Toward the Sensible Use of Tailings Filtering Technology

Bryan Ulrich, P.E., PrEng.
Stantec Consulting Services, Inc.,
Denver, Colorado, USA

Josh Rogers, P.E., P.Eng
Stantec Consulting Services, Ltd.,
Burnaby, BC, Canada
1. Safety Share
2. Tailing Disposal Methods and Classification
3. Selecting a Preferred Disposal Alternative
4. Target Moisture Content for Clayey Tailings
5. Water, Water Everywhere?
6. Structural Requirements?
7. Q and A
Safety Moment

Watch for Motorcycles
Share the Road
BACKGROUND:

Tailings Disposal Methods and Definitions
Deposition Method Classification

From: Jewell & Fourie (2006)
Deposition Method Classification

Common Yield Stress and Percent Solid Ranges per Tailings Deposition Method

<table>
<thead>
<tr>
<th>Tailings Classification</th>
<th>Yield Stress(^{(1)}) (Pascals)</th>
<th>Typical Percent Solids (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Tailings</td>
<td><5 to 20</td>
<td><50</td>
</tr>
<tr>
<td>Thickened Tailings(^{(2)})</td>
<td>20 - 100</td>
<td>50-70</td>
</tr>
<tr>
<td>Paste Tailings</td>
<td>100-800</td>
<td>70-85</td>
</tr>
<tr>
<td>Filtered Tailings</td>
<td>>800</td>
<td>>85</td>
</tr>
</tbody>
</table>

NOTE:
1. As measured at the point of deposition using a shear vane device.
2. Often also defined by non-segregating behavior at deposition.

- Based on depositional characteristics
- Helpful to define likely behavior
- Remove confusion surrounding what is being produced ("conventional thickened" vs. "high-density thickened")

<table>
<thead>
<tr>
<th>Tailings Classification</th>
<th>Yield Stress(^{(1)}) (Pascals)</th>
<th>Typical Percent Solids (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Tailings</td>
<td><5 to 20</td>
<td><50</td>
</tr>
<tr>
<td>Thickened Tailings(^{(2)})</td>
<td>20 - 100</td>
<td>50-70</td>
</tr>
<tr>
<td>Paste Tailings</td>
<td>100-800</td>
<td>70-85</td>
</tr>
<tr>
<td>Filtered Tailings</td>
<td>>800</td>
<td>>85</td>
</tr>
</tbody>
</table>

NOTE:
1. As measured at the point of deposition using a shear vane device.
2. Often also defined by non-segregating behavior at deposition.

Deposition Method Classification

Common Yield Stress and Percent Solid Ranges per Tailings Deposition Method

<table>
<thead>
<tr>
<th>Tailings Classification</th>
<th>Yield Stress(^{(1)}) (Pascals)</th>
<th>Typical Percent Solids (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Tailings</td>
<td><5 to 20</td>
<td><50</td>
</tr>
<tr>
<td>Thickened Tailings(^{(2)})</td>
<td>20 - 100</td>
<td>50 - 70</td>
</tr>
<tr>
<td>Paste Tailings</td>
<td>100 - 800</td>
<td>70 - 85</td>
</tr>
<tr>
<td>Filtered Tailings</td>
<td>>800</td>
<td>>85</td>
</tr>
</tbody>
</table>

NOTE:
1. As measured at the point of deposition using a shear vane device.
2. Often also defined by non-segregating behavior at deposition.

Accounts for stresses induced through the transportation system – intent is to classify by depositional characteristics

<table>
<thead>
<tr>
<th>Tailings Classification</th>
<th>Yield Stress(^{(1)}) (Pascals)</th>
<th>Typical Percent Solids (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Tailings</td>
<td><5 to 20</td>
<td><50</td>
</tr>
<tr>
<td>Thickened Tailings(^{(2)})</td>
<td>20 - 100</td>
<td>50-70</td>
</tr>
<tr>
<td>Paste Tailings</td>
<td>100-800</td>
<td>70-85</td>
</tr>
<tr>
<td>Filtered Tailings</td>
<td>>800</td>
<td>>85</td>
</tr>
</tbody>
</table>

NOTE:
1. As measured at the point of deposition using a shear vane device.
2. Often also defined by non-segregating behavior at deposition.

Industry Precedent for Deposition Methods

- Martin and Davies (2000) estimated there were approximately 3,500 tailings facilities in operation worldwide as of 2000.
- In 2010, Davies, et al. estimated that only approximately 100 facilities were using alternative disposal methods (co-disposal, surface paste, filtered, thickened).
- Conventional disposal still comprises the vast majority of all tailings operations world wide (perhaps 3,400 of 3,500).

From: Davies et al. (2010)
However - alternative deposition methods are increasingly being adopted
• Increased regulatory scrutiny
• Description of filtered tailings as “Best Available Technology”
• Increasing corporate focus on failure consequences, water and social license to operate, etc.

From: Davies et al. (2010)
Industry Precedent for Deposition Methods

Filtered Tailings Precedent - Production Rate Vs. Net Annual Precipitation

From: MEND (2017)
• For filtered tailings, precedent remains at
 • relatively low production rate facilities (6,500 tpd)
 • often in relatively arid regions

From: MEND (2017)
• Highest production rate successfully commissioned filtered facility to date known to the authors is La Coipa (15 to 18 ktpd)
• Wet cake, climatic drying
Understand that Karara experienced difficulties in achieving the full production rate.
• High production rate facilities have been proposed or are being trialled (>50 ktpd)
• These would represent a significant step forward in precedent and may initiate a significant change in the industry if successful

Filtered Tailings Precedent - Production Rate Vs. Net Annual Precipitation

From: MEND (2017)
PRIMARY OBJECTIVE:

Selecting a Preferred Disposal Alternative
Selecting a Preferred Disposal Alternative

Rule #1: There are no Panaceas
Rule #2: There is only one Rule
Appendix 2: Best Available Technology and Best Available/Applicable Practice

Best Available Technology, or BAT, is the site-specific combination of technologies and techniques that is economically achievable and that most effectively reduces the physical, geochemical, ecological, social, financial and reputational risks associated with tailings management to an acceptable level during all phases of the life cycle, and supports an environmentally and economically viable mining operation.
Selecting a Preferred Disposal Alternative

- Location?
- Technology?
- Variety of impacts, stakeholders, technical disciplines
Selecting a Preferred Disposal Alternative

- Multiple Accounts Analysis (MAA) methodology discussed by Robertson and Shaw (1999)
- Adapted by Environment and Climate Change Canada (ECCC) – *Guidelines for the Assessment of Alternatives for Mine Waste Disposal*
Appendix 3: Assessment of Alternatives

Multiple Accounts Analysis

Multiple accounts analysis (MAA) is a tool that is used to support decision-making, including for tailings management. There are a number of good, structured decision-making tools available to assist the tailings planning and design process. Since the federal regulator in Canada mandates the use of MAA, it is given additional focus here. This approach was described in *A Multiple Accounts Analysis for Tailings Site Selection.*⁵ It was expanded upon by Environment and Climate Change Canada in its *Guidelines for the Assessment of Alternatives for Mine Waste Disposal* (2011). This discussion is based on the approach as described in these documents.
Selecting a Preferred Disposal Alternative

Guidelines for the Assessment of Alternatives for Mine Waste Disposal

• Seven Step Process:
 1. Identify Candidate Alternatives
 2. Pre-Screening Assessment
 3. Alternative Characterization
 4. Multiple Accounts Ledger
 5. Value-Based Decision Process
 6. Sensitivity Analysis
 7. Document Results
Selecting a Preferred Disposal Alternative

TMF Alternative Scores in Sensitivity Analysis

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green Valley Conventional</td>
<td></td>
</tr>
<tr>
<td>Old Pit Disposal</td>
<td>6.00</td>
</tr>
<tr>
<td>Lot 50 Dry Stack</td>
<td>3.00</td>
</tr>
<tr>
<td>West Plot Thickened</td>
<td>2.00</td>
</tr>
</tbody>
</table>
Selecting a Preferred Disposal Alternative

Seven Step Process:
1. Identify Candidate Alternatives
2. Pre-Screening Assessment
3. Alternative Characterization
4. Multiple Accounts Ledger
5. Value-Based Decision Process
6. Sensitivity Analysis
7. Document Results

TMF Alternative Scores in Sensitivity Analysis

- ECCC Recommended Weightings
- All Account Weightings Equal
- Environmental Account Bias
- Technical Account Bias
- Project Economics Account Bias
- Socio-Economic Account Bias
IF FILTERED TAILINGS IS THE MOST FAVORABLE TECHNOLOGY:

Some Rules of Thumb...
DESIGN CONSIDERATION:

Target Moisture Content for Clayey Tailings: How about Trafficability as a Guideline?
How about Trafficability as a Guideline?

Atterberg Limits and Tailings Filtration

For clayey tailings, the filter cake is often produced at a moisture content somewhere between its Liquid and Plastic Limits.

Let’s look there for guidance.
How about Trafficability as a Guideline?

Based on a database of 641 fall cone test results from 101 cohesive soil samples at Bristol and Cambridge…

An updated correlation between the undrained shear strength of a soil (C_u) and its liquidity index (LI) was developed:

$$C_u = 1.7 \times 35^{(1 - LI)} \text{ kPa for } 0.2 < LI < 1.1$$

Where: $LI = (w - PL) / (LL - PL)$

Vardanega and Haigh (2014)
How about Trafficicability as a Guideline?

Fig. 4. Natural logarithm of undrained shear strength plotted against liquidity index: resulting regression shown.

\[l_t = 1.150 - 0.283 \ln(c_u) \]
\[R^2 = 0.948 \]
\[n = 641 \]
\[SE = 0.059 \]
\[RD = 22.9\% \]
\[p < 0.001 \]

From: Vordanega and Haigh (2014)
How about Trafficability as a Guideline?

\[C_u = 1.7 \times 35^{(1 - Li)} \]

- PI = 15
- PI = 5

Moisture Content, Percent

Undrained Shear Strength, kPa

- PL=25, LL=30
- PL=20, LL=25
- PL=20, LL=35
- PL=5, LL=25
How about Trafficability as a Guideline?

\[C_u = 1.7 \times 35^{(1 - LI)} \text{ kPa} \quad \text{for } 0.2 < LI < 1.1 \]

Where: \(LI = \frac{(w - PL)}{(LL - PL)} \)

If \(w = LL \), then \(LI = 1 \) and \(C_u = 2 \text{ kPa} \)

If \(w = PL \), then \(LI = 0 \) and \(C_u = 60 \text{ kPa} \)

Vardanega and Haigh (2014)
How about Trafficicability as a Guideline?

\[C_u = 1.7 \times 35^{(1 - LI)} \text{ kPa for } 0.2 < LI < 1.1 \]

Where: \(LI = (w - PL) / (LL - PL) \)

Using Terzaghi’s Bearing Capacity Equations:

<table>
<thead>
<tr>
<th>Moisture Content</th>
<th>Bearing Capacity (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(q_{ult})</td>
</tr>
<tr>
<td>(w = PL)</td>
<td>260</td>
</tr>
<tr>
<td>(w = LL)</td>
<td>70</td>
</tr>
</tbody>
</table>

Vardanega and Haigh (2014)
How about Trafficicability as a Guideline?

\[C_u = 1.7 \times 35^{(1 - L_I)} \text{ kPa for } 0.2 < L_I < 1.1 \]

<table>
<thead>
<tr>
<th>Moisture Content</th>
<th>Bearing Capacity (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w = PL)</td>
<td>(q_{ult}) 260</td>
</tr>
<tr>
<td></td>
<td>(q_{all}) 90</td>
</tr>
<tr>
<td>(w = LL)</td>
<td>(q_{ult}) 70</td>
</tr>
<tr>
<td></td>
<td>(q_{all}) 20</td>
</tr>
</tbody>
</table>

Approximate example ground pressures:

A Typical Person ~ 40 kPa
D6 Low Ground Pressure Dozer ~ 30 kPa
320D Excavator ~ 40 kPa
Articulated Trucks ~ 400 kPa

(Caterpillar, 2012)
How about Trafficability as a Guideline?

\[C_u = 1.7 \times 35^{(1 - L_I)} \text{kPa} \quad \text{for } 0.2 < L_I < 1.1 \]

<table>
<thead>
<tr>
<th>Moisture Content</th>
<th>Bearing Capacity (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(q_{\text{ult}})</td>
</tr>
<tr>
<td>(w = PL)</td>
<td>260</td>
</tr>
<tr>
<td>(w = LL)</td>
<td>70</td>
</tr>
</tbody>
</table>

Approximate example ground pressures:

- A Typical Person ~ 40 kPa
- D6 Low Ground Pressure Dozer ~ 30 kPa
- 320D Excavator ~ 40 kPa
- Articulated Trucks ~ 400 kPa

(Caterpillar, 2012)
DESIGN CONSIDERATION:

Water, Water Everywhere?
Water, Water Everywhere?

Other Sources of Water (or Pore Pressure):
- Plant upset conditions
- Precipitation
- Self-weight consolidation
- Construction-induced pore pressure

How about some underdrains?
Water, Water Everywhere?

How about some underdrains?
Accommodating Varying Tailings Characteristics

Structural Requirements?:
Accommodating Varying Tailings Characteristics

Structural Requirements for:
- Static Loading
- Earthquake Loading

Consider:
- Increased Pore Pressures (Including Construction Induced)
- Decreased Shear Strength
- Cyclic Softening
- Liquefaction
Accommodating Varying Tailings Characteristics

(Illustration Source: Vick 1990)
Q and...A?

Bryan Ulrich
Bryan.Ulrich@Stantec.com

Josh Rogers
Josh.Rogers@Stantec.com