

IT Industry Power Supply Technology and Skill Requirements

Dr. Scott D. Strand

Program Director, Platform Procurement Engineering IBM

IBM Servers: Hardware Integration

zSeries

- ■"Bulletproof" reliability
- Dynamic workload management
- Leading-edge security

xSeries

- Leading price / performance
- "Industry-standard" architecture
- Leading integrated server management

xSeries

- "Industry-standard" architecture
- NT / UNIX workloads
- Industry-leading SAN solutions

iSeries

- Leading single-system reliability
- Leading turnkey environment
- ■Support for mixed OS workloads

New Server
Architecture

pSeries

- Leading RISC / UNIX performance
- Large SMP scalability
- Industry-leading clustering

SSG - Storage

- Leading price / performance
- Scalable, building-block design

Typical Server Application

Power Supply Technology Drivers

Technology Cost Trend

Bulk Power (AC/DC) Cost

System Power Distribution

Why 12V?

Power Density Trend

Price Trend

Power Electronics Technology Trend

Power Topologies

Technology Circuits

Note: The Conclusions are based on actual hardware experience.

Traditional Topology for Low End Server

No ZVS transition for Boost Stage = Larger Heatsinks required

Single Switch Forward = Large Size Transformer required

Simple Secondary Rectification = Large Size Inductor Required

No Current Share Experience demonstrated by hardware Models

No MicroController Experience for Server Application

Lower Cost, Low Efficiency and Lower Power Density Approach

Power Topologies

Technology Circuits

Best of Breed Technology for Server Applications

ZVS transition for High Efficiency Boost
ZVS Bridge Forward dor high efficiency DC/DC
Synchronous rectification with Current Doubler
MicroController Experience for Server Applications

High Efficiency, High Density and Better Cooling Methods.

Power Technology

Challenges

- Technology
- Cost

Power Technology

Technical Challenges and Solutions

Future Power Technical Challenges

- Higher Reliability MTBF
- ► Higher Power Density
- ► Higher Transient Response di/dt
- Higher Efficiency
- ► Lower Voltage Higher Current
- ► Voltage/Current Distribution
- Increased Number Of Voltage Domains
- ► Ability to Hot Swap
- Error and Status Reporting
- Increased Mobile Client Power Needs
- **►** Lower Cost
- ► Shorter Development Cycles
- ► Improved Quality

Technology Solutions

- More Integration
- Higher Switching Frequencies
- Lower Switching and Conduction Losses
- Topology Influences
 - -RES/ZVS/ZCS
- ► Better EMI Design
- ► Innovative Design
- ► Lower Output Impedance
- ► Thermal Management
- Component Improvements
 - Integrated Circuits
 - Battery Technology
 - Power Semiconductors
 - Capacitors
 - Interconnect

Power Architectures

CLASS	ARCHITECTURES
Mobile	 Battery Technology Main Power Source Efficient DC/DC Converters & Power Management
Low End	Centralized Power SupplyPoint-Of-Load Regulator (uP or Memory)
Mid-Range	 Centralized Power Supply Point-Of-Load Regulator (uP or Memory) DC/DC Regulators Imbedded in PS Fully Distributed Power Supply +12V Bus Voltage +12V Input DC/DC Telco (-48V) Version
High End	 Fully Distributed Power Supply +350V Bus Voltage +350V Input DC/DC Fully Distributed Power Supply +48V Bus Voltage * +48V Input DC/DC

Technology Challenges

Faster Semiconductors Require:

Higher Current Lower Voltage

Technology Challenges

Faster Semiconductors Cause:

High di/dt

Technology Challenges

Processor Power Trends

Power per Cell Decreasing Function Increasing N-Way Processors

Larger Chips/More Integration Multi-Chip Modules Higher Operating Frequencies

Power Technology

Technology Challenges → di/dt, efficiency

- High di/dt Requires A Fast Response Converter
- di/dt Requirements are up to 250 Amps/uS with Year 2006 Requirements Expected To Reach 1000 Amps/nS (a 4000x increase!!)
- Adding Low ESR, Expensive Capacitors Is No Longer Feasible For Future Low And Midrange Systems
- System Thermal Requirements Call For High Efficiency Converters

Skills Expected of Our Suppliers

What Technical Capabilities Are Expected From Our Suppliers?

- Simulation/Modeling Capabilities
 - → Electrical
 - → Thermal
 - → Mechanical
- Innovative Designs
 - → DC/DC For Next Generation Processors
 - → High Density AC/DC
 - → Improved Efficiency
- Common Industry Design Techniques
 - → Form Factor
 - → Connector
 - → Communication
 - → Current Sharing

Entry Level Engineer Expectations

P	roticien
Switching power supply technology	4
Analog circuit design and analysis	
techniques	3
Understanding of magnetics	3
✓ Simulation skills	3
 Basic understanding 	
Communication skills	5
Written	
Oral	
Teamwork experience and skills	5

Experienced Engineer Expectations

	Proficiency
Power supply design experience	5
Analog circuit design and analysis	5 5
Magnetic component design and	
implementation	5
Analog simulation	5
✓ Digital design	4
✓ Digital simulation	3
✓ Verbal communication	5
✓ Written communication	5
√ Teamwork experience and skills	5

