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Abstract: Experimental data pertaining to two pairs of solid-substrate sulfate-reducing biocolumns for remediation of mine drainage
were used for calibrating and testing new reactive transport models based on sulfate reduction and sulfide precipitation linked to
rate-limiting solid-substrate hydrolysis. First-order �F� and Contois �C� kinetics for decomposition as well as different numbers of pools
of decomposable materials were proposed in different models �F1–F3 and C1–C3�. Effluent sulfate concentrations for one of the columns
were used as the basis for calibrating the different models and, due to limitations in the calibration data set, the number of adjustable
model parameters was limited using parameter tying. Calibrated models were ranked using Akaike information criterion, and Model C2,
followed by Model C1, based on Contois kinetics, emerged as the models that were supported to a greater extent by the data. For an
independent experimental data set, model testing was performed using Models C2 and C1 with parameters from the previous calibration
resulting in good approximations of effluent sulfate. For the calibration data set, longer-term model predictions for effluent sulfate,
decomposable substrates, and microbial populations also were performed. The reactive transport models represent a potentially valuable
tool for the design of solid-substrate bioreactors used for the treatment of mining influenced water, although future model validation using
longer-term field data sets will be necessary to confirm the model predictions.
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Introduction

Abandoned mine land �AML� sites are frequently remote and
characterized by problems associated with mining influenced
water, such as acid mine drainage �AMD�, i.e., low pH water
laden with metals from mine tunnels, mill tailings, and waste
rock. Such AMD represents a significant environmental problem
in terms of impacting streams and groundwater aquifers. For ex-
ample, approximately 51,700 AML sites are located within only
six states of U.S. EPA Region 8 �WGA 1998�. Remediation of
such mining influenced water can be accomplished via the use of
passive treatment systems such as passive bioreactors and perme-
able reactive barriers. Such elements can be installed to intercept
and passively treat contaminated groundwater down gradient
from a contaminant source �Benner et al. 1999; Groudev et al.
2003; Whitehead et al. 2005�.

In particular, the use of decomposable organic solids to pro-
vide slow release of organic substrates in support of biogenic
sulfide production and metal-sulfide precipitation in engineered
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biogeochemical systems allows for low-cost, low-maintenance re-
mediation of mining influenced water at AML sites. For example,
the results of several laboratory studies involving sulfate-reducing
�SR� flow-through experiments for metal precipitation have dem-
onstrated the potential use of sulfate reduction and metal-sulfide
precipitation coupled to the decomposition of organic solids for
the remediation of mining influenced water �e.g., Gibert et al.
2004�. Examples of solid, decomposable organic materials that
have been evaluated for this purpose include sawdust �Tuttle et al.
1969; Wakao et al. 1979�, spent mushroom compost �Dvorak et
al. 1992; Hammack and Edenborn 1992�, fresh alfalfa �Bechard et
al. 1994�, leaf mulch and wood chips �Waybrant et al. 1998;
Chang et al. 2000�, and corn stover �Figueroa et al. 2007�. Also,
some field applications of SR systems in permeable reactive bar-
riers, wetlands, and large-scale bioreactors have been reported
�Benner et al. 1999; Groudev et al. 2003; Whitehead et al. 2005�.

The design of SR field applications historically has been based
on short-term laboratory experiments focusing primarily on
changes in inorganic chemistry. Advances in design and predict-
ability are expected to result from enhancing the characterization
of suitable organic material, monitoring changes in organic chem-
istry �e.g., organic substrates� and biological components �e.g.,
microbial ecology� �Hallberg and Johnson 2005; Place et al. 2006;
Pruden et al. 2006�, and developing and calibrating biogeochemi-
cal simulation tools that include major aspects of the system.
Conceptual models for the microbial ecology in SR systems range
from complex with multiple linked microbial processes to simpler
single process models.

The flowchart shown in Fig. 1, which was used as the basis for
the mathematical models presented in this study, includes the hy-
drolysis of polysaccharides, sulfate reduction based on lactate,

and precipitation of metal sulfides. The multiple possible path-
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ways for the degradation of complex organic matter were simpli-
fied to a model biopolymer �polysaccharide� and a model
intermediate compound �lactate�, which is analogous to the ap-
proach used for the development of activated sludge models
�Henze et al. 2000�.

More broadly, decomposer groups catalyze the hydrolysis of
complex organic materials �e.g., cellulose, protein, lipids� and the
fermentation of the hydrolysis products �e.g., glucose� to simpler
compounds �e.g., acetate or lactate� �Colberg 1988�. The simpler
compounds serve as the carbon and energy source for SR bacte-
ria. Fermentation and sulfate reduction require reduced conditions
as indicated by the negative redox potential �pe� –3� required
for both reactions �Zehnder and Stumm 1988�. The pH preference
of sulfate reducers has been reported as 6�pH�9 �Widdel
1988�. The pH optimum for the anaerobic digestion of solid or-
ganic materials is in a similar range of 6.5�pH�8.2 �Speece
1996�. The maximum reported rates of sulfate reduction and fer-
mentation are at temperatures above 30°C. Thus, at environmen-
tally relevant temperatures ��2°C�, measurable but slower rates
of sulfate reduction are observed �Widdel 1988�.

In terms of modeling the rate of sulfate �SO4
2−� reduction,

Monod kinetics �Monod 1949� has been used to take into account
the growth of SR bacteria in some models �Schafer et al. 1998;
Prommer et al. 2001; Mayer et al. 2002�. However, these models
only considered scenarios where soluble organic substrates �e.g.,
ethanol, lactate� were injected directly or amended to the media.
Sustainable systems will be based on the decomposition of solid
organic materials as a prerequisite to releasing dissolved bacterial
substrates and rate limiting to bioremediation �Tuttle et al. 1969�.
Although other models have accounted for the linkage between
SO4

2− reduction and the rate of organic material decomposition
�e.g., Westrich and Berner 1984; Drury 2000�, these models have
been based only on first-order kinetics and have neglected bacte-
rial fate and surface-limiting considerations.

Recent data from SR biocolumns based primarily on corn sto-
ver presented herein are used for calibrating and testing the mod-
eling approaches described subsequently, which are based on
modeling sulfate reduction and metal precipitation coupled to
solid-phase decomposition �hydrolysis�. This study represents an
extension of a previous study that evaluated the use of the models
to simulate the results of batch equilibrium �no-flow� SR systems
�Hemsi et al. 2005�. The issue of long-term biocolumn longevity
also is addressed with the models, which include the fates of solid
decomposable materials and the decomposer bacterial population.

Development of Models

As illustrated in Fig. 1, the chemical and biological processes in
the models proposed in this study include the following: �1�

Fig. 1. Flowchart of sequential biochemical processes in the mathe
hydrolysis
anaerobic hydrolysis �decomposition� of polysaccharides in solid
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organic materials due to the activity of a consortium of generally
designated decomposer bacteria �Xd�; �2� SO4

2− reduction based on
incomplete oxidation of lactate; and �3� precipitation of metal
sulfides due to the release of H2S �hydrogen sulfide�. In the mod-
els, the rate of sulfate reduction and, consequently, that of metal
precipitation is linked to the rate-limiting step of polysaccharide
�cellulose and hemicellulose� decomposition �Tuttle et al. 1969;
Westrich and Berner 1984; Bechard et al. 1994; Chynoweth and
Pullammanappallil 1996; Drury 2000�. In turn, polysaccharide de-
composition and release of soluble substrates are limited by the
extent of solid-phase hydrolysis �Vasiliev et al. 1993; Vavilin et
al. 2004; Batstone et al. 2002�, which becomes the most signifi-
cant component in mathematical models representing such bio-
chemical systems.

Solid-Phase Hydrolysis

In contrast with the more complex, mechanistic solid-hydrolysis
kinetics �e.g., Humphrey 1979�, relatively simple first-order and
Contois kinetics �Contois 1959� are commonly applied to simu-
late the anaerobic digestion of organic matter �e.g., Vasiliev et al.
1993; Rittmann and McCarty 2001; Vavilin et al. 2004�. Based on
first-order kinetics, the rate of hydrolysis, which is the slowest
step in polysaccharide decomposition, can be expressed as fol-
lows:

d�CEi�
dt

= − kf ,i�CEi� �1�

where �CEi�=remaining concentration of decomposable polysac-
charide i in terms of dry mass per volume of solution �g/L�, kf ,i

=hydrolysis rate coefficient �d−1�, and t=time.
In a surface-limiting process, such as Contois kinetics, the

time rate of solid-substrate hydrolysis may decrease as the bio-
mass concentration of decomposer bacteria increases above a lim-
iting level, reflecting surface area and mass transfer limitations.
Based on Contois kinetics, the rate of hydrolysis is regulated by
the ratio between the concentrations of the remaining decompos-
able polysaccharide and decomposer bacteria, as follows:

d�CEi�
dt

= − kc,i�Xd,i�
��CEi�/�Xd,i��

KA,i + ��CEi�/�Xd,i��
�2�

d�Xd,i�
dt

= − YXd/CE�d�CEi�
dt

� − di�Xd,i� �3�

where �Xd,i�=biomass concentration of the decomposer bacteria
associated with material i �cell g total mass/L�, kc,i=Contois spe-
cific rate coefficient �d−1�, KA,i=Contois affinity coefficient �g/g�,
YXd/CE=stoichiometric mass-yield coefficient �see Eq. �4�,
YXd/CE=0.183 g /g�, and di=first-order decay coefficient for de-

al models for models based on first-order and Contois kinetics for
matic
composer bacteria. In Eq. �2�, the rate of polysaccharide decom-
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position transitions between the two limiting cases of first-order
kinetics with respect to �CEi� at low �CEi� / �Xd,i� ratios, and first-
order kinetics with respect to �Xd,i� at high �CEi� / �Xd,i� ratios �i.e.,
exponential Xd,i growth�. Rate coefficients such as kf and kc lump
the effects of intrinsic material degradability properties, particle
characteristics �gradation, surface area�, and testing conditions,
which are more explicit in more mechanistic models �Humphrey
1979�.

Subsequent Steps

Dissolved Organic Substrate
The rate of release of a soluble organic substrate, such as lactate
utilized by SR bacteria, can be taken to be directly proportional to
the rate of solid decomposition, as well as the growth rate of
decomposer bacterial biomass �Xd� �Eq. �3��. The yield coeffi-
cients for proportionality were obtained from the following reac-
tion derived using the half-reaction approach �Rittmann and
McCarty 2001�:

�4�

where C5H7O2N represents an empirical formula for cells �Ritt-
mann and McCarty 2001�, and the stoichiometric mass-yield co-
efficients for lactate and biomass are YLA/CE=0.859 g /g and
YXd/CE=0.183 g /g, respectively.

Sulfate Reduction and Metal Precipitation
The rate of sulfate reduction is assumed to be directly propor-
tional to the rate of release of lactate in solution, i.e., as long as
SO4

2− is present. Since the rate-limiting step is solid-substrate hy-
drolysis, sulfate reduction is assumed in the models to be suffi-
ciently fast.

Stoichiometric mass-yield coefficients for YSO/LA and YHS/LA of
0.507 g/g and 0.180 g/g, respectively, were obtained based on the
reaction for sulfate reduction on lactate obtained using the half-
reaction approach �Rittmann and McCarty 2001�:

�5�

An instantaneous-reaction approach is used, with the inherent as-
sumption that any time an amount of the organic substrate �lac-
tate� is produced at a given location within the biocolumn, this
amount is transported and consumed in sulfate reduction, i.e., as
long as the SO4

2− concentration at the location is greater than
YSO/LA�LA�, where �LA� denotes the lactate concentration. In this
case, the stoichiometric amounts of SO4

2− and H2S will be con-
sumed and produced, respectively, at the cell in the model do-
main, in accordance with the following expressions:

�SO� = �SO� − YSO/LA�LA�, �HS� = �HS� + YHS/LA�LA� �6�

where �SO� and �HS� represent sulfate and hydrogen sulfide con-
centrations, respectively, and the Y symbols represent the corre-
sponding mass-yield coefficients. Since sulfate is present in the
influent solution and, as previously described, is consumed only

to the extent of lactate availability �i.e., the limiting reactant�,
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SO4
2− generally remains in excess along the column.
Similarly, the rate of metal-sulfide precipitation in the biocol-

umn is assumed to be directly proportional to the rate of release
of H2S, i.e., to be sufficiently fast, as long as metals are present.
Any time an amount of H2S is released at a given location within
the biocolumn, this amount is transported and consumed in metal-
sulfide precipitation, i.e., as long as metal concentrations at the
location are greater than YME/HS�HS�, where �HS� denotes the
hydrogen sulfide concentration and YME/HS=a mass-yield coeffi-
cient for metal sulfide precipitation �e.g., ZnS, YZN/HS

=1.919 g /g�. The stoichiometric amount of metal will be re-
moved in accordance with the following relation:

�ME� = �ME� − YME/HS�HS� �7�

Model Solution

The experiments are modeled as bioreactors, where the temporal
rate of mass accumulation/removal for any species is equal to a
combination of the mass production/consumption �reactions�
within the reactor and the mass input/output �transport�. For each
species in the reactor, mass balance can be written generically as
an advection-dispersion-reaction equation as follows:

��c�
�t

= �Dxx

�2�c�
�x2 + Dyy

�2�c�
�y2 + Dzz

�2�c�
�z2 � −

�

�x
�v�c��

+ � ��c�
�t
�

reactions

�8�

where t=time, x, y, and z=Cartesian coordinate axes, with x
being parallel to the longitudinal direction of flow, �c�
=concentration of a generic species, Dxx, Dyy, and Dzz=principal
components of the hydrodynamic dispersion tensor in the respec-
tive x, y, and z directions, v �=q /n, where q=liquid flux or Darcy
velocity, and n=total porosity� is the seepage velocity parallel to
the x direction, and ��c� /�t �reactions= temporal net rate of mass uti-
lization given by biochemical processes as previously discussed.
As explained later, the value of n was assumed to be 0.73. The
values of v used for simulation were adjusted based on the ex-
perimental value by adjusting the values of hydraulic conductivity
K and hydraulic gradient i �i.e., q=Ki�. Hydrodynamic dispersion
was introduced only in terms of a longitudinal dispersivity coef-
ficient ��xx� of 0.015 m, with transverse dispersion assumed neg-
ligible �i.e., Dyy =Dzz=0�.

Permeant flow in the bioreactors was simulated with
MODFLOW-2000 Version 1.7 �U.S. Geological Survey� as de-
scribed in Harbaugh et al. �2000�. Multispecies reactive transport
was simulated with RT3D Version 2.5 �U.S. Department of En-
ergy� as described in Clement �1997�. RT3D transport was
coupled to a user-defined subroutine containing the biochemical
reaction kinetics in this research. In addition, the instantaneous-
reaction algorithms �Eqs. �6� and �7�� were encoded into RT3D.

The model solution requires the simultaneous integration of all
interdependent mass-balance equations of the system with respect
to time. These equations include a nonlinear partial differential
equation for each mobile species and a nonlinear ordinary differ-
ential equation for each immobile species. Numerical solution
was obtained using reaction operator splitting, where the nonlin-
ear ordinary differential equations �reactions� were solved by
Runge-Kutta-Fehlberg integration. Transport time steps, which
were on the order of 0.01 d, were selected on the basis of the
requirements for advection, dispersion, and sink/source mixing

automatically set in RT3D. Multiple time steps for Runge-Kutta

ER 2010

tion subject to ASCE license or copyright. Visithttp://www.ascelibrary.org



integration were required within each transport time step up to a
total of 3,000 integration time steps, after which integration was
stopped by the program.

The reactor was modeled as a prismatic, three-dimensional
domain, containing nine rows, 61 columns �along the direction of
flow�, and one layer. The space discretization was 0.5 cm along
rows and columns and 4.363 cm of layer height. Flow and trans-
port boundary conditions were defined for one-dimensional flow
and transport. Flow boundary conditions consisted of upper and
lower specified hydraulic-head boundaries �Dirichlet� at column
ends, with no-flow boundaries through each column side. Trans-
port boundary conditions consisted of a specified concentration at
the column input for species present in the influent solution and a
zero dispersive mass-flux boundary �Neumann� at the end of the
column �i.e., x=L�. Initial conditions for species in the influent
solution were c�x ,y ,z ,0�=0 within domain cells. Organic mate-
rials and biomass initially present in the column were assigned
initial conditions c�x ,y ,z ,0��0. The RT3D run-times for typical
simulations using either first-order or Contois kinetics were simi-
lar and on the order of 1/3 h.

Evaluation of Model Calibration

The quantitative evaluation of model calibration results involved
assessing the magnitude of the sum of weighted squared errors
�SWSE� resulting from the comparison between model-predicted
concentrations �effluent� and measured values �experimental data�
for effluent sulfate over observation times, as follows:

SWSE =
1

�n − k�	1

n

wi� �cobs,i� − �csim,i�
�cobs,i�

�2

�9�

where n=number of observations, k=NP+1 �where NP
=number of model parameters�, wi=weight of observation i, and
�cobs,i� and �csim,i�=respective observed and simulated effluent
concentrations at the ith calibration time. By definition, observa-
tion weights wi are calculated as equal to the inverse of the vari-
ance estimated as occurring in the measurement of observation i.
For this study, the SWSE was programmed in MATLAB �Math-
Works, Natick, Mass.�.

Model Selection

As described in Poeter and Anderson �2005�, the Akaike informa-
tion criterion �AICC� was used for estimating expected Kullback-
Leibler information, as follows:

AICC = n ln��2� + 2k +
2k�k + 1�
n − k − 1

�10�

where �2=estimated residual variance, including a sum of
weighted squared residuals, calculated on the basis of experimen-
tal data �observations� and modeled results, as follows:

�2 =
1

n	
1

n

wi��cobs,i� − �csim,i��2 �11�

The second and third terms of Eq. �10� are first- and second-order
bias terms resulting from a small number of observations �n /k
�40�. The weights wi apply when the observation errors are in-
dependent and focus at placing more weight on data with less

variance. Based on the assumption of measured concentrations
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with apparently an equal error, a single observation variance can
be used for the entire experimental data set �i.e., wi=const�. For
each model, a delta AICC value ��i� and an Akaike weight of
evidence �wA,i� can be calculated, as follows:

�i = AICC,i − AICC,min �12�

wA,i =
e−0.5�i

	
j=1

R

e−0.5�j

�13�

where R=total number of models being evaluated to select the
one that minimizes information loss. Evidence ratios can be ob-
tained as ratios of wA,k /wA,i, where k=best model in the sense
described above, and i represents any other model in the model
set.

Biocolumn Experiments

Two pairs of duplicate treatment experiments were performed.
The feed influent solutions used in the experiments were collected
from two sites located in Colorado, viz. the National Tunnel Adit
�NTA� and the Silver Cycle Mine Adit �SCA�. The experiments
were two-stage systems, with limestone pretreatment reactors for
control of pH and Fe2+ and Al3+ removal followed by anaerobic
SR biocolumns �see details in Figueroa et al. 2007�. Water quali-
ties for the samples collected at these sites �i.e., influent solutions
for the two-stage treatments� and for the effluents from the lime-
stone pretreatment �i.e., influent solutions for the SR biocolumns�
are summarized in Table 1. As indicated in Table 1, the limestone
pretreatment was aimed at removing excess Fe2+ and Al3+ to
avoid the SR biocolumns from clogging, which can cause column
failure before depletion of organic substrates.

The experimental data used for this study pertained specifi-
cally to SO4

2− and Zn2+ effluent concentrations from the SR bio-
columns. The anaerobic SR biocolumns consisted of 30-cm-long,
5.0-cm-diameter, acrylic tubes adapted with flanges with threaded
influent and effluent fittings. Each biocolumn was packed with
17.0 g of corn stover and 194 g of fragmented walnut shells, both
passing the 6.35-mm sieve, at equal volumes �i.e., 50% corn sto-
ver and 50% walnut shells mixture, by volume�. No external in-

Table 1. Water Quality for Samples Collected at NTA and SCA Sites and
for Influent Solutions Fed to SR Biocolumns, i.e., after Limestone Pre-
treatments �Figueroa et al. 2007�

Chemical
constituent

NTA SCA

Collected
water

Influent
solution

to
biocolumns

Collected
water

Influent
solution

to
biocolumns

Sulfate,
SO4

2− �mg/L�
900 900 2,100 2,100

Zinc,
Zn2+ �mg/L�

5–7 1–2 65–75 45–55

Ferrous iron,
Fe2+ �mg/L�

40 �1 40 �1

Aluminum,
Al3+ �mg/L�

�1 
0 �1 
0

pH 6.0–6.5 6.5 5.0–5.5 5.8
noculum for SR bacteria �e.g., manure� was employed.
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Peristaltic pumps were used to generate flow rates from the
bottom to the top of each biocolumn at either 60 mL/d of influent
solution for the NTA biocolumns or 30 mL/d for the SCA biocol-
umns. After packing the biocolumns with the solid materials, an
average of 433 mL was required to saturate each biocolumn with
deionized water, resulting in a total porosity, n, of 0.73. Thus, the
nominal solution residence times were 7.2 d in the NTA biocol-
umns and 14.4 d in the SCA biocolumns. Periodic sampling was
performed to measure the outflow rate, pH, alkalinity, sulfate, and
dissolved and total metals.

As shown in Table 1, a major difference between NTA and
SCA biocolumns was the influent concentrations for Zn2+. This
difference is significant, since zinc has been reported to have
inhibitory effects on the growth of sulfate reducers above 25–50
mg/L �Utgikar et al. 2003�, and cellulolytic fermenters above 1
mg/L free zinc concentration �Ruhs et al. 2006�.

Sulfate concentrations were calculated directly from the total
measured sulfur in aqueous solution. Total sulfur and metals were
analyzed by inductively coupled plasma-absorbance emission
spectroscopy �ICP-AES� �Perkin Elmer Optima 3000�. Samples
were filtered through 0.45-�m syringe-tip filters, diluted with
Milli-Q water, and acidified to pH 2 with trace metals-grade nitric
acid �Mallinckrodt�. The detection limits were 0.05 mg/L and
0.002 mg/L for sulfur and zinc, respectively. Values of pH were
measured using an Orion 910500 probe and Series 200 meter
�Denver Instruments, Arvada, Colo.�. Organic compositions of the
corn stover and walnut shells were determined by Venot �2008�
using hot water �TAPPI 1999� and acid extractions �Templeton
and Ehrman 1995� coupled with total dry weight �sample dried at
103°C� and organic content measurement, by the difference be-
tween total dry weight and fixed solids dried at 550°C.

NTA Biocolumns

As shown in Fig. 2�a�, the measured effluent solution pH for the
NTA duplicate biocolumns �NTA-1 and NTA-2� indicated similar
trends, with pH values being lower than 5 at the onset of the
experiments and lower than 6 for pore volumes of flow, PVF
�=vt /L, where v=constant seepage velocity, t=time, and L
=column length�, �5.5, and subsequently increasing to 6.5 and
7.5 at 
10 and 
16 PVF, respectively. The early-time pH that
generally was lower than that of the influent solution coming
from the limestone pretreatment �6.0–6.5� may be indicative of
material leaching. Subsequently, the increasing effluent pH occur-
ring in both columns may be attributed to alkalinity production by
sulfate reduction.

As shown in Fig. 2�b�, effluent sulfate concentrations were
approximately stabilized between 
500 and 600 mg/L at 
15
PVF, which is below the concentration level of the influent solu-
tion supplied to the columns �900 mg/L�. Sulfate removal after 30
d �4.3 PVF� stabilized at an average rate of sulfate reduction of

0.28 mmol S /L d−1. As shown in Fig. 2�c�, removal of zinc to
�0.1 mg /L occurred for both NTA biocolumns within approxi-
mately 21 d �3 PVF�.

SCA Biocolumns

Compared to the NTA duplicate columns, the pair of SCA biocol-
umns �SCA-1 and SCA-2� was tested under double the solution
residence time, albeit with significantly higher �Zn2+� in the in-
fluent solution. The experimental results from the pair of SCA
biocolumns were distinct. As shown in Fig. 3�a�, measured efflu-

ent pH for SCA-1 increased from 5 to 5.5 �PVF�2� to 7.0
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NTA-1 and NTA-2: �a� pH; �b� sulfate; �c� zinc
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�pH�7.5 for PVF�7 to 8. In contrast, effluent pH for SCA-2
remained at significantly lower levels, both near the onset of the
experiment �4.5�pH�5, for PVF�2–3� and in the longer term
�pH�6 for 5�PVF�end of test�. Therefore, the SCA-2 failed
during the test.

Possible explanations for the distinct results include the fact
that the SCA biocolumns were under more stress due to higher
�Zn2+� than were the NTA biocolumns, as well as the possibility
of experimental error in the case of the failure of SCA-2. For
example, there was a 30-d lag in the startup of the SCA-2, with
differences in temperature and flow conditions during the initial
period of the test. In addition, a 10-d loss of flow occurred at early
times for the SCA-2, which may have resulted in depletion of
sulfate and a synergistic community of fermenters, acidogens, and
methanogens developing, thereby hindering the development of
full sulfate reduction in this column. The results shown in Figs.
3�b and c� corroborate the poorer performance of SCA-2.

As shown in Fig. 3�b�, effluent sulfate concentrations varied
more widely than those for the NTA experiments, but approxi-
mately stabilized at 
1,750 mg /L at 
12 PVF for SCA-1. Sul-
fate removal after 50 d �3.6 PVF� stabilized at an average rate of
sulfate reduction of 
0.29 mmol S /L d−1, similar to that of the
NTA biocolumns. As shown in Fig. 3�c�, the removal of zinc to
�0.1 mg/l occurred for both SCA biocolumns within approxi-
mately 2 PVF for SCA-1. Based on the pH and �SO4

2−� trends
described above, SCA-2 was considered to have failed and the
data were disregarded.

Solid Substrates

The initial amounts of solid decomposable material �polysaccha-
ride, g/L� in a given biocolumn were not explicitly known, but
were not simply equal to the total dry mass of packed organic
materials. Fractions such as lignin �
25–35%, by dry mass, in
woods, 15–20% in leaves and grass�, protected/recalcitrant
polysaccharide tissues �
15–20%�, and water soluble organics
and inorganics �
5% in woods, 15–25% in leaves and grass�
were discounted due to significantly lower rates of degradation of
these solids and washout of the water soluble components �e.g.,
Sylvia et al. 1998�. For the corn-stover material utilized in this
research, the fractions of lignin and water soluble organics were
determined to be 15 and 16%, respectively �Venot 2008�.

Combining representative percentages, a 50% degradable
polysaccharide fraction �dry-mass basis� was considered for the
corn stover. Estimates of lignocellulosic material biodegradability
by the methods of Chandler et al. �1980� and Van Soest �1994�
using the corn-stover composition reported by Venot �2008� were
40 and 60%, respectively. Thus, the 17 g of packed corn stover
were simulated as 20 g/L of initial decomposable polysaccha-
rides. Walnut shells, which are far less degradable than corn sto-
ver, represented the structural granular medium in the
biocolumns. The decomposable polysaccharides were assumed as

10% on a dry-mass basis, which is consistent with the degrad-
able fraction estimated using the method by Van Soest �1994� for
a holocellulose to lignin ratio of 1.5. Thus, the 194 g of packed
material were simulated as 40 g/L of initial decomposable
polysaccharides.

Previous Parameter Values

The previous study by Hemsi et al. �2005� focused on approxi-

Fig. 3. Experimental effluent data for duplicate SCA biocolumns
SCA-1 and SCA-2: �a� pH; �b� sulfate; �c� zinc
mating experimental rates of sulfate reduction at 25°C in batch
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experiments based on solid decomposable substrates. For pure
cellulose, a first-order hydrolysis rate coefficient, kf, of 0.005 d−1

was obtained. In terms of Contois kinetics for cellulose, kc

=0.625 d−1 and KA=37 g /g. For wood chips, leaf mulch, and
sawdust, the values for kc were 0.4, 0.625, and 0.8 d−1, respec-
tively, with KA=30 g /g. Vavilin et al. �2004� modeled cellulose
hydrolysis at 35°C using Contois kinetics, with kc=1.25 d−1 and
KA=7.5 g /g, which is consistent with the values reported in
Hemsi et al. �2005�, i.e., taking into account the difference in
temperature.

Results

Experimental results in terms of sulfate removal rates ranged be-
tween 0.1 and 0.3 mmol S /L d−1, which were within the range
from 0.1 to 2 mmol S /L d−1 observed in laboratory and field
studies �Wildeman et al. 1997; Waybrant et al. 1998; Neculita et
al. 2007�. Tuttle et al. �1969� reported rates from 
0.1 to
0.2 mmol S /L d−1 for wood-dust SR biocolumns for AMD reme-
diation tested at 22°C.

Model Calibration

The different models proposed are shown in Table 2. The defini-
tion of Models F1–F3 and C1–C3 is aimed at investigating the
effects of the type of kinetics used for solid-substrate hydrolysis
�F� first-order versus C�Contois� and the number of pools of
decomposable materials considered. Each model was calibrated
by minimizing the calibration error �SWSE� between simulated
and experimental NTA-1 effluent concentrations for SO4

2− versus

Table 2. Decomposition Rate Equations, Adjustable and Tied Parameter

Model s Decomposition rate equations �i=1. . .s�

F1 1

d�CEi�
dt

= − kf,i�CEi�

d�LA�
dt

= YLA/CE	
i
�−

d�CEi�
dt

�
F2 2

F3 3

C1 1

d�CEi�
dt

= − kc,i�Xd,i�� �CEi�/�Xd,i�
KA,i + �CEi�/�Xd,i�

�
d�Xd,i�

dt
= YXd,CE�−

d�CEi�
dt

� − di�Xd,i�

d�LA�
dt

= YLA/CE	
i
�−

d�CEi�
dt

�

C2 2

C3 3

Note: s=number of substrates; YLA/CE=0.859 g /g; YXd/CE=0.181 g /g; a
time �Tables 3 and 4�. Rates of sulfate reduction, effluent concen-
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trations for Zn2+, and the final dry mass of solid organic material
were compared in the figures.

Inverse modeling �e.g., Poeter and Hill 1997� was not em-
ployed in this study. The optimization routine for searching

Initial Concentration Values Employed in Models F1–F3 and C1–C3

Parameters
Initial concentration

�g/L�Adjustable Tied

kf ,1 — �CE1�=20
�LA�=0

kf ,1 kf ,2=0.1 kf ,1 �CE1�=20
�CE2�=40
�LA�=0

kf ,1 kf ,2=0.1 kf ,1

kf ,3=10 kf ,1

�CE1�=20
�CE2�=40
�CE3�=4
�LA�=0

kc,1

KA,1

d1=0.1 kc,1 �CE1�=20
�Xd,1�=0.1

�LA�=0

kc,1

KA,1

kc,2=0.1 kc,1

KA,2=KA,1

d1=0.1 kc,1

d2=0.1 kc,2

�CE1�=20
�CE2�=40
�Xd,1�=0.1
�Xd,2�=0.2

�LA�=0

kc,1

KA,1

kc,2=0.1 kc,1

kc,3=10 kc,1

KA,2=KA,1

KA,3=KA,1

d1=0.1 kc,1

d2=0.1 kc,2

d3=0.1 kc,3

�CE1�=20
�CE2�=40
�CE3�=4

�Xd,1�=0.1
�Xd,2�=0.2

�Xd,3�=0.02
�LA�=0

ial ratio �Xd,i� / �CEi�=0.005.

Table 3. SWSE Values Obtained during Calibration of First-Order Mod-
els F1–F3 as a Function of Tested kf ,1 Values

First-order models
kf ,1

�d−1� SWSE �10−5�

F1 3	10−3 5.56

4	10−3 4.41

4.5	10−3 4.09

5	10−3 3.92

6	10−3 3.94

7	10−3 4.36

F2 �kf ,2=0.1 kf ,1� 3	10−3 4.13

4	10−3 3.14

4.5	10−3 2.99

5	10−3 3.03

6	10−3 3.63

7	10−3 4.78

F3 �kf ,2=0.1 kf ,1� �kf ,3=10 kf ,1� 1	10−3 6.51

2	10−3 4.90

2.5	10−3 4.96

3	10−3 5.32

4	10−3 6.61

5	10−3 8.33

Note: kf ,i=first-order decomposition rate coefficient for substrate i and
−2
s, and

nd init
wi=0.0016 �mg /L� �Eq. �9��.
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SWSE minima was simply based on picking parameter values
from lists defined based on predefined ranges of variation. Given
the input parameter values, the model was tested and the SWSE
calculated �Eq. �9��. Resulting SWSE values were inspected and
ranges were reset if a minimum SWSE was not found. Final
ranges for the kinetic coefficients for corn stover were 0.001
�kf �0.007 d−1 for first-order models, and 0.1�kc�0.6 d−1

and 7.5�KA�60 g /g for Contois models �Tables 3 and 4�.
Due to the limited number of observations in the NTA-1 sul-

fate data set �n=13�, the number of adjustable parameters was
limited for parsimony. Models with two or more material pools
were subject to parameter tying, whereby decomposition param-
eters for materials other than corn stover were tied to corn-stover
parameters �Table 2�. Also, the first-order decay coefficient for
biomass di �Eq. �3�� was tied to kc,i as shown in Table 2. By
imposing parameter tying, first-order models with k=2 �n /k
=6.5� and Contois models with k=3 �n /k=4.3� were defined.
These n /k ratios denote calibration under small-sample condi-
tions, corresponding to n /k�40 �Burnham and Anderson 2004�.
Thus, doubling or tripling the number of parameters in the models
appeared unsuitable given the limitations in the available data set.
Following calibration, models were compared using a formal
model comparison metric �Poeter and Anderson 2005�.

For calibration and model ranking, observed concentrations
were assumed to have been measured with an equal error, and a
single value for observation weight, wi, was used �Eqs. �9� and
�11��. The value 0.0016 �mg /L�−2 was calculated based on the
assumption that concentrations were determined with 95% confi-
dence within 
5%.

Effect of Type of Kinetic Model
The different models proposed for this study include first-order
�F1–F3� and Contois �C1–C3� models �Table 2�. For each model,
a minimum value of SWSE was obtained after testing the model
against the experimental data for different values of model param-

Table 4. SWSE Values Obtained during Calibration of Contois Models
C1–C3 as a Function of Tested kc,1 and KA,1 Values

Contois models kc,1 �d−1�

KA,1 �g/g�

7.5 15 30 60

SWSE �10−5�

C1 0.2 4.69 6.67 8.99 11.2

0.3 1.29 2.50 5.37 8.61

0.4 2.15 1.30 3.12 6.53

0.5 8.49 2.51 2.16 4.99

0.6 20.2 5.49 2.30 3.96

C2 �kc,2=0.1 kc,1� 0.2 4.05 5.93 8.20 10.5

0.3 1.17 1.92 4.49 7.63

0.4 2.63 1.15 2.33 5.43

0.5 9.22 2.88 1.64 3.86

0.6 21.3 6.83 2.15 2.90

C3 �kc,2=0.1 kc,1� �kc,3=10 kc,1� 0.2 8.05 6.13 5.69 6.48

0.3 8.43 6.44 5.35 5.39

0.4 6.16 6.77 5.83 5.19

0.5 10.7 7.74 6.77 5.49

0.6 22.0 10.6 8.14 6.15

Note: kc,i=Contois decomposition rate coefficient for substrate i; KA,i

=Contois affinity coefficient for substrate i; wi=0.0016 �mg /L�−2 �Eq.
�9��.
eters, i.e., kf for first-order models and kc and KA for Contois
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models. The results for SWSE are shown in Tables 3 and 4 for
first-order and Contois models, respectively, with calibrated mod-
els having SWSE values ranging from 
3 to 5	10−5 for first-
order models and from 
1 to 5	10−5 for Contois models.

Contois models were observed, in general, to adhere more
closely to the experimental data points than first-order models as
denoted by the resulting lower SWSE values. Eq. �9� includes
�n−k� in the denominator accounting for the difference in number
of model parameters between the models. As shown in Table 5,
AICC, �i, Akaike weight of evidence �Eqs. �10�, �12�, and �13��,
and evidence ratios were calculated for each of the calibrated
proposed models. The results indicated that the proposed C2 and
C1 model hypotheses were supported to a greater extent by the
data, since for these models the lowest AICC values of 25.3 and
26.5 were obtained. For first-order models F1–F3, the AICC val-
ues ranged from 
35 to 40.

Effect of Number of Pools of Decomposable Materials
As previously described, models with a single pool of decompos-
able materials were designed to contain the equivalent of a 20-g/L
initial concentration of decomposable polysaccharides in only
corn stover. Dual-substrate models included an initial 20 and 40
g/L of decomposable polysaccharides in the corn stover and frag-
mented walnut shells. The triple-pool models included a third
pool of a more easily degradable, nearly soluble saccharide at an
initial concentration of 4 g/L �Table 2�. During model calibration,
within each group of proposed models �first-order versus Con-
tois�, the lowest values of SWSE were obtained when calibrating
the dual-substrate Models F2 and C2, with calibrated dual-
substrate models having SWSE values of 2.99	10−5 for Model
F2 and 1.15	10−5 for Model C2. In addition, the value of SWSE
for the single-substrate Model C1 was 1.29	10−5.

Also, within each group of models �first-order versus Contois�,
the lowest values of AICC were obtained for dual-substrate mod-
els �F2 and C2�. Although Model F2 was the best of the first-order
models considered in this study, Models C2 and C1 were superior
to Model F2 by a considerable amount, as denoted by Model F2
having a �i value of 9.5 �with respect to the best model in the set,
i.e., Model C2� compared to the value of 1.2 for Model C1. As
discussed in Poeter and Anderson �2005�, relative to the best
model in the set, models with �i�2 are very good models,
whereas models with 4��i�7 have less empirical support. In
most cases, models with �i� 
10 can be dismissed from further

Table 5. Model Ranking for Models F1–F3 and C1–C3 Using the Akaike
Information Criterion �Eqs. �10�–�13��

Model
designation

Model ranking results

NP k AICC �i wA,i wA,C2 /wA,i

F1 1 2 36.4 11.1 0.002 260

F2 1 2 34.8 9.5 0.005 115

F3 1 2 39.8 14.4 0.0005 1,300

C1 2 3 26.5 1.2 0.4 1.8

C2 2 3 25.3 0 0.6 1.0

C3 2 3 44.8 19.5 0.00004 17,000

Note: NP=number of model adjustable parameters; k=NP+1; AICC

=Akaike information criterion value; �i=delta AICC value for model i;
wA,i=Akaike weight of evidence for model i; wA,C2 /wA,i=weight of evi-
dence ratios relative to Model C2; number of observations in NTA-1 data
set, n=13.
consideration.

NVIRONMENTAL ENGINEERING © ASCE / SEPTEMBER 2010 / 921

tion subject to ASCE license or copyright. Visithttp://www.ascelibrary.org



Effect of Initial Biomass of Decomposer Bacteria
Additional simulations performed using the C2 Contois model as
shown in Table 2, but with different values for the initial biomass
population of decomposer bacteria assumed for simulation, were
performed and SWSE values were obtained. As shown in Table 2,
the initial value for �Xd� / �CE� of 0.005 was considered in this
study, as previously tested by Hemsi et al. �2005�. The effect of
the initial biomass of decomposer bacteria was evaluated by per-
forming simulations with values for �Xd� / �CE� that differed from
the previous value by a factor of 10 �i.e., 0.0005 and 0.05�. For
the assumptions considered in the Contois models shown in Table
2, the lowest values of SWSE were obtained for the initial value
for �Xd� / �CE� of 0.005.

Simulated trends for effluent concentrations of SO4
2− and rates

of sulfate uptake, and total remaining equivalent concentration of
solid substrates, versus time are compared to the measured ex-
perimental data in Figs. 4�a–c�. Three models are shown in these
figures, i.e., Models F2, C1, and C2, whereas Models C1 and C2
were the best of the proposed models, as shown in Table 5.

In Fig. 4�a�, the simulated results for Model F2 differ from the
results obtained with Contois Models C1 and C2 in that Model F2
displays the lowest early-time effluent SO4

2− concentrations. As
shown in Fig. 4�b�, the time rate of sulfate reduction with Model

Fig. 4. Results from model calibration using NTA-1 data conside
experimental data: �a� effluent sulfate; �b� rates of sulfate uptake; �c�
of decomposers for Model C2
F2 is a maximum at the beginning of the simulation and declines
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monotonically with time as the solid substrate is consumed, as
previously observed for simulation of sulfate reduction in solid-
substrate batch tests �Hemsi et al. 2005�. Comparing effluent
SO4

2− modeled by C1 and C2, Model C2 presents higher rates of
sulfate reduction �Fig. 4�b�� than Model C1 due possibly to some
combination of the effects of having higher kc for the corn stover
�i.e., 0.4 d−1 versus 0.3 d−1 in Model C1� and containing the
walnut substrate. The ability to explain the results in terms of kc

values is somewhat complicated by the differences in KA in these
models �15 g/g versus 7.5 g/g�. However, for times �105 d, the
rate of sulfate reduction predicted by Model C1 surpasses that of
Model C2, despite the effect of the presence of walnut shells. This
observation suggests that, for the parameter tying assumptions
considered, the most impacting substrate was corn stover. Simu-
lated effluent concentrations for Zn2+ for the test duration of
�130 d remained approximately zero for Models F2, C1, and
C2, in agreement with the data shown in Fig. 2�c�.

The experimental data provided for the comparison shown in
Fig. 4�c� are based on the measured variation in the total dry mass
of solid substrate per bioreactor �average� after 130 d of 5.0 g. As
shown in Fig. 4�c�, Models C1 and C2 resulted in good simula-
tions of the measured mass variation in solid organic substrate,

rst-order Model F2 and Contois Models C1 and C2 compared to
emaining mass of corn stover; �d� modeled total equivalent biomass
ring fi
total r
assuming that walnut shell mass variation was negligible. Decom-
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poser bacteria biomass versus time is shown in Fig. 4�d� for
Model C2, i.e., for decomposers associated with corn-stover and
walnut-shell substrates.

Model Testing

Models C2 and C1, which resulted in the lowest AICC values in
model ranking based on experimental data from NTA-1, were
subsequently used in attempts to model the experimental results
of an independent test, SCA biocolumn 1 �i.e., SCA-1�. As shown
in Fig. 5, model simulations of effluent SO4

2− concentrations ver-
sus time compare well to experimental data �i.e., measured efflu-
ent SO4

2− in SCA-1 versus time�, for calibrated Models C2 and
C1. The computed values of SWSE for these simulations with
respect to the SCA-1 data �Fig. 5� are 2.1	10−5 for Model C2
and 4.0	10−5 for Model C1, assuming wi=0.0016 �mg /L�−2, as
assumed for the previous calibrations. Therefore, Model C2,
which was the best model among the proposed models in this
study for simulating NTA-1 data, also was the best model for
simulating experimental data from the independent SCA-1 experi-
ment. One factor to bear in mind in terms of the SCA-1 data is
that the possible biological inhibition due to Zn2+ was not consid-
ered in the models, but may have occurred in SCA-1 due to the
reasons previously explained.

Model Prediction: Longevity of NTA-1

Assessments of longevity for biological passive treatment systems
are widely recognized as a major issue related to design and op-
eration. Modeling was applied in attempting to predict longer-
term behavior �i.e., beyond the testing time of 130 d� for the
NTA-1 biocolumn, considering the best calibrated models in this
study, Models C2 and C1. The longer-term behavior of NTA-1
was modeled considering a total time of 730 d �2 yr�.

As shown in Fig. 6�a�, effluent SO4
2− concentrations were pre-

dicted to increase and approach influent concentrations after

300 d of biocolumn operation for Model C1 and to remain
slightly less than influent concentration �
850 mg /L� for Model
C2. This time is interpreted, for both models, as being associated
with the end of decomposition of degradable polysaccharides in
corn stover as shown in Fig. 6�b�. The models also predicted the
remaining mass of degradable polysaccharides in corn stover to

Fig. 5. Model verification with SCA-1 data considering Models C1
and C2
be depleted and the associated bacterial population �equivalent
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biomass concentration� to decline reaching zero at 
400 d. This
predicted biocolumn longevity is a function of the small particle
size of the corn stover and the limited amount of bioavailable
substrate. Increased operational life in a field implementation will
require the modification of the substrate mixture to include a
larger fraction of bioavailable substrate and also should include
larger particles to decrease the overall rate of organic substrate
decomposition.

Conclusions

New reactive transport models for the bioremediation of mining
influenced waters in solid-phase bioreactors were calibrated
against experimental data, tested for an independent data set, and
employed for predictions of biocolumn longevity beyond testing
time. First-order �F� and Contois �C� kinetics for decomposition
as well as different numbers of pools of decomposable materials
were proposed in different models �F1–F3 and C1–C3�. Calibra-
tions were quantified by assessing calibration error SWSE on the
basis of model predictions of biocolumn effluent concentrations
for SO4

2− against data from Column NTA-1. Due to limitations in
the calibration data set, the number of adjustable model param-
eters was limited using parameter tying. Calibrated models were
ranked using the Akaike information criterion �AICC�.

Models based on Contois kinetics with initial population of
decomposer bacteria corresponding to �Xd� / �CE�=0.005 and ki-
netic parameters for decomposition of corn stover kc=0.4 d−1 and

Fig. 6. Model �C1 and C2� predictions for NTA-1: �a� longer-term
effluent sulfate concentrations; �b� decomposable polysaccharides
and decomposer bacteria
KA=15 g /g �Model C2, with tied parameters for walnut shells�
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and kc=0.3 d−1 and KA=7.5 g /g �Model C1� attained the lowest
values of AICC. Thus, Models C2 and C1 �i.e., based on Contois
kinetics� emerged as the models that were supported to a greater
extent by the data. As a result, model testing was performed for
the independent SCA-1 biocolumn data considering only Models
C2 and C1 and parameter values from calibration �NTA columns�.
Comparisons of the modeling and experimental results indicated
good approximations of effluent sulfate, with overall discrepancy
�SWSE� within the range of calibration errors obtained for the
calibration data sets.

Finally, model prediction of biocolumn longevity was per-
formed on the calibration data set �NTA-1�. The predicted perfor-
mance indicated that the experiment would have remained
operative, i.e., before depleting the SR capacity, for an additional

200 d after termination of the biocolumns in the laboratory.
Future model validation using longer-term field data sets will be
necessary to confirm model predictions.
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