 0.840 0.743 0.783 0.836 0.704

D50 0.091 0.000 0.556 0.500 0.091 0.304 0.304 0.000 0.961 0.474 0.820 0.932 0.468 0.933

D60 0.081 0.000 0.350 0.694 0.111 0.296 0.263 0.000 0.750 0.327 0.657 0.980 0.373 0.971

D90 0.081 0.000 0.350 0.694 0.111 0.296 0.263 0.000 0.750 0.327 0.657 0.980 0.373 0.971

D90-10 0.021 0.000 0.221 0.858 0.160 0.877 0.204 0.000 0.832 0.164 0.419 0.756 0.493 0.915

% Gravel (USCS) 0.045 0.000 0.701 0.715 0.336 0.963 0.261 0.000 0.277 0.055 0.216 0.829 0.089 0.377

% Sand (USCS) 0.721 0.104 0.203 0.988 0.018 0.736 0.503 0.021 0.481 0.220 0.211 0.772 0.194 0.534

% Fines (USCS) 0.001 0.000 0.757 0.817 0.312 0.996 0.074 0.001 0.558 0.044 0.166 0.589 0.087 0.338

% Sand (USDA) 0.137 0.175 0.077 0.605 0.673 0.861 0.079 0.275 0.653 0.004 0.052 0.101 0.063 0.064

% Silt (USDA) 0.692 0.324 0.616 0.313 0.749 0.760 0.618 0.377 0.622 0.702 0.287 0.192 0.384 0.257

% Clay (USDA) 0.019 0.477 0.083 0.695 0.840 0.587 0.084 0.633 0.950 0.000 0.000 0.000 0.001 0.000

Porosity 0.257 0.174 0.113 0.503 0.670 0.942 0.116 0.265 0.625 0.023 0.177 0.297 0.186 0.209

Ks [mm/d] 0.086 0.182 0.035 0.534 0.959 0.871 0.094 0.279 0.486 0.000 0.016 0.023 0.017 0.015



 

Fig. 3.2. Slope Regression Curves 

 

Fig. 3.3. Elevation Regression Curve 



 

Fig. 3.4. Northness Regression Curve 

 

Fig. 3.5. S2 PSRI Summer Solstice (06/21/2022) Regression Curves 



 

Fig. 3.6. S2 NDVI 05/26/2022 Regression Curves 



 

Fig. 3.7. S2 NDVI 06/15/2022 Regression Curves 

 

Fig. 3.8. LS NDVI 06/14/2022 Regression Curves 



 

Fig. 3.9. PCS NDVI 06/13/2022 Regression Curves 

 

Fig. 3.10. PCS NDVI 08/06/2022 Regression Curves 

 

Region A 

 

 Region A was the most topographically variable region on the ranch, containing sites seemingly 

consistent in soil types as the other regions, but contains many grassy areas including several sites in 

thick, marshy grasses. Table (2.5) shows that many of this region’s textures were correlated with 

vegetation and contributing area while having little to no correlation with other variables. Table (2.4) 

expands on the strength of these relationships. The natural log of contributing area (Fig. 4.1) was weak 

to moderately negatively correlated with particle size percentiles, percent gravel, percent sand, and 



hydraulic conductivity, and moderately to strongly positively correlated with percent fines and percent 

clay. This is expected, as larger particles are less likely to travel, and smaller particles are more likely to 

travel via the differential transport of grain size effect. As such, smaller particles are more likely to be 

present when the contributing area is larger. This same effect explains the particle percentiles because 

with a larger contributing area, a greater percentage of smaller particles are expected. As seen in the 

ranch-wide analysis, when there are more small particles present in the soil, the hydraulic conductivity is 

expected to drop due to clogging or poorly connected pores. Curvature has a moderately strong positive 

relationship with percent fines, but from Fig (4.2) there are too many outliers to confidently say there is 

a real relationship there. Vegetation (Figs. 4.3, 4.4, 4.5, 4.6, 4.7) was the most well-correlated, having 

moderate to strongly negative relationships with particle size percentiles, percent gravel, percent sand 

(USDA), and hydraulic conductivity, and strong positive relationships with percent fines and percent 

clay. It is expected that grasses will retain smaller particle sizes, which will in turn fill void spaces in 

larger particles, thus lowering the hydraulic conductivity, but having such strong negative relationships 

with larger particles and particle percentiles seems to indicate that there is a direct connection between 

grassy vegetation and particle size retained. Speculating about the lack of relationship to summer sun 

exposure, the presence of grasses could provide the soil with somewhat of a cover, insulating the soil 

from temperature variations to some degree. 

 

Table 2.4 Region A Linear Regression strength of correlation (r) values 

 

 

 

 

 

 

Site A: r ln(CA) Slope Elevation ln(aspect) S*Cos(A) S*Sin(A) Curvature
S2 PSRI 

SS

S2 PSRI 

WS

S2 NDVI 

05262022

S2 NDVI 

06152022

LS NDVI 

06142022

PCS NDVI 

06132022

PCS NDVI 

08062022

D10 -0.221 -0.093 -0.101 0.176 0.238 0.001 -0.100 0.154 0.139 -0.232 -0.180 -0.120 -0.201 -0.168

D30 -0.361 -0.021 -0.068 0.403 0.125 0.049 -0.281 0.075 0.195 -0.386 -0.335 -0.272 -0.448 -0.397

D50 -0.420 0.080 -0.115 0.414 0.026 -0.008 -0.228 0.022 0.300 -0.517 -0.487 -0.413 -0.581 -0.549

D60 -0.444 0.092 -0.111 0.391 -0.002 0.021 -0.211 0.025 0.297 -0.559 -0.536 -0.462 -0.608 -0.565

D90 -0.444 0.092 -0.111 0.391 -0.002 0.021 -0.211 0.025 0.297 -0.559 -0.536 -0.462 -0.608 -0.565

D90-10 -0.449 0.234 0.132 0.090 -0.211 -0.021 -0.185 -0.148 0.058 -0.582 -0.557 -0.460 -0.500 -0.434

% Gravel (USCS) -0.437 0.171 -0.059 0.380 -0.119 -0.013 -0.190 -0.059 0.303 -0.637 -0.625 -0.521 -0.676 -0.627

% Sand (USCS) 0.078 0.103 0.336 -0.377 0.064 -0.029 -0.185 -0.183 -0.414 0.423 0.416 0.263 0.487 0.483

% Fines (USCS) 0.606 -0.417 -0.209 -0.176 0.142 0.016 0.533 0.348 -0.067 0.568 0.576 0.530 0.557 0.492

% Sand (USDA) -0.478 0.358 0.279 0.173 -0.099 -0.084 -0.398 -0.253 0.108 -0.522 -0.500 -0.491 -0.433 -0.299

% Silt (USDA) -0.026 -0.121 -0.068 -0.243 -0.135 -0.181 0.313 0.145 0.115 -0.057 -0.055 0.007 -0.106 -0.247

% Clay (USDA) 0.699 -0.376 -0.319 0.017 0.284 0.310 0.228 0.203 -0.272 0.794 0.760 0.682 0.720 0.681

Porosity 0.391 -0.325 -0.247 -0.198 0.053 0.029 0.400 0.242 -0.064 0.422 0.404 0.410 0.337 0.194

Ks [mm/d] -0.517 0.314 0.265 0.156 -0.085 -0.136 -0.346 -0.195 0.169 -0.579 -0.539 -0.516 -0.485 -0.373



Table 2.5. Region A Regression significance (p) values 

 

 

Fig. 4.1. Natural Log of Contributing Area Regression Curves 

Site A: p-values ln(CA) Slope Elevation ln(aspect) S*Cos(A) S*Sin(A) Curvature
S2 PSRI 

SS

S2 PSRI 

WS

S2 NDVI 

05262022

S2 NDVI 

06152022

LS NDVI 

06142022

PCS NDVI 

06132022

PCS NDVI 

08062022

D10 0.348 0.695 0.671 0.458 0.312 0.996 0.675 0.518 0.558 0.325 0.447 0.615 0.395 0.478

D30 0.118 0.930 0.775 0.078 0.598 0.839 0.231 0.753 0.409 0.093 0.149 0.247 0.048 0.083

D50 0.065 0.738 0.629 0.069 0.912 0.973 0.334 0.926 0.199 0.019 0.029 0.070 0.007 0.012

D60 0.050 0.701 0.643 0.089 0.995 0.930 0.371 0.916 0.204 0.010 0.015 0.040 0.004 0.009

D90 0.050 0.701 0.643 0.089 0.995 0.930 0.371 0.916 0.204 0.010 0.015 0.040 0.004 0.009

D90-10 0.047 0.320 0.580 0.706 0.372 0.929 0.435 0.534 0.809 0.007 0.011 0.041 0.025 0.056

% Gravel (USCS) 0.054 0.471 0.805 0.098 0.618 0.957 0.422 0.805 0.193 0.003 0.003 0.018 0.001 0.003

% Sand (USCS) 0.744 0.665 0.148 0.102 0.790 0.902 0.435 0.441 0.069 0.063 0.068 0.262 0.029 0.031

% Fines (USCS) 0.005 0.067 0.377 0.458 0.549 0.945 0.016 0.133 0.778 0.009 0.008 0.016 0.011 0.028

% Sand (USDA) 0.033 0.121 0.234 0.466 0.676 0.726 0.082 0.281 0.651 0.018 0.025 0.028 0.056 0.200

% Silt (USDA) 0.913 0.610 0.775 0.301 0.572 0.444 0.179 0.541 0.630 0.811 0.819 0.978 0.657 0.294

% Clay (USDA) 0.001 0.102 0.170 0.943 0.226 0.183 0.333 0.390 0.245 0.000 0.000 0.001 0.000 0.001

Porosity 0.088 0.163 0.294 0.403 0.826 0.903 0.080 0.303 0.788 0.064 0.078 0.073 0.146 0.412

Ks [mm/d] 0.020 0.178 0.259 0.512 0.721 0.567 0.135 0.409 0.476 0.008 0.014 0.020 0.030 0.105



 

Fig. 4.2. Curvature Regression Curve 

 

Fig. 4.3. S2 NDVI 05/26/2022 Regression Curves 



 

Fig. 4.4. S2 NDVI 06/15/2022 Regression Curves 



 

Fig. 4.5. LS NDVI 06/14/2022 Regression Curves 



 

Fig. 4.6. PCS NDVI 06/13/2022 Regression Curves 

 

 



 

Fig. 4.7. PCS NDVI 08/06/2022 Regression Curves 

 

Region B 

 

Region B’s vegetation was unique amongst the regions. While other regions consisted of mostly 

grasses or shrubs, region B consisted of mostly trees with sparse grasses. Table (2.7) shows the resulting 

significant relationships in such a unique area. Expanding on correlation strength, Table (2.6) shows 

several moderate to strong relationships. The natural log of contributing area (Fig. 5.1) was moderately 



positively correlated with percent fines but doesn’t have a significant relationship with hydraulic 

conductivity like other regions. Slope (Fig. 5.2) and Eastness (Fig. 5.5) were moderately to strongly 

correlated with particle diameter percentiles and percent gravel, and moderately negatively correlated 

with percent sand (USCS). It is expected that higher slopes tend to retain larger particles better than 

smaller particles due to differential transport of grain sizes. With Eastness being an indicator of wind 

exposure from the west, the expectation is that a greater percentage of smaller particles would exist on 

an east-facing slope. However, the wind in the region doesn’t blow consistently out of a strictly eastern 

direction and few sites were on a purely eastern slope. This result is more expected of a west-facing 

slope and indicates the wind in the area may be heavily influenced by the deep ravines and cover it had 

from the west. Elevation (Fig. 5.3) was moderately positively correlated with percent fines as is expected 

at higher elevations that typically have less cover from the wind. Northness (Fig. 5.4) was moderately to 

strongly negatively correlated with percent sand (USCS). Summer sun exposure (Fig. 5.7) was strongly 

negatively correlated with particle diameter percentiles and percent gravel, and moderately positively 

correlated with percent sand (USCS). Both Northness and summer sun exposure results are expected as 

direct sunlight has an erosive effect on soils. Winter sun exposure (Fig. 5.8) only having moderately 

negative relationships with D10 and D30 indicate there are fewer smaller particles when more exposed. 

A potential explanation is that more winter sun exposure could cause snowmelt, transporting smaller 

particles and leaving larger particles. The lack of vegetation correlation is unique when considering other 

regions’ strong vegetation relationships. Vegetation type may be the reason for the lack of correlation.  

 

Table 2.6. Region B Linear Regression strength of correlation (r) values 

 

  

Site B: r ln(CA) Slope Elevation ln(aspect) S*Cos(A) S*Sin(A) Curvature
S2 PSRI 

SS

S2 PSRI 

WS

S2 NDVI 

05262022

S2 NDVI 

06152022

LS NDVI 

06142022

PCS NDVI 

06132022

PCS NDVI 

08062022

D10 -0.108 0.556 -0.020 0.115 -0.165 0.744 -0.523 -0.675 -0.460 0.002 0.122 0.124 0.111 0.301

D30 -0.286 0.589 -0.137 -0.218 0.313 0.649 -0.135 -0.642 -0.463 0.123 0.164 0.096 0.095 0.181

D50 -0.303 0.592 -0.089 -0.204 0.253 0.664 -0.187 -0.643 -0.417 0.023 0.053 0.015 0.005 0.108

D60 -0.298 0.588 -0.067 -0.174 0.234 0.650 -0.197 -0.643 -0.382 -0.034 -0.005 -0.031 -0.037 0.077

D90 -0.298 0.588 -0.067 -0.174 0.234 0.650 -0.197 -0.643 -0.382 -0.034 -0.005 -0.031 -0.037 0.077

D90-10 -0.354 0.633 -0.158 0.087 0.373 0.415 -0.079 -0.628 -0.364 -0.116 -0.067 0.004 -0.043 0.090

% Gravel (USCS) -0.349 0.592 -0.040 -0.047 0.178 0.636 -0.272 -0.633 -0.345 -0.228 -0.166 -0.080 -0.159 -0.007

% Sand (USCS) 0.005 -0.437 0.451 0.007 -0.517 -0.485 -0.150 0.524 0.362 -0.019 -0.198 -0.251 -0.144 -0.160

% Fines (USCS) 0.451 -0.328 -0.389 0.053 0.276 -0.339 0.493 0.296 0.083 0.322 0.413 0.353 0.354 0.174

% Sand (USDA) 0.019 -0.016 0.088 0.026 -0.332 0.225 -0.273 -0.034 -0.001 -0.153 -0.177 -0.238 -0.122 -0.043

% Silt (USDA) -0.009 0.216 -0.190 -0.188 0.297 -0.029 0.107 -0.189 -0.197 0.019 0.168 0.137 0.135 0.058

% Clay (USDA) -0.015 -0.274 0.135 0.222 0.068 -0.285 0.244 0.309 0.272 0.194 0.024 0.155 -0.009 -0.016

Porosity -0.018 0.070 -0.120 -0.071 0.340 -0.184 0.243 -0.024 -0.051 0.125 0.184 0.223 0.132 0.049

Ks [mm/d] 0.066 0.082 -0.034 0.008 -0.288 0.302 -0.272 -0.146 -0.105 -0.168 -0.094 -0.169 -0.042 0.018



Table 2.7. Region B Regression significance (p) values 

 

 

 

Fig. 5.1. Contributing Area Regression Curve 

Site B: p-values ln(CA) Slope Elevation ln(aspect) S*Cos(A) S*Sin(A) Curvature
S2 PSRI 

SS

S2 PSRI 

WS

S2 NDVI 

05262022

S2 NDVI 

06152022

LS NDVI 

06142022

PCS NDVI 

06132022

PCS NDVI 

08062022

D10 0.634 0.007 0.930 0.611 0.462 0.000 0.013 0.001 0.031 0.994 0.589 0.584 0.622 0.174

D30 0.196 0.004 0.542 0.330 0.156 0.001 0.550 0.001 0.030 0.585 0.467 0.672 0.674 0.420

D50 0.171 0.004 0.694 0.362 0.257 0.001 0.404 0.001 0.054 0.919 0.816 0.946 0.982 0.632

D60 0.177 0.004 0.766 0.440 0.295 0.001 0.379 0.001 0.080 0.882 0.983 0.890 0.869 0.733

D90 0.177 0.004 0.766 0.440 0.295 0.001 0.379 0.001 0.080 0.882 0.983 0.890 0.869 0.733

D90-10 0.106 0.002 0.481 0.702 0.087 0.055 0.726 0.002 0.096 0.606 0.766 0.987 0.849 0.689

% Gravel (USCS) 0.111 0.004 0.859 0.836 0.428 0.001 0.221 0.002 0.116 0.307 0.461 0.725 0.479 0.975

% Sand (USCS) 0.984 0.042 0.035 0.977 0.014 0.022 0.504 0.012 0.098 0.932 0.378 0.260 0.524 0.476

% Fines (USCS) 0.035 0.137 0.074 0.814 0.214 0.123 0.020 0.181 0.712 0.144 0.056 0.107 0.106 0.439

% Sand (USDA) 0.932 0.945 0.696 0.907 0.132 0.314 0.219 0.881 0.997 0.498 0.429 0.286 0.588 0.848

% Silt (USDA) 0.969 0.334 0.397 0.401 0.179 0.899 0.634 0.398 0.380 0.934 0.454 0.542 0.548 0.798

% Clay (USDA) 0.947 0.217 0.551 0.320 0.765 0.198 0.274 0.162 0.221 0.387 0.914 0.491 0.967 0.942

Porosity 0.938 0.758 0.595 0.754 0.122 0.412 0.275 0.917 0.821 0.580 0.412 0.318 0.560 0.828

Ks [mm/d] 0.770 0.716 0.879 0.972 0.194 0.172 0.221 0.517 0.642 0.456 0.676 0.453 0.853 0.937



 

Fig. 5.2. Slope Regression Curves 



 

Fig. 5.3. Elevation Regression Curve 

 

Fig. 5.4. Northness Regression Curves 

 

 



 

Fig. 5.5. Eastness Regression Curves 



 

Fig. 5.6. Curvature Regression Curve 



 

Fig. 5.7. S2 PSRI Summer Solstice (06/21/2022) Regression Curves 



 

Fig. 5.8. S2 PSRI Winter Solstice (12/21/2022) Regression Curves 

 

Region C 

 

Region C was the windiest of the regions and the least protected by surrounding topography. 

The significant relationships of this region (Table 2.9) and their strengths (Table 2.8) give insight into this 

region where half the sites had minimal vegetation and the remaining sites were near grasses, shrubs, or 

sparsely spread trees. 

The natural log of contributing area (Fig. 6.1) was moderately positively correlated with percent 

fines. Slope (Fig. 6.2) was moderately negatively correlated with percent fines. This is consistent with 

expectations as detailed for previous regions where smaller particles are more likely to travel when the 

contributing area is larger. 

Eastness (Fig. 6.3) was strongly positively correlated with percent sand (USDA) and hydraulic 

conductivity, and moderately to strongly negatively correlated with percent clay and porosity. This is a 

series of interesting relationships, as the expectation for east-facing slopes is that they would have a 

greater percentage of smaller particles, and that porosity and hydraulic conductivity would be directly 

linked. However, like in region B, the correlations are acting like west-facing slopes in that fewer small 

particles are accumulating, and like other regions, increasing porosity does not cause increasing 

hydraulic conductivity. This suggests the wind didn’t blow exclusively out of the west and that clays 

persist enough to disrupt the flow of water. Curvature (Fig. 6.4) is moderately negatively correlated with 

percent sand (USDA) and hydraulic conductivity, and moderately positively correlated with percent clay. 



Summer sun exposure (Fig. 6.5) was moderately negatively correlated with higher particle size 

percentiles in D60, D90, effective particle range in D90-10, and moderately positively correlated with 

percent fines and percent silt. Like other regions, direct sun exposure degrades soil particle size, and the 

effective range shrinks with the larger particles degrading. The higher temperature variability of summer 

can possibly explain the lack of correlation with winter sun exposure. Vegetation (Figs. 6.6, 6.7, 6.8, 6.9) 

was moderately negatively correlated with percent sand and hydraulic conductivity, and moderately 

positively correlated with porosity. This indicates enough smaller particles exist in the soil to disrupt 

water flow. 

 

Table 2.8. Region C Linear Regression strength of correlation (r) values 

 

 

Table 2.9. Region C Regression significance (p) values 

 

  

Site C: r ln(CA) Slope Elevation ln(aspect) S*Cos(A) S*Sin(A) Curvature
S2 PSRI 

SS

S2 PSRI 

WS

S2 NDVI 

05262022

S2 NDVI 

06152022

LS NDVI 

06142022

PCS NDVI 

06132022

PCS NDVI 

08062022

D10 -0.073 0.101 -0.249 -0.076 0.234 -0.054 -0.071 -0.158 0.238 -0.224 -0.183 -0.176 -0.311 -0.254

D30 -0.078 0.154 -0.279 -0.079 0.224 0.035 -0.070 -0.210 0.274 -0.161 -0.096 -0.064 -0.279 -0.198

D50 -0.199 0.359 -0.188 -0.001 0.307 0.254 -0.130 -0.413 0.389 -0.158 -0.009 0.065 -0.199 -0.121

D60 -0.228 0.387 -0.126 0.015 0.335 0.294 -0.143 -0.435 0.406 -0.173 -0.008 0.072 -0.177 -0.106

D90 -0.228 0.387 -0.126 0.015 0.335 0.294 -0.143 -0.435 0.406 -0.173 -0.008 0.072 -0.177 -0.106

D90-10 -0.299 0.442 0.042 0.031 0.285 0.384 -0.208 -0.468 0.337 -0.230 -0.050 0.045 -0.151 -0.116

% Gravel (USCS) -0.234 0.262 -0.194 -0.063 0.229 0.183 -0.136 -0.339 0.329 -0.197 -0.055 0.045 -0.265 -0.165

% Sand (USCS) -0.020 -0.004 0.046 0.074 -0.186 -0.021 0.232 0.118 -0.333 0.145 0.071 0.038 0.150 0.122

% Fines (USCS) 0.450 -0.478 0.248 0.022 -0.186 -0.272 -0.020 0.466 -0.183 0.267 0.123 -0.010 0.374 0.248

% Sand (USDA) -0.384 0.200 -0.046 -0.126 0.099 0.614 -0.424 -0.022 -0.196 -0.486 -0.445 -0.346 -0.515 -0.485

% Silt (USDA) 0.218 -0.416 0.157 0.024 -0.109 -0.007 -0.051 0.494 -0.253 0.209 0.029 -0.005 0.257 0.169

% Clay (USDA) 0.240 0.053 -0.046 0.106 -0.032 -0.588 0.436 -0.272 0.339 0.344 0.413 0.337 0.345 0.368

Porosity 0.401 -0.270 0.074 0.122 -0.114 -0.573 0.385 0.119 0.132 0.495 0.421 0.322 0.531 0.486

Ks [mm/d] -0.400 0.209 -0.018 -0.140 0.106 0.618 -0.471 -0.037 -0.177 -0.514 -0.487 -0.401 -0.530 -0.517

Site C: p-values ln(CA) Slope Elevation ln(aspect) S*Cos(A) S*Sin(A) Curvature
S2 PSRI 

SS

S2 PSRI 

WS

S2 NDVI 

05262022

S2 NDVI 

06152022

LS NDVI 

06142022

PCS NDVI 

06132022

PCS NDVI 

08062022

D10 0.748 0.653 0.263 0.736 0.295 0.810 0.755 0.481 0.287 0.316 0.415 0.433 0.159 0.253

D30 0.729 0.493 0.208 0.727 0.317 0.878 0.756 0.348 0.217 0.474 0.672 0.776 0.208 0.377

D50 0.376 0.101 0.402 0.998 0.164 0.255 0.563 0.056 0.074 0.482 0.968 0.775 0.375 0.590

D60 0.308 0.075 0.576 0.946 0.128 0.184 0.527 0.043 0.061 0.441 0.970 0.749 0.431 0.640

D90 0.308 0.075 0.576 0.946 0.128 0.184 0.527 0.043 0.061 0.441 0.970 0.749 0.431 0.640

D90-10 0.177 0.040 0.852 0.891 0.198 0.078 0.353 0.028 0.125 0.302 0.823 0.843 0.503 0.608

% Gravel (USCS) 0.296 0.238 0.387 0.781 0.305 0.415 0.545 0.123 0.134 0.380 0.809 0.844 0.234 0.464

% Sand (USCS) 0.931 0.985 0.840 0.744 0.408 0.926 0.300 0.601 0.130 0.519 0.754 0.867 0.507 0.588

% Fines (USCS) 0.036 0.024 0.265 0.924 0.408 0.221 0.929 0.029 0.415 0.229 0.586 0.965 0.087 0.267

% Sand (USDA) 0.078 0.371 0.837 0.578 0.660 0.002 0.049 0.924 0.382 0.022 0.038 0.114 0.014 0.022

% Silt (USDA) 0.330 0.054 0.486 0.915 0.629 0.977 0.821 0.019 0.256 0.350 0.899 0.983 0.249 0.453

% Clay (USDA) 0.282 0.816 0.840 0.638 0.886 0.004 0.042 0.220 0.123 0.117 0.056 0.125 0.116 0.092

Porosity 0.064 0.224 0.743 0.588 0.614 0.005 0.077 0.596 0.559 0.019 0.051 0.144 0.011 0.022

Ks [mm/d] 0.065 0.352 0.936 0.535 0.640 0.002 0.027 0.870 0.431 0.014 0.022 0.065 0.011 0.014



 

Fig 6.1. Contributing Area Regression Curve 

 

Fig 6.2. Slope Regression Curves 

 

 

 

 

  



 

Fig. 6.3. Eastness Regression Curves 



 

Fig. 6.4. Curvature Regression Curves 



 

Fig. 6.5. S2 PSRI Summer Solstice Regression Curves 



 

Fig. 6.6. S2 NDVI 05/26/2022 Regression Curves 

 



 

Fig. 6.7. S2 NDVI 06/15/2022 Regression Curves 



 

Fig. 6.8. PCS NDVI 06/13/2022 Regression Curves 



 

Fig. 6.9. PCS NDVI 08/06/2022 Regression Curves 

 

Region D 

 

 Tables (2.10) and (2.11) display the strength and significance respectively of the relationships on 

Region D, host of the largest elevation difference between its highest and lowest sites and where much 

of the region was protected from the wind prevalent on other regions. Slope (Fig. 7.1) had a strong 

positive relationship with particle diameter percentiles and a strong negative relationship with percent 

fines. This is consistent with expectations and other regions as fines are generally not well retained as 

they are much more prone to movement. Northness (Fig. 7.2) is moderately negatively correlated with 

percent sand (USCS) and percent clay. The graph confidence intervals indicate these relationships could 

be positive or negative. These results cannot be used in a determination of positive or negative 

relationships. The expected behavior for a site with more sun exposure is fewer large particles and more 

small particles. Eastness (Fig. 7.3) had a strong negative relationship with particle diameter percentiles 

and percent gravel, and a moderate positive relationship with percent sand (USCS) and percent fines, 

which is within expectations as the more protected from wind the site is, the more likely smaller 



particles will blow into the site and not be blown away. Summer sun exposure (Fig 7.4) had a strong 

negative correlation with particle diameter percentiles and percent gravel. This is expected as seen in 

other regions as direct sun exposure degrades soils. The p-values for percent sand (USCS) and percent 

fines are close but not significant, and they have correspondingly moderately positive relationships. 

Those two relationships can’t be considered for this region because of their p-values, but they are 

further indicators of expected behavior for a site with more summer sun exposure. Winter sun exposure 

(Fig. 7.5) had a strongly positive relationship with particle diameter percentile and percent gravel. While 

particle sizes are more likely to be influenced by factors such as parent material, climate, and soil-

forming processes, temperature changes may result in changes in heavy rain or snowmelt transporting 

fine particles away from those areas exposed to the winter sun. Snowmelt is more likely in this area due 

to small annual amounts of rainfall. Vegetation (Figs. 7.6, 7.7, 7.8, 7.9, 7.10) had a moderately to 

strongly positive relationship with percent clay like in other regions, further indicating vegetation type 

be considered further, specifically, grasses may better retain smaller particles. 

 

 

Table 2.10. Region D Linear Regression strength of correlation (r) values 

 

  

Site D: r ln(CA) Slope Elevation ln(aspect) S*Cos(A) S*Sin(A) Curvature
S2 PSRI 

SS

S2 PSRI 

WS

S2 NDVI 

05262022

S2 NDVI 

06152022

LS NDVI 

06142022

PCS NDVI 

06132022

PCS NDVI 

08062022

D10 0.022 0.786 0.032 0.137 0.123 -0.756 0.214 -0.908 0.691 -0.314 -0.205 -0.101 -0.247 -0.099

D30 0.081 0.781 0.026 0.223 -0.014 -0.674 0.137 -0.835 0.618 -0.330 -0.137 -0.042 -0.188 -0.067

D50 0.181 0.699 0.072 0.222 0.064 -0.713 0.069 -0.742 0.595 -0.300 -0.090 0.028 -0.191 -0.068

D60 0.199 0.672 0.105 0.265 0.049 -0.700 0.062 -0.688 0.569 -0.250 -0.028 0.102 -0.169 -0.063

D90 0.199 0.672 0.105 0.265 0.049 -0.700 0.062 -0.688 0.569 -0.250 -0.028 0.102 -0.169 -0.063

D90-10 -0.117 0.627 0.247 0.143 0.338 -0.631 -0.164 -0.615 0.628 -0.147 0.003 0.248 -0.131 -0.183

% Gravel (USCS) 0.005 0.700 0.136 0.351 0.182 -0.651 0.011 -0.715 0.615 -0.354 -0.149 0.015 -0.303 -0.220

% Sand (USCS) 0.050 -0.271 -0.234 -0.142 -0.475 0.477 0.193 0.407 -0.395 0.426 0.478 0.191 0.500 0.501

% Fines (USCS) -0.227 -0.494 0.163 -0.273 0.079 0.485 -0.127 0.437 -0.377 0.124 -0.179 -0.168 -0.021 -0.190

% Sand (USDA) 0.356 0.132 -0.338 0.008 0.150 -0.388 0.028 -0.159 0.112 -0.131 0.027 -0.027 -0.042 0.149

% Silt (USDA) -0.312 -0.268 0.308 -0.024 0.015 0.403 -0.059 0.220 -0.214 -0.057 -0.252 -0.275 -0.194 -0.321

% Clay (USDA) -0.183 0.344 0.145 0.043 -0.478 0.028 0.081 -0.135 0.254 0.538 0.606 0.824 0.649 0.440

Porosity -0.349 -0.167 0.334 -0.012 -0.111 0.396 -0.036 0.176 -0.139 0.085 -0.084 -0.049 -0.017 -0.194

Ks [mm/d] 0.377 0.092 -0.284 0.023 0.222 -0.362 0.046 -0.152 0.105 -0.212 -0.068 -0.181 -0.161 0.063



Table 2.11. Region D Regression significance (p) values 

 

 

 

Fig. 7.1. Slope Regression Curves 

Site D: p-values ln(CA) Slope Elevation ln(aspect) S*Cos(A) S*Sin(A) Curvature
S2 PSRI 

SS

S2 PSRI 

WS

S2 NDVI 

05262022

S2 NDVI 

06152022

LS NDVI 

06142022

PCS NDVI 

06132022

PCS NDVI 

08062022

D10 0.931 0.000 0.900 0.588 0.626 0.000 0.395 0.000 0.001 0.205 0.416 0.690 0.324 0.697

D30 0.751 0.000 0.918 0.374 0.957 0.002 0.587 0.000 0.006 0.182 0.587 0.868 0.455 0.792

D50 0.472 0.001 0.777 0.377 0.801 0.001 0.785 0.000 0.009 0.227 0.722 0.911 0.448 0.788

D60 0.428 0.002 0.679 0.288 0.848 0.001 0.806 0.002 0.014 0.317 0.911 0.688 0.502 0.804

D90 0.428 0.002 0.679 0.288 0.848 0.001 0.806 0.002 0.014 0.317 0.911 0.688 0.502 0.804

D90-10 0.645 0.005 0.322 0.572 0.170 0.005 0.515 0.007 0.005 0.560 0.990 0.321 0.604 0.468

% Gravel (USCS) 0.984 0.001 0.590 0.153 0.469 0.003 0.966 0.001 0.007 0.149 0.556 0.953 0.221 0.380

% Sand (USCS) 0.844 0.276 0.350 0.575 0.046 0.046 0.442 0.093 0.105 0.078 0.045 0.447 0.035 0.034

% Fines (USCS) 0.364 0.037 0.519 0.273 0.757 0.041 0.615 0.070 0.123 0.625 0.477 0.506 0.934 0.450

% Sand (USDA) 0.147 0.603 0.170 0.976 0.551 0.112 0.913 0.530 0.657 0.603 0.916 0.916 0.869 0.556

% Silt (USDA) 0.208 0.283 0.214 0.924 0.952 0.097 0.816 0.381 0.393 0.822 0.314 0.269 0.440 0.195

% Clay (USDA) 0.467 0.163 0.565 0.867 0.045 0.911 0.749 0.593 0.309 0.021 0.008 0.000 0.004 0.068

Porosity 0.155 0.507 0.175 0.962 0.662 0.104 0.887 0.486 0.582 0.736 0.742 0.847 0.946 0.442

Ks [mm/d] 0.123 0.717 0.254 0.928 0.375 0.140 0.857 0.547 0.679 0.398 0.788 0.472 0.524 0.802



 

Fig. 7.2. Northness Regression Curves 

 

Fig. 7.3. Eastness Regression Curves 



 

Fig. 7.4. S2 PSRI Summer Solstice (06/21/2022) Regression Curves 



 

Fig. 7.5. S2 PSRI Winter Solstice (12/21/2022) Regression Curves 



 

Fig. 7.6. S2 NDVI 05/26/2022 Regression Curves 

 

Fig. 7.7. S2 NDVI 06/15/2022 Regression Curves 



 

Fig. 7.8. LS NDVI 06/14/2022 Regression Curves 

 

Fig. 7.9. PCS NDVI 06/13/2022 Regression Curves 

 



 

Fig. 7.10. PCS NDVI 08/06/2022 Regression Curves 

 

Multiple Linear Regressions 

 

Table (2.12) and Table (2.13) give the r2 and p-values respectively for each region. All regions 

had extremely high correlations, but the ranch-wide collective had pointedly lower correlations. In 

general, p-values are influenced by several factors, including sample size, strength of correlation, and 

the level of significance. If a sample size is large enough, even a weak correlation can produce a 

significant p-value. This appears to be what is occurring with the ranch-wide analysis. Per Table (2.13), 

Region A’s MLR had a strong correlation with porosity, Region B’s MLR had a strong correlation with all 

particle diameter percentiles, Region C’s MLR had a strong correlation with percent fines, and Region D’s 

MLR had a strong correlation with D10 and percent clay. Ranch-wide analysis resulted in weak 

correlation with all particle diameter percentiles and USCS classifications (percent gravel, percent sand, 

and percent fines), percent clay, and hydraulic conductivity. There is a clear disconnect between variable 

predictabilities across the ranch. It is likely these are driven by unique texture trends across each region. 

Ranch-wide and regional analysis gave an estimate of coefficients and intercepts for MLR 

equations that best fit the data of their respective regions (Tables 2.14, 2.15, 2.16, 2.17). The “ones” 

column indicates the intercept. This is the value that, if considerably large compared to the coefficients, 

indicates that either there are variables not considered in the MLR that drive the base value of the 



intercept, or that there are no variables that can predict the base value of the intercept. Coefficients 

close to zero have little to no impact on the respective dependent variable.  

Ranch-wide MLR analysis resulted in most variables being correlated (Table 2.14). A point of 

interest is that ranch-wide r2 were significantly lower than regional r2. As the coefficient of 

determination is a measure of variance accountability, the most likely explanation is each site has 

unique data and corresponding trends that, once combined, increase variance and decrease the ability 

of an MLR equation to capture that variance. Regional MLR analysis will show these unique trends and 

what variables are considered important to different regions. A noteworthy point is that five separate 

vegetation dates were included in MLR and, while the data for each date is unique, it is possible for 

vegetation’s importance to be overestimated. 

Table 2.12. MLR Coefficients of Determination (r2) 

 

  

r^2 Region A Region B Region C Region D Ranch-wide

D10 0.63 0.94 0.49 0.99 0.33

D30 0.81 0.94 0.55 0.95 0.35

D50 0.79 0.93 0.74 0.89 0.37

D60 0.79 0.92 0.77 0.87 0.37

D90 0.80 0.88 0.76 0.97 0.38

D90-10 0.80 0.88 0.75 0.96 0.37

Gravel(USCS) 0.83 0.87 0.80 0.87 0.38

Sand(USCS) 0.80 0.86 0.61 0.72 0.33

Fines(USCS) 0.86 0.73 0.95 0.95 0.33

Sand(USDA) 0.92 0.44 0.83 0.82 0.22

Silt(USDA) 0.92 0.56 0.67 0.76 0.14

Clay(USDA) 0.85 0.54 0.78 0.99 0.27

porosity 0.93 0.46 0.82 0.80 0.19

Ks_mmday 0.88 0.45 0.80 0.87 0.28



Table 2.13. MLR p-values 

 

 

  Ranch-wide MLR analysis shows that most MLR equations were considered significant (Table 

2.13), excluding only percent sand (USDA), percent silt, and porosity. These relationships, unlike regional 

relationships, had weak r2 with a maximum across the variables of 0.38. Vegetation was the only 

consistently heavily weighted variable but its negatively was exceptionally date-dependent, fluctuating 

greatly for each variable (Table 2.14).  

Outside of vegetation, several smaller coefficients were present for different textures. D10 

weighed summer exposure positively and winter sun exposure negatively. D30 weighed winter sun 

exposure negatively. D90 and D90-10 weighed slope positively and curvature negatively. Percent sand 

(USCS) weighed natural log of contributing area, elevation, Northness, Eastness, and winter sun 

exposure negatively, and summer sun exposure positively. Percent fines weighed slope negatively. 

Percent clay weighed slope and Eastness negatively, and elevation positively. Hydraulic conductivity 

weighed elevation and curvature negatively. The intercepts were significantly larger than the variable 

coefficients for all but D10 and D30. This suggests that, according to the MLR equations, these variables 

are certainly having an effect, but they are not driving the base value and may not be sufficient as the 

only inputs in a model. This is expected when combining highly variable regions with unique data and 

trends. 

  

p-values Region A Region B Region C Region D Ranch-wide

D10 0.79 0.01 0.89 0.02 0.00

D30 0.34 0.01 0.79 0.15 0.00

D50 0.40 0.01 0.32 0.37 0.00

D60 0.41 0.01 0.25 0.42 0.00

D90 0.37 0.05 0.27 0.07 0.00

D90-10 0.37 0.05 0.30 0.09 0.00

Gravel(USCS) 0.29 0.06 0.19 0.42 0.00

Sand(USCS) 0.37 0.07 0.67 0.81 0.01

Fines(USCS) 0.21 0.37 0.00 0.13 0.00

Sand(USDA) 0.07 0.93 0.12 0.59 0.16

Silt(USDA) 0.06 0.78 0.53 0.74 0.65

Clay(USDA) 0.23 0.80 0.24 0.02 0.04

porosity 0.05 0.91 0.14 0.64 0.27

Ks_mmday 0.14 0.92 0.18 0.43 0.03



Table 2.14. Ranch-wide Standardized Coefficients and Intercepts 

 

  

 Region A showed only one significant MLR correlation (Table 2.13). The intercepts and 

coefficients for porosity are given in Table (2.15) and indicate that all the coefficients are small 

compared to the intercept. With all coefficients being below ~15% of the intercept, this MLR suggests no 

variables in the current selection have great effect on the baseline value. However, of these coefficients, 

the most impactful ones were the natural log of contributing area, slope, Northness, summer sun 

exposure, and 08/06/22 vegetation and were all negative. These variables ultimately result in the 

excellent r2 of 0.93 (Table 2.12). 

Table 2.15. Region A Standardized Coefficients and Intercepts 

 

 

 Region B displayed several significant MLR correlations (Table 2.13), specifically with particle 

diameter percentiles. The intercepts and coefficients (Table 2.16) indicate that natural log of 

contributing area, curvature, Eastness, and winter sun exposure were consistently weighted heavily 

across all percentiles. The coefficients for natural log of contributing area were negative for all 

percentiles but D10. Curvature’s coefficients were positive except for D10. Eastness’ were all positive 

and winter sun exposure coefficients were all negative. The intercepts also increased in importance as 

particle diameter percentile increased.  

 Individual percentiles had additional variables weighed heavily for their respective MLRs. D10’s 

unique coefficients were a positive slope and a vegetation whose strength and negativity were highly 

date dependent. D30’s, D50’s, and D60’s additional coefficients were negative aspects. D90’s and D90-

10’s were vegetation. MLR analysis across this region gave predictably inconsistent vegetation 

coefficients. The MLR of these inputs with diameter percentiles resulted in strong r2 across all 

percentiles, with all being above 0.9 except for D90 and D90-10 at 0.88. 

  

Ranch-wide Ones ln(CA) Slope Elevation Aspect S*Cos(A) S*Sin(A) Curvature
S2 PSRI 

SS

S2 PSRI 

WS

S2 NDVI 

05262022

S2 NDVI 

06152022

LS NDVI 

06142022

PCS NDVI 

06132022

PCS NDVI 

08062022
D10 0.74 0.43 -0.37 -0.42 0.03 0.52 -0.09 -0.26 0.91 -1.55 -0.85 1.62 -0.46 -1.97 1.72

D30 1.32 0.12 0.24 -0.44 -0.63 0.54 0.55 -0.30 0.21 -1.33 -0.65 1.63 -0.18 -2.33 1.25

D50 1.83 -0.02 0.53 -0.32 -0.69 0.33 0.39 -0.61 0.36 -0.78 -1.05 0.88 0.05 -2.34 1.44

D60 2.05 -0.08 0.60 -0.26 -0.68 0.24 0.31 -0.67 0.37 -0.53 -1.34 0.56 0.14 -2.16 1.45

D90 2.89 -0.35 0.64 -0.16 -0.48 0.26 -0.08 -0.58 0.10 -0.32 -1.62 -0.66 0.50 -1.08 0.94

D90-10 2.91 -0.38 0.67 -0.14 -0.49 0.24 -0.07 -0.58 0.06 -0.26 -1.61 -0.75 0.53 -1.01 0.88

Gravel(USCS) 2.73 -0.12 0.15 -0.29 -0.39 0.09 0.08 -0.55 0.31 -0.70 -1.18 0.19 0.38 -1.86 1.16

Sand(USCS) 3.52 -0.44 0.15 -0.43 -0.30 -0.62 -0.42 -0.21 -0.53 0.44 -0.15 0.34 -0.79 -0.08 -0.48

Fines(USCS) 2.83 -0.02 -0.96 -0.01 0.03 -0.05 -0.25 0.18 -0.43 -0.45 0.64 -1.06 -0.31 1.34 -1.47

Clay(USDA) 3.10 -0.27 -0.90 0.47 -0.26 -0.41 -0.79 -0.33 0.04 -0.56 1.11 -0.86 0.68 -0.68 -0.35

Ks_mmday 3.58 -0.19 -0.01 -0.49 -0.28 -0.25 -0.22 -0.41 -0.17 -0.12 -0.93 0.23 -0.50 -0.52 0.27

Region A Ones ln(CA) Slope Elevation Aspect S*Cos(A) S*Sin(A) Curvature
S2 PSRI 

SS

S2 PSRI 

WS

S2 NDVI 

05262022

S2 NDVI 

06152022

LS NDVI 

06142022

PCS NDVI 

06132022

PCS NDVI 

08062022
porosity 3.71 -0.33 -0.38 -0.20 -0.28 -0.35 -0.24 -0.11 -0.35 -0.30 0.09 -0.25 -0.19 -0.30 -0.54



Table 2.16. Region B Standardized Coefficients and Intercepts 

 

 

 Region C’s MLR equations, much like Region A, only produced one significant relationship (Table 

2.13) in percent fines. There were few heavily weighted variables, with slope, Eastness, curvature, 

winter sun exposure, and vegetation being the most impactful (Table 2.17). Only vegetation was above 

40% of the intercept, but all were above 30%. Slope and winter sun exposure had positive coefficients 

while Eastness and curvature had negative. Vegetation fluctuated from highly negative to highly positive 

depending on the date. It is noteworthy that while these results run counter to expectation and 

previous linear regression analysis, MLR still considers those variables to be important and produced a 

strong r2 of 0.95 (Table 2.12). 

Table 2.17. Region C Standardized Coefficients and Intercepts 

 

 

 Region D’s MLR equations displayed two significant relationships in D10 and percent clay (Table 

2.13). The coefficients in Table (2.18) show that several variables have substantial impact on D10, but 

not percent clay. Slope, Eastness, curvature, winter sun exposure, and vegetation were weighed heavily 

in D10. Slope, elevation, curvature, summer sun exposure, winter sun exposure, and vegetation were 

heavily weighted coefficients for percent clay. Slope’s coefficient was positive for D10 while Eastness, 

curvature, and winter sun exposure were negative. Slope, summer sun exposure, and winter sun 

exposure’s coefficients were negative for percent clay, and elevation and curvature’s coefficients were 

positive. Slope and winter sun exposure had the highest impact on D10, and vegetation had the highest 

impact on percent clay. Vegetation’s weight, like in all other regions, fluctuated negativity depending on 

the date. 

  

Region B Ones ln(CA) Slope Elevation Aspect S*Cos(A) S*Sin(A) Curvature
S2 PSRI 

SS

S2 PSRI 

WS

S2 NDVI 

05262022

S2 NDVI 

06152022

LS NDVI 

06142022

PCS NDVI 

06132022

PCS NDVI 

08062022
D10 1.02 1.46 -1.00 0.23 -0.02 -0.34 0.96 -1.14 -0.01 -1.35 -1.06 -0.39 0.54 -0.93 2.04

D30 1.15 -1.35 -0.26 -0.29 -1.15 0.09 1.14 1.68 0.42 -1.95 -0.62 1.37 -0.03 -0.09 -0.11

D50 1.70 -1.30 -0.38 -0.41 -1.08 0.00 1.17 1.57 0.53 -2.03 -0.57 0.60 -0.01 0.12 0.08

D60 1.97 -1.22 -0.47 -0.43 -0.92 0.04 1.06 1.39 0.68 -2.06 -0.63 0.31 -0.19 0.22 0.25

D90 2.60 -1.35 0.21 -0.39 -0.03 0.24 0.57 1.11 0.28 -1.15 -0.34 -1.12 -0.98 0.82 -0.47

D90-10 2.58 -1.37 0.22 -0.39 -0.03 0.25 0.55 1.12 0.28 -1.13 -0.32 -1.12 -0.98 0.84 -0.49

Region C Ones ln(CA) Slope Elevation Aspect S*Cos(A) S*Sin(A) Curvature
S2 PSRI 

SS

S2 PSRI 

WS

S2 NDVI 

05262022

S2 NDVI 

06152022

LS NDVI 

06142022

PCS NDVI 

06132022

PCS NDVI 

08062022
Fines(USCS) 1.91 0.08 0.72 -0.27 -0.47 -0.45 -0.79 -0.66 -0.10 0.83 0.08 -2.13 -1.11 1.29 1.06



Table 2.18. Region D Standardized Coefficients and Intercepts 

 

 

Conclusion 

 

 Laboratory analysis was conducted on 86 soil samples from 86 sample sites from four regions 

throughout this report to determine soil textures, USCS and USDA classifications, and pedotransfer 

function outputs porosity and hydraulic conductivity. Satellite-obtained topography and vegetation data 

were compiled and both linear and multiple linear regression analyses were performed to assess the 

potential relationships between these variables. Highly variable topography has historically caused large 

errors in soil characteristic prediction, and this report investigated potential quantifiable relationships 

across a highly variable region in Maxwell Ranch. 

 Several relationships between soil textures, topography, and vegetation were observed within 

this report. The natural log of contributing area was positively correlated with percent fines across most 

regions. Slope was positively correlated with percent gravel and negatively correlated with percent fines 

across half the regions. Summer sun exposure was negatively correlated with moderate to D60, D90, 

D90-10 and percent gravel in most regions. Eastness was positively correlated with all particle diameter 

percentiles and percent gravel across half the regions. Winter sun exposure was positively correlated 

with D10 and D30 across half the regions. Vegetation had the most interesting results, with much of its 

correlation appearing to depend on vegetation type. Unrelated to vegetation type, there was a negative 

correlation with sand (USDA) in half the regions. In regions with mostly grasses or shrubs, vegetation 

had a positive correlation with clay and a negative correlation with hydraulic conductivity. In regions 

with mostly tree cover, there was no correlation. Further study is needed on the effect of vegetation 

type on soil textures. 

 MLR analysis considered all input variables, weighing them against each other by creating an 

equation for each texture variable that would best predict and account for variance. These equation 

outputs confirmed that highly variable regions are difficult to predict and introduce considerable error. 

Within this report the regions appeared to have unique trends and data that, when combined in ranch-

wide analysis, caused a significant drop in prediction strength and variance accountability. MLR analysis 

as a whole output equations whose coefficients’ negativity would vary regionally. An outlier even in this 

was vegetation, which fluctuated heavily across different dates. Even with these fluctuations, slope, 

Region D Ones ln(CA) Slope Elevation Aspect S*Cos(A) S*Sin(A) Curvature
S2 PSRI 

SS

S2 PSRI 

WS

S2 NDVI 

05262022

S2 NDVI 

06152022

LS NDVI 

06142022

PCS NDVI 

06132022

PCS NDVI 

08062022
D10 0.97 0.34 1.31 -0.25 0.18 -0.25 -0.49 -0.72 0.03 -1.25 1.50 -0.90 -1.23 -1.20 1.94

Clay(USDA) 0.77 -0.32 -0.35 0.47 -0.35 0.07 0.26 0.85 -0.62 -0.43 -2.26 0.06 1.51 1.76 -1.41



curvature, Eastness, winter sun exposure, and vegetation were commonly the most heavily weighed 

across all regions. 
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