CIVE 563 - STRUCTURAL RELIABILITY

Fall Semester 2015 TuTh 12:30pm – 1:45pm Weber 202

Lecturer: Bruce R. Ellingwood

Engineering, Room A221 Office hours: Tuesday 3-5, or by appointment

<u>Course Objective</u>: To present concepts and applications of probability and statistics for the analysis of reliability and risk of structures subjected to natural and man-made hazards; to provide insights and perspectives on the use of these tools in engineering decision-making; and to establish a starting point for research in the field of structural reliability. Topics include stochastic modeling of structural strength and stiffness, loads and load combinations, reliability of structural elements and systems, time-dependent reliability, and probability-based codified design.

<u>Week</u>	<u>Lecture Topic</u>	Readings
	Basic probability theory; axioms, conditional probability, independence Random variables and probability laws	M App A, D B&C 2,3; A&T 2,3
	Functions of random variables; transformations of probability laws Moments and expectation; moment-generating functions	A&T 4 M App C
	Common continuous probability laws Common discrete probability laws	
	Asymptotic extremes: Type I, II and III distributions Review of statistical inference	B&C 3.3 B&C 4; A&T 6-8
	Basic analysis of structural safety; classical reliability theory. Classical reliability theory (cont'd)	M 1, 2
	Monte Carlo methods – random numbers, vectors Integral representation of Monte Carlo simulation; indicator functions	M 3, App E A&T 5
	Variance reduction techniques; importance sampling First-order (FO) reliability analysis	M 4.1-4.3
` '	First-order reliability - treatment of correlated random variables First-order reliability - Rosenblatt, Nataf transformations	M 4.4-4.7 M App B, F
	System reliability; series and parallel systems Midterm examination	M 5.1-5.4
	Probabilistic models of system strength; structural fragilities Review midterm examination	M 5.5-5.7

(11) Nov 03 Time-dependent reliability; hazard functions. 05 Time-dependent reliability – continuous and discrete load sequences	M 6.1-6.3
(12) Nov 10 Stochastic process models of structural loads – discrete models 12 Continuous load models; upcrossing analysis	M 6.4- 6.6
(13) Nov 17 Load combination analysis 19 Stochastic models of spatially distributed loads	M 6.7 M 7
Nov 25 – 29 Thanksgiving break	
(14) Dec 01 Probability-based codified design03 Concepts of reliability-based optimization of life-cycle performance	M 8, M9

(15) Dec 08 Stochastic fields

10 Introduction to stochastic finite element analysis

Wednesday, December 16th - Final examination: 9:40am – 11:40am

Readings

(M) Melchers, R.E., Structural reliability analysis and prediction, John Wiley, 1999 [Required text]

(B&C) J. Benjamin and C.A. Cornell, *Probability, Statistics and Decision for Civil Engineers*, McGraw-Hill, 1970.

(A&T) A. H.-S. Ang and W. Tang, *Probability Concepts in Engineering*, 2nd edition, John Wiley, 2007.

Selected papers from the attached reading list will supplement the lecture materials.

Grading

HW 25%, Midterm 25%, Final 50%

Teaching assistant

Derya Deniz (Glover 218) Hours: Monday, 2-4

Course Management

There will be nine homework assignments during the course of the semester. You are encouraged to discuss homework assignments among yourselves, as this is a good way to learn the material, but any work you turn in must be written in your own hand and be your own work. In-class tests and exams are to be your own work. Late homework will *not* be accepted without a *prior* excuse from me.

This is a research-oriented course. The reading list contains references that represent a diversity of noted authors and views and can be easily accessed. While I have not assigned specific readings from this list, you might find this material helpful as a starting point for further independent study.

Cell phones must be turned off and left in your pack during class.