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Lecture 52

I.   Accurately Measuring or Calculating Loop
Gain, mv miT (s) or T (s) , by Voltage or Current
Injection: Theory versus Experiment 

A. Why Fixate on Loop Gain?

B. How to Measure Loop Gain accurately

1. Voltage ,V, injection Method:  1

2
 <  1Z

Z
a. Art of choosing the injection point
b. Conditions for Tm(s) = T(s)= TC(s)
c. Analysis of Two Injection Conditions

(1) Z1 (looking back) < Z2 (looking  
             forward)

(2) |T| >> Z1/Z2
d. Op amp examples

(1) V injection @ Zout
(2) Voltage divider’s for analyzing   

                                 Tmv(s)

2. Current , I, Injection Method:  2

1
 <  1Z

Z
a. Artful choice for i injection

Z2(looking forward) << Z1 (looking    
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                       back) |T|  >  2
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Z
Z

3. General Injection Point
1

2
  1Z

Z
〈〈 2

1
  1Z

Z
〈〈 1

2
  1Z

Z
≈

 v injection      i injection            ?

4. Measuring T(s) in Unstable Systems

C. Example: Erickson Pbm 9:10
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I.   Accurately Measuring or Calculating Loop
Gain, mv miT (s) or T (s) , by Voltage or Current
Injection: Theory versus Experiment 

A. Why Measure Loop Gain?
Our intent is to accurately measure loop gain, in order to analyze it
and determine if we could improve it.  In order to apply GC(s)
compensation networks we first have to first know the true state
of the uncompensated T(f) and then tailor it to achieve better
closed loop performance we desire for the converter. For single
pole T(f) one would say it is always stable in closed loop and
therefore in no need of improvement.  However, we show below
that single pole T(f) is also a big beneficiary of COMPENSATION.
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The above Bode plot contains both the uncompensated and
compensated versions as well as the gain bandwidth limits of the
op-amp employed in compensation networks.  The gain curves for
the uncompensated T(f) are in the lower portion of the figure,
starting from 20 db and with a single pole, at ffp.  Note the pole
location varies with load because ffp~ 1/ R(load) C(filter cap).  
This single pole response is characteristic of current controlled
converters as described in Chapter 11 of Erickson, as well as of
the DCM mode of voltage controlled converters as described in
Erickson chapter 10.  The zero in the T(f) is caused by??  This
T(f) would be stable in closed loop operation so why bother with
additional compensation to T(f)?  Clearly for better closed loop
transient response, we would like to INCREASE the fC of T(f) up to
the limit fC< fSW /5.  The op-amp GC plot to accomplish this is also
shown in the figure starting at 50 db for DC and possessing a
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SINGLE pole at a location fep.  The potential problem is that we
must be careful that the compensation not exceeds the gain
bandwidth product of the op-amp, which is plotted to the far right
hand side of the gain plots versus frequency.  The overall or
compensated T(f) plots are shown on the very top of the figure
starting at 70 db ,near DC, and exhibiting an average slope of 20
db/decade throughout the entire frequency region.  This is
accomplished by carefully placing the GC single pole
compensation, fep, right near the ESR zero location at the
frequency, fZ (ESR).  The op-amp provides 180 degrees of phase
shift from DC onwards and the single pole will kick-in at fEP to add
another 90 degrees starting at the frequency f= fPE /10 and
completing the full 90 degrees at f=10 fPE as shown on the top of
page 5. 

The key design choice is to place
fEP ~fZ(ESR)

Given this condition of an average slope of 20 db/ decade for the
compensated loop gain, the combination of the uncompensated
DC gain, GVD(uncompensated)=GDC in db units, and the op-amp
compensator gain at DC, GC= GXO in db units, will determine the fC
of the overall or compensated loop gain since GXO +GDC = 20 log
(fXO/ fFP).  Note in absolute units, we have AA and AXO for the
absolute gain of the op-amp and the original uncompensated
converter response respectively.  Where fXO is the
uncompensated loop gain crossover frequency.  The op-amp
implementation to achieve a single pole compensation network
,with in-band gain limiting, is shown below.



6

6

The amount of extra gain need below the single compensation
pole to hit the desired fC is given by:

GA = GXO + 20 log ( fXO/ fEP) in db
The resistor value R2 ,is related to R1 by the relation:
AA( in absolute units) = 10 G(A) /20 and R2 = AA R1
Finally the value of the R1 and the filter capacitor must satisfy the
a simple relationship to the single pole location:
 fEP = 1/ 2π R1 C AXO
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Owing to the high DC gain and high fC desired we may find that
the op-amp gain-bandwidth product MUST BE such as to easily
exceed the compensation network gain bandwidth product.  This
limit of the op-amp is shown as the dashed curve in the gain plots
to the far right hand side.  The wrong choice of op-amp frequency
response could kill the efficacy of this method of GC.

Lets recount two points about T(s) functions and feedback.

These two points should always be kept in mind as we apply
compensation to original T(s) that we encounter.  However
ACCURATE determination of the original T(s) is crucial.  How to
we insure that our calculations on T(s) or measurements of T(s)
are accurate??  See section B on page 7.  Indeed if we have an
inaccurate measure of uncompensated T(s), the cure via a new
GC may be worse that the original perceived malady.
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B. How to Measure or Calculate T(f) Accurately
We will cover both voltage (section 1) and current injection
methods (section 2) to either measure or calculate loop gain T(s). 
Comparisons between theory and experiment are very revealing.

1. Voltage Injection Method of Measuring T(s)
a. Artful choice of v injection location. 

This means a point near an ideal v source where the impedance
looking back from the injection point is nearly zero.  This is a
difficult choice unless we employ an op-amp in the compensator
network.  ZIN for an ideal op-amp is high and ZOUT is low so it’s use
offers the location of a near ideal voltage injection point as shown.

Vy Z2

Vz

injection

Vx

i(s)
Z1

ideal
v

output of
op. amp.
a good
choice

.....

VX is the loop voltage input and VY is the loop voltage output.  We

inject Vz(f) and measure  y

x

V (f)

V (f)
 as a function of frequency.  Below

if we measure T(s) with a break point between Z1 and Z2 ,we will
find:  T(s) = G1(s) * ( Z1/(Z1+Z2)) G2(s) H(s)
What occurs if Z1 <<Z2??  What about Z1 >>Z2 ??

vref(s) G2(s)vx(s)=v(s)+
-

H(s)

G1(s)ve(s)ve(s) Z2(s)

Z1(s)

^^ ^^

T(s)

^vx(s)^

+

-

A
Block 1 Block 2
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In practice when we break the feedback loop we have to be
careful to preserve the DC levels that pre-existed before we
intruded to make T(f) measurements.  We also have to consider
that the ideal v source has some series impedance.  Finally to get
loop gain Vy/Vx via valid superposition rules, we must have ONLY
Vz as an input to the system.  All other independent inputs must be
disabled.  That is their ac variation must be zero about their DC
values: all other ac V(sources) shorted and all other ac I(sources)
opened.  We see one such situation below.

vref(s) G2(s)vx(s)=v(s)+
-

H(s)

G1(s)ve(s)ve(s)
Z2(s)

Z1(s)

^^ ^^

Tm(s)

^vy(s)^

-

+

Block 1 Block 2

vx(s)^

+

-

Vcc

vz^

0

mT (s)  =  yV

xV ∆
∆

Vref 0
Vg 0

≈
≈

TM implies measured values of loop gain and TC a calculated
value of the loop gain.  Parasitic elements will make TM and TC

differ substantially as will other effects to be discussed below.
For a full test of T(s) drive source, vZ, at a variety of frequencies. 
Because of the effect of loading of block 2 on block 1, the
measured loop gain as compared to the actual loop gain is:

m
1

2
T (s)  =  T(s)  1+ (s)

(s)
Z
Z







b. Rough Required Conditions for Tm ≈ the actual T(s)
Only if certain conditions are met will either TM or TC be a valid
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measure of actual conditions.
1.  AC Conditions

m s 2 1T  =  T  if  v Z Z〉〉   for all applied
frequencies

   ↓
This is why the art of choosing
the injection point for
voltage is so important

Second big problem for V injection
2.  Maintaining Proper DC Conditions during Measurement
If T is large especially at low f or dc, as we designed it, then a very
small mV dc variation could SATURATE some components as we
try to measure T(s).  Op amps used in the Gc(s) block are
especially susceptible to this undesired low frequency saturation.
So we usually keep the dc loop closed by injection Vz via a
transformer winding.  The dc sees the winding as a short and the
low frequency/dc loop remains closed and unperturbed. 
Alternatively we insert ac signals via a big capacitor to allow ac
passage and DC blockage.  However the DC blockage harms the
stabilizing effect of feedback unless we carefully reinsert the DC
by a potentiometer.  Opto-couplers offer another choice:
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For HW #4 what’s the advantage of opto isolation for T(s) data??
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3.  The Proper Loop Gain Path: The Shining Path
Third big problem for injection point is the possibility of multiple
paths from the injection point to the output.  Choose an injection
point with the one path to the output - the shining path or sendero
luminoso.  Finally, we often can make a useful approximation that
for T(s) large in the closed loop, Vc →  0.  This is often useful in
control loops where you have a mix of control blocks, circuits, and
summing points.  Setting or assuming Vc →  0 simplifies the
solution of T(s) as it does in op amp circuits with apparent
complex feedback paths subsequently being reduced to a simpler
circuit.  Use if possible, simple V divider analysis between and
within blocks as we will show below.  In summary:

c. Complete Analysis of When mT (s)  =  T(s)v = TC(s)
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vref(s) G2(s)vx(s)=v(s)+
-

H(s)

G1(s)ve(s)ve(s)
Z2(s)

Z1(s)

^^ ^^

Tv(s)

^vy(s)^

-

+

Block 1 Block 2

vx(s)^

+

-

0

Zs(s)

vz(s)^ +- i(s)^

vz(f)

dc short

ve=-vxG2(s)H(s)

Avoids problematic
dc bias issues.

The circuit
provides the

proper dc bias!

vy=-G1(s)ve(s)-is(Z1(s))^

Vy and Vx are put into the inputs of a network analyzer tuned to the
f of Vz(f).  We can either measure T(s) all at once or do it in
tandem sections. If we are artful on the choice of the injection
point with (1) Z1 << Z2 and (2) T(s) > Z1/Z2 then the actual values
of Vz and zs(s) are not relevant either to the measurement nor the
calculation of T(s).  Give this we would naturally choose Zs(s) big
to even further reduce any loading effects.

  Ve(s) = - Vx(s) G2(s) H(s)
see block 1 - Vy(s) = G1(s) Ve(s) - i(s) Z1(s)

- Vy(s) = -Vx(s)G2(s) H(s) G1(s) - i(s) Z1(s)
    ↓

  x

2

V
(s)Z

y

x
1 2

1

2

V (s)

V (s)
  = G (s)G (s)H(s)  +  

(s)
(s)∆

∆
Vref
Vg

Z
Z=

=
0

0

m 1
1

2
T (s)  =  G G +  v

Z
Z

2H as measured in a real system

T(s)  =  G   G H1
1

1 2
2

Z
Z Z

actual values of T versus f
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m
1

2

1

2
T (s)  =  T(s)  1+  +  v

Z
Z

Z
Z







lowest smallest measurable

loop gain
That is measured or calculated T(s) is believable only under
certain very specific conditions. 

mT   T(s)v ≈         
iff (1) Z1< Z2 for all frequencies of interest
    (2) T >> Z1/Z2  at all frequencies of interest  
Clearly Z1/Z2 versus frequency limits the lower end values of T(s)
that can be extracted from Tm(s) with V injection methods and still
maintain any accuracy of measurement or calculation.

T

Z1/Z2 limit
fc

Usually we find for f > fc we
enter a problem area for the V
injection method as T is small
and the required condition
T > Z1/Z2 may not be met.

One “trick” is to seek a f range where Z2 is very large, then get
initial Tm(s) measurements there.

d. Measurement of T(s) versus Theory
We always compare measurement versus theory and compare to
achieve a more holistic understanding of the loop gain.
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Which is the plot to believe and under what conditions??  Are
experimental Bode plots always correct?  Above what is the slope
of the expected roll-off and why is the measured different?  Can
you make some guesses to these questions?
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e. Isolated Op Amp Examples of T(s) Calculations
1. V injection at output of op amp insures low Z looking

back from the injection point.  Op amp is usually found in the Gc(s)
block.  It’s easy to insert R-C networks around the op-amp to
achieve the desired compensation network for an ailing or non-
optimum converter open loop Bode plot.

500

50

vz(s)^

vx(s)^

+

-

vy(s)^

-

+

+
-

Block 2Block 1 1

2
 =  1

10
Z
Z

  a good rule of 

thumb for v injection validity
Tm(s) = T(s)

m
1

2
T (s)  =  T(s)  1+  +  0.1Z

Z






   ↓              ↓
1.1 or         -20 db
.83 db

            For large Tm(s)       For Tm(s)
            T(s) = Tm+1db        below 20db

          Tm(s) ≠ T(s)
Assume a specific T(s) situation with two well separated poles 

T(s)  =  80db

(1+ s/ 10KHz)(1+ s
100KHz

)

Now we can make the Bode plots of T(s) and muse about what is
good and bad about the uncompensated T(s) and what type of
GC(s) we would employ to improve the compensated T(s) into from
what we are starting with.  But never use bad T(s) data to start the
process.
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TM by voltage injection
methods
ACCURATELY reflects
the real T(s) only down
to values above –20
db.  Below this the
measured T(s) is not
valid.

The V injection method is of LIMITED accuracy and must be
recognized as such.  Lets not tailor GC to fix a non-existant
problem.
2. Using Vc →  0 in Op Amp with Feedback
The T(s) calculation for the GC block below is made easy by
knowing verror between the positive and negative terminals is zero
for very large op-amp gain.  This is called a “virtual ground”.

+

-

C2

C1 R1

R2

Vin
Vout

Vt

V

V

Ve

-

+

+
-

Ro

V0

A(V+-V-)

External feedback
circuit around
ideal op Amp

Op amp input has Verror →  0 due to high loop gain.  This simplifies
the ac circuit analysis as shown below, when verror= 0.  That is we
can use the “virtual ground” concept to reduce the level of
complexity of the circuit analysis. 
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C2

C1 R1

R2

Vin

v

v -

+

+
-

Ro

A(v+-v-)

Best place to
break the loop
for v injection

m
y

x
T (s)  =  

V
Vv

V1 0=
We must remove other independent

sources for accurate loop gain measurement!  VIN = 0. 

C2

C1 R1 R2

Vin

-
+

Ro

-A v-

Vz

vxvy vo

Start analysis assuming we know Vx to find  
y

x

o

x

-

o

y
- m

V
V

 =  (V
V

)( V
V

)(
V

V
)  =  T (s)

Visualize the signal flow around the loop instead of doing loop
equations.  Lets do a series of voltage dividers as follows:

o

x

1
1 2

2

o

V
V

 =  
( 1
SC

+R )  +  (R || 1
SC

)

R [numerator]





 }simple voltage divider
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-

o

1
1

1
1 2

2

V
V

 =  
( 1
SC

+R )

( 1
SC

+R ) + (R || 1
SC

)






}These poles will cancel in

T(s) calculations as we show below.

y
-

V

V
 =  A

gain of the

Op Amp







 If A → ∞

V- →  0

m
1

1

o
1

1 2
2

T  =  
(

1
SC

+R )A

R +[(
1

SC
+R )  +  R ||

1
SC

]
v =( VO/VX)( V-/VO)(VY/V-)=VX/

This method of calculating Tm(s) has
· No complex loop node equations to make mistakes in
· minimum of algebra in which to make further errors
· uses simple V dividers that even I can accomplish

Hence, we have a higher confidence in the final outcome. From
Tm(s) we still have to do the following to make Bode plots easy:

1. Put in std form
m

z

o o

2

T (1+ s
w

)

1+ s
w Q

 +  ( s
w

)

o

2. Draw Bode plots with asymptotes around f0
3. Calculate φm at the T(s) unity gain cross-over frequency to
predict closed-loop stability.
For HW #4 How would above GC be useful to tailor T(s)?

C. How to (measure/calculate) 
imT (s)i  or TCi(s)

The open loop gain can be derived in current terms as well.
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1. Current Injection into the open loop
a. Artful choice of i injection location.  This means a

point just after an ideal current source.  The impedance looking
back from the injection is nearly infinite, or impedance looking
forward is zero.  Hence the ratio or division of current is near unity
from IZ to IX.  IX is the ac input current to the loop and IY is the ac
output current from the loop

ixiy
iz .......

ratio of currents IX/ IZ = 1 is best

m
y

x
T (s)  =  

i (s)

i (s)
All other independent sources are removed in this calculation.
One finds like in voltage injection:

i
T (s)  =  T(s)  1+ (s)

(s)
 +  (s)

(s)
2

1

2

1
mi

Z
Z

Z
Z







Loop System and Injection Point

vref(s) G2(s)vx(s)=v(s)+
-

H(s)

G1(s)ve(s)ve(s)
Z2(s)

Z1(s)

^^ ^^

Ti(s)

^

iy^
Block 1 Block 2

ix̂

0
Zs(s)

iẑ

Tmi(s) = the actual or real T(s) provided we meet the conditions
1. Z2(s) < Z1(s)
and
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2.  T(s) >  2

1

Z
Z

If the two above conditions are met the exact choice of Zs(s)
doesn’t matter.  To maintain dc balance we employ transformers
or blocking capacitors at the injection point.

C

Rz

Vz

iz

Blocking for dc

iz injector
for no

disturbance

In summary, for current injection conditions to be proper:

The question left unanswered is what about a given injection point
that we choose to employ.  What method should we employ to get
the open loop gain?
3. Compare an injection point conditions and decide.

1

2

Z
Z

  low 2

1

Z
Z

  low 2

1
  1Z

Z
≈
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v injection i injection What to do
In later lectures we will cover the case of Z1 =Z2 separately via the
“double null injection method”.
4. Measuring T(s) in Existing but Unstable Systems
Usually we measure T(s) to avoid instability.  To measure Tm(s) in
an existing unstable system we first have to stabilize it in order to
measure it.  Perhaps the easiest way is to kill the loop gain and
regain stability is by the insertion of an external impedance, Zext as
shown below. This instability could break out only under some
extreme transient conditions and it may be only transient in
nature as well.  But it prevents measurements being made.

G2(s)vx(s)=v(s)+
-

H(s)

G1(s)ve(s)ve(s)
Z2(s)

Z1(s)

^^ ^^

Tv(s)

^vy(s)^

-

+

Block 1 Block 2

vx(s)^

+

-

0

Zs(s)

vz(s)^ +-
Rext

Lext

Bypass Rext

with Lext to
preserve dc

loop

Loop Gain Loop Gain
w/o Zext with Zext

o
2

1 2
T  ~  

+
Z

Z Z
x

2

1 2 ext
T  ~  

+ +
Z

Z Z Z
We make ZEXT big to decimate T0( without ZEXT) and thus reduce fC
making the previously unstable T(s) stable for the measurement.

To

fc1

Tx

fc1fc2
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fc2 << fc1   ⇒  Better  φm and should result in a closed loop
response free of instability..
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C. Example: Erickson Pbm 9.10
1. We have a voltage injection point where 1

2
 ~  1

10
Z
Z

 for

all frequencies of interest.  What to do with the TMV(f) data we
collect?  Is it all-believable?  Is there a limited frequency range
over which we can trust the data?
The voltage insertion point is shown below.

10k

1k

vz(s)^

vx(s)^

+

-

vy(s)^

-

+

1k

+-

+
-G1(s)ve(s)^

2nF

Z2Z1

Zs(s) From the insertion point
showm we take the
Tmv(s) data shown below

From measured TM(s)
and associated phase
plots, find valid T(s) and
fmin < f < fmax region of
validity for the measured
data.

This reduces to a ? of over what f range do we meet the criterion:



25

25

Z1(f) << Z2(f).  Only there does TM(s) = actual T(s)

mv
1

2

1

2
T (s)  =  T(s)  1 +  (s)

(s)
 +  (s)

(s)
Z
Z

Z
Z







For the specific conditions we are considering:
1

2 5
(s)
(s)

 =  1K

10K|| 1
s2nF

 =  0.1 +  s

10
Z
Z x5

Z1/Z2 ≈ 1 for f = 20 kHz and Z1/ Z2 will posses a single zero!
The standard loop block will be as depicted below:

G2(s)vx(s)=v(s)+
-

H(s)

G1(s)ve(s)ve(s) ^^ ^^

Tv(s)

^vy(s)^

-

+

Block 1 Block 2
Z2(s)

vx(s)^

+

-

0

vz(s)^ +-

1k
Rs

vref(s)

R1
1k

Zs(s)
10k
R2

2nF
C

i(s)^

Z1(s)

At low f: 1

2

1 ~  R = 1K

10K|| 1
s(2nF)

Z
Z

Z2 is decreasing with f.  The frequency where XC =10K will be an
important one:

1
s(2nF)

 =  10K  f =  1
2 10 2x10

 =  8kHz4 -9⇒
π

At 8kHz Z1\Z2 reduces to 1/5 as Z2 = 10K in parallel with 10 K.

|Z2| = 10K||10K = 5K.  Let’s be generous and still consider this a
valid condition for TMV(s) to be really T(s).
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A still valid condition for Tmv(s) is far below 8 kHz   1

2
  0.1Z

Z
≈   or  -

20 db.  Now @ 8kHz 1

2

Z
Z

 ~ 0.2 or  -14 db.  Finally,

1

2
  1Z

Z
≡  or 0 db at f = 20 kHz.

We can plot this ratio by algebra on the graph to yield.
Z1/Z2

0 db 8 kHz 20 kHz

f

-20 db

Tmv(s)~T(s)
range of validity

Tmv(s) has no
 relation to T(s)

Q=10 db

Now the conditions for valid measurements are clearly noted.  On
the top of page 24 we look at TM and pontificate as to why the zero
seen in the TM data is NOT BELIEVABLE.
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There is a non-
believable zero’s in
TM(s) because the
basic assumption of
voltage injection
method is invalid for
f > 20 kHz since 

2

2
  1Z

Z
≈

Usually T ↓ as f →  ∞
And it does not flatten
out

From the Tmv(s) data below 20 kHz we can guesstimate
· double pole occurs @ 800 Hz with a “Q” of 10 db
· single zero occurs @ 3.2 kHz
· Tmvo = 40 db from the DC values

T(s)   40db(1+ s/ w )

(1+
s

w Q
+(

s
w

) )

z

o o

2
≈

In the standard form of the transfer function: fo = 800 Hz
Q ≈ 10 db or 2.5 and fZ = 3.2 kHz


