Syllabus

CIVE 638 - Groundwater Quality and Contaminant Transport

FallSemester2014End TimeDaysBuildingRoomStart DateEnd DateBeginTime12:00 PM12:50 PMM W FMicrobiology A 114Aug. 26Dec. 13

Course number and title: CIVE 638 - Groundwater Quality and Contaminant Transport

Credits: 3

Term(s) to be offered: Fall 2014

Prerequisite(s): Groundwater Hydrology (CIVE 423, CIVE 531, or GEOL 452), Fluid Mechanics (CIVE 300 or CBE331 or MECH342), Calculus through differential equation recommended; exceptions by instructor.

Course Description: This is a graduate level course addressing contaminant transport in natural geologic media. The central theme is a first principles review of governing processes including: contaminant partition between nonaqueous, aqueous, sorbed and vapor phase; multiple phase flow; and advective-diffusive-reactive transport of solute in unsaturated and saturated media.

Instructor: Tom Sale – Associate Professor/Civil and Environmental Engineering - PhD Agricultural Engineering, MS Hydrology, BA Chemistry, BA Geology - Director of the Center for Contaminant Hydrology in Civil and Environmental Engineering at CSU - Principle Investigator in the University Consortium for Field-Focused Groundwater Contaminant Research since 2000.

Text: None

Additional Class Material: Handouts, PowerPoint presentations, and worksheets provided by the instructor.

Course Objective(s): Objectives for this course include:

- Providing knowledge needed to understand and find solutions for contaminants in natural geologic media
- Developing the skills needed for life-time learning

Course Topics/Weekly Schedule: Fifty minute lecture will be given three times a week through the semester. All lectures and/or presentation material will be posted to a class folder in advance of the lectures.

Setup and Basic Principle (5)

Lecture #1

Course setup

- Syllabus

Retrospection (Cherry's 2010 Consortium Talk)

- Radionuclides
- Landfills
- Modeling transport with Thesis assumptions
- RCRA and CERCLA
- Early Numerical Models
- DNAPL
- A return to high resolution

Lecture #2

Review of critical principles

- Mathematics
- Advection
 - o Single fluid
 - Multiple fluids

Lecture #3

Complete review of critical principles (Cont.)

- More Math Concepts
- Diffusion

MathCAD Review

Lecture #4

MathCAD Review Begin partitioning between Phases

Lecture # 5

Wrap up partitioning between phases

Multiphase Flow (10)

Lecture # 6

Introduction to Art Corey's world (Multiphase Flow)

Darcy's Equation

Capillarity	Lecture # 7	
Capillarity (finish) Wettability Immicible Fluids in Static Systems Mechanical Equilibrium	Lecture # 8	_
Distribution of Pressure in a Static Two Phase		System
Immicible Fluids in Static Systems Hysteresis Entry Pressure (P _e) Residual Saturations and E Measurement of Capillary	Lecture # 9 (Continued) Effective Saturation Pressure as a Function of	Saturation
Empirical Representations of P _c ve Brooks Corey	Lecture # 10	
Empirical Representations of P _c vs van Genuchten	Lecture # 11 s S _w (Cont.)	
Wrap up Chapter 2 - Hydrostatic (Start Chapter 3 - Theroy of Steady	Lecture # 12 Petroleum Reservoirs) V State Fluid Motion	
Wrap up Steady State Fluid Motion Tortuosity	Lecture # 13 n (Chapter 2)	

Lecture # 14

Lecture # 15

Flow Example 2 - Downward Flow of Water Through a Homogeneous Soil Profile to a Water Table

Lecture # 16

DNAPLs

Source of dissolved and vapor plumes Entry Pressure Necessary upward gradients Impacts of NAPL losses on NAPL Stability

Transport of Aqueous Phase Constituents (19)

(Note two additional guest lecture were given in the section on thermodynamic control of reaction and reaction kinectic)

Lecture # 17

Introduction to Source Terms for Transport Models

Sources (continued) - Flow over N	Lecture # 18	
More mass transfer from NAPLs	Lecture # 19	
Wrap up source terms Start matrix diffusion	Lecture # 20	
Continue matrix diffusion	Lecture # 21	
Continue matrix diffusion	Lecture # 22	

Lecture # 23

Summary of presentations from the University Consortium 2010 Modeling Focus Meeting (Cherry, Bredehoft, Parker, Payne, Huyakorn, Chapman ...) An Analytic Solution for Transport in a Two Layer System

Lecture # 24

Break through curves - with and without contaminant storage in low k zones

Lecture # 25

Field Scale Plumes - Chapman and Parker WRR (2005) Field Scale break through curves Wrap up Sources

Lecture # 26

Introduction to Advective-Diffusive-Reactive (ADiR) Transport Reactions - Contaminant Stable Isotope Analysis (CSIA)

Lecture # 27

Reaction (continued) - Sorption

Lecture # 28

Advection

Hydraulic Controls Structural (Geologic) Controls

Lecture # 29

Advection (Continued) Flow Nets Mass Flux Sand tank visualization studies

Lecture # 30

Advection (Wrap up) Start Advective-Dispersive-Reactive Transport

Lecture # 31

Advective-Dispersive-Reactive Transport (Cont.) 1-D transport calculations Start Math for 3-D transport

Lecture # 32

Wrap up Advective-Dispersive-Reactive Transport (Cont.)

Lecture # 33

High Resolution Numerical Models

Transport of Gas Phase Constituents (3)

Lecture # 34

Introduction to Vapor Transport Processes Relevance

Lecture # 35

Vapor Transport Continued Layered systems with varying water content Numerical approaches

Lecture # 36

Vapor Transport Continued Layered systems with varying water content Numerical approaches

Selection of Site Remedies (2)

Lecture # 37

Projecting future conditions based on past trends Introduction to the 14 Compartment Model

Lecture # 38

A Priori prediction of the performance of remedies using the 14 Compartment Model

Course Wrap Up (1)

Lecture # 39

Reivew and Closing Comments

Mode of Delivery: Instructor lectures, classroom discussion, supplementary readings, weekly homework, and guest speakers.

Methods of Evaluation: Mid term (30%), Final (30%), Homework (30%), and Class Participation (10%).