CIVE 502 Introduction to Fluid Mechanics – Fall 2013 [CIVE 502-001 (CRN 62555)] (Rev. August 13, 2013)

Catalog Description: Fundamental physical concepts of fluid mechanics; ideal and viscous flows; boundary-layer concepts.

Meeting Times: 9:00-9:50 am, MWF, Engineering Building, Rm. B105.

Instructor: Bogusz Bienkiewicz, Rm. A207B Engineering Building (Rm. A127 Engineering Research Center), 491-2026 (491-8232).

Textbook: Wilcox, D.C., <u>Basic Fluid Mechanics</u>, 5th Ed., 2012, DCW Industries, Inc., La Canada, CA (Reduced price has been negotiated with the publisher. For information how to order the textbook at a discounted price, students registered in the course should contact the course instructor).

Course Goals and Objectives: The course is designed for students interested in fundamental physical concepts of fluid mechanics, equations governing ideal and viscous fluid flows, and concepts of laminar and turbulent boundary-layer flows. Specific objectives of this course include:

- 1. To develop understanding of the physical principles governing the state and dynamic behavior of fluids at an intermediate level.
- 2. To develop analytic and mathematical skills appropriate to solve problems of fluid dynamics.
- 3. To relate the discussed principles and skills to practical engineering problems involving fluid dynamics phenomena

Course Topics/Weekly Schedule:

Week	Topics
1	Overview, Fluid Properties
2	Dimensional Analysis
3	Equations of Motion I
4	Equations of Motion II
5	Integral Analysis
6	Vorticity & Viscosity
7	Potential Flow
8	Computational Methods
9	Viscous Effects
10	Navier- Stokes Eq. & Solutions I
11	Navier-Stokes Solutions II
12	Boundary Layer & Turbulence
13	Turbulent Boundary Layer
14	Statistical Theory of Turbulence
15	Turbulence Models for CFD

Methods of Evaluation: Periodic homework problem sets will be assigned. Special design or paper review project will be assigned. Students will make a brief oral presentation on this assignment. Two equally weighted exams and a final (comprehensive) exam will be given. The course grade will be based on the following distribution: Homework problems - 25%; Exam I - 20%; Exam II - 20%; Design project/review paper - 5%; Final exam - 30%.