
1

Lecture 49
Danger of Instability/Oscillation When Employing
Feedback In PWM Converters

A. Guessing Closed Loop Stability From Open
Loop Frequency Response Data

1. T(s) versus   T(s)
1+ T(s)

2. Phase Margin Test for T(s)
a. Unconditionally Stable

φm = 90o for 1 pole T(s)
b. Conditionally Stable Case

1. Two Near-by Poles
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a. Low Q Approximation
b. High Q Approximation

B.Problem 9.5 of Erickson
C.Closing Tidbits on an Unstable T(s)
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Lecture 49
Danger of Oscillation/ Instability When
Employing Feedback In PWM Converters

A. Guessing Closed Loop Stability From Open
Loop Frequency Response Data

1. T(s) versus   T(s)
1+ T(s)

If we make loop gain, T(s),

arbitrarily large we benefit via 1/1+T factors in the reductions in
Zout or Gvg for the closed loop response ,as compared to the open
loop response.  On the other hand employing feedback brings the
possibilities of system INSTABILITY once we close the loop.  That

is, even if all poles of T(s)  =  
N(s)
D(s)

 are stable and in the left-hand

plane, that does nothing for guaranteeing that the poles of the two
closed loop factors T/(1+T) and 1/(1+T) are also in the left-hand
plane.  They may not be as we show below.

T(s)
1+ T(s)

 =  
N(s)

N(s) + D(s)
⇒ Same poles but not

1
1+ T(s)

 =  
D(s)

N(s) + D(s)
 ⇒ the poles of T(s)

Let’s illustrate the point! Take a stable cubic T(s) in open
loop, that suddenly goes unstable in closed loop due to the
application of feedback.  This is the downside or darkside of
feedback- it’s dirty little secret revealed that we will cover today.
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100
(1+s)

stable

system stability?

3
T(s)  =  

100
(1+ s)3

T(s)
1+ T(s)

 =  
100

(s+1) + 1003

T(s)
1+ T(s)

 =  
100

s + 3s + 3s+1013 2

Use an HP 48 root solver to find right half plane poles are
formed in T/ (1+T) as soon as we close the loop on T(s).

x 1.32+j4.0

x 1.32-j4.0

9.6

Instability with right-hand plane poles occurred with a
feedback loop closed, even though the original T(s) has only
left half plane poles.  Is there any way to predict from the
open loop T(s) whether or not the closed loop will be
unstable so we prevent unpleasant suprises??

2. Phase Margin Test
We will examine below the relation between the open loop
phase margin and the CLOSED LOOP “Q”.  For large closed
loop “Q” can bring dynamic problems like overshoot toi
devices and components.  From the Bode plots of the open
loop gain, T(s), we will be able to predict stability of

1
1+ T(s)

 or 
T(s)

1+ T(s)
.  Intuitively, we expect when |T(s)| = 1, the

phase shift term or phase of T(s) cannot be 180o because
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this will turn good stabilizing negative feedback into bad
destabilizing positive feedback.  But how far from 180o can
we get when the magnitude of T(s) is unity and still be stable.
 The amount of angle separating the phase of T(s) and 180
degrees is termed the “Phase Margin” φm.  Positive phase
margin is a stable leading indicator but negative phase
margin is an unstable leading indicator.  Based on prior
experience we state φm of 76o in the open loop T(s) is a
desired rule of thumb for always achieving stable closed loop
situation with low enough “Q” to also avoid overshoot
problems!  Lets look at several T(s) amplitude and phase
plots and see what we mean.  In general we will find that
increasing the positive phase margin of the open loop T(s)
reduces the “Q” of the closed loop functions T/ (1+T) and 1/(
1+T) and results in no transient overshoot and ringing in the
closed loop responses.  A small phase margin in the open
loop T(s) means a high Q in the closed loop functions, such
as T/ (1+T), with a transient response that both overshoots
and rings.  Lecture 50 will detail the transient response of the
closed loop functions versus “Q”.

We will first at first be dealing with VOLTAGE
CONTROLLED converters operating in the CCM mode, later
in Chapters 10 and 11 we will also include DCM dynamic
response and add current control loops respectively.  Clearly
transformer isolation within converters will primarily change
only the DC response, unless transformer parasitic’s play a
big role.  The control to output open loop characteristic of
voltage controlled converters, T(s), is the behavior of the
converter with the error amplifier removed as shown below.
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Common topologies for this feedback approach include buck,
half and full bridge as well as half-forward and push-pull. 
T(s) versus frequency can either be calculated (never works)
or measured (the safe way).  We break the voltage feedback
loop at the input to the error amplifier since it has such high
input impedance.  The point where the output voltage enters
the error amplifier’s negative input is considered as the
output port for T(s) measurement or calculation.  The
full circuit diagram of a forward converter with it’s T(s)
under test is given in the diagram below.  Note the ESR of
the filter capacitor, which is a parasitic element that will
introduce an important zero to the open loop T(s).  Note also
how the error amplifier in it’s own feedback loops is removed
for open loop T(s) measurements or calculations.  Later in
Lecture 50 it will be compensation networks that we will
introduce into the open loop gain that will “fix” the problems in
the original open loop gain leading to system oscillation or
poor transient response.  For now we will be content in “bird-
dogging” the problems from the T(s) plots.
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We can “guesstimate” the T(s) behavior for the forward
converter as follows.  The DC gain will be Vin /∆Verror which
will be equal to the buck circuit D(on duty cycle), which could
be as large as unity.  Hence in db the DC gain could be as
large as 20 db to start.  The L-C output filter will contribute a
DOUBLE pole at fP= 1/ 2π ( L0 C0)1/2.  Hence we expect after
fP the amplitude plot of T(s) will roll-off at 40 db per decade. 
We assume that the zero from the ESR of the filter capacitor
will occur at a frequency much higher than fP due to the
expected low value of the ESR resistance.  Specifically, fESR

=1/ 2π RESR C0.  With this set of assumptions in mind we can
plot both the amplitude and phase plots of T(s) as shown on
the top of page 6.  Typically, fESR(Tantalum capacitor) =20-30
kHz but the choice of an aluminum electrolytic capacitor
could change fESR (Al electrolytic) = 3 kHz.  Does the choice
of a mere capacitor type change the open loop T(s)??
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The above plots show how to measure the phase margin of
T(s) for this case.  Depending on details of component
choices in the forward converter the T(s) indicates the
possibility of oscillation occurring when we close the loop. 
We could get either stable or unstable behavior depending
upon the sign and the magnitude of the phase margin. 
Stable Unstable
φm > 0 φm < 0

On the left above the T(s) phase margin is +68 degrees and on
the right above the phase margin is-50 degrees.  Which is
unstable and why?  Several open loop T(s) cases present
themselves as easy to determine closed loop stability, which we
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will deal with first.  Later we will challenge more complex T(s).
a. Unconditionally Stable T(s) Case

An isolated pole or single pole always has  φm = 90 or more since
the phase shift cannot exceed 90 degrees.  This would be the
choice for highly critical systems with feedback that we never want
to go unstable.  The DCM flyback is an example of this T(s).

b. Conditionally stable T(s) Cases
A T(s) containing a pole located at low frequencies togeather
with a second pole sufficiently far away from the first is a
common situation.  Depending on how far apart the poles are
we get φm at unity gain from 180o to nearly zero.  Many such
T(s) are purposely designed so that the |T(s)| = 1 condition
occurs at a T(s) slope of 20 db/decade.  Only after the unity
gain point occurs, does the second pole break.  

T(s)  =  
1

s
W

 (1+ s/ W )
o

2

      ↑
          f >> Wo       1+

S
W

S
Wo o

→

f2 →  ∞  say fsw

φm →  90o

f2 →   say the crossover
frequency f0 .  Now we have 
φm →  smaller phase margin than
76o, maybe even 180 worst
case when the pole lies below f0

If,T(s)  =  
1

S
W

(1+ S/ W )
o

2

  ⇒   ωo and ω2 may be close or far apart.
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T(s)
1+ T(s)

 =  
1

1+
S

W
+ (

S
W

)
o c

2

Compare to the standard two pole form  ⇒   
1

1+
S

QW
 +  (

S
W

)
c c

2

⇒  W  =  W Wc o 2 , Q =  W
W

 =  W
W

o

c

o

2

1. The low Q Closed Loop approximation
This case says the two poles are widely separated.  Unity gain is
crossed @20dB/decade and later the second pole breaks.

ωo = ωcQ lying well below ωc in frequency
ω2 = ωc/Q lying well above ωc in frequency

T(s)
1+ T(s)

  then has a higher unity

gain cross-over frequency than
the original T(s) function as
shown.

Higher fc for 
T

1+ T
 implies we achieve a faster transient response

with feedback employed than with open loop, due to reduced gain
of T/ (1+T) compared to T.

2. High Q Closed Loop approximation
For Q > 1/2 f2 decreases towards fo and T(s) unity gain is now
crossed @ 40db/decade which can lead to instability in the
closed loop or oscillatory transient response.
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“Big Q peaking” will occur in the T/(1+T) function as shown
above, even though there is no “strong Q peaking” in the original
T(s).

Value of
T(s)

1+ T(s)
 @ fc is Q above the asymptote. Q  f

f
  f

f
o

c

o

2
≡ ≡ .

 If f2 →  fo Q = 1 and the φm →  52o as shown on next page.  Method
is find f for |T| = 1 < T (f for unity) is evaluated and 180 - < T ≡ φm. 
Clearly  φm = f(fo/f2 or Q2) =tan-1( 1+( 1+4Q4)1/2) /2Q4)1/2 which we
plot below on page 11.

The plot is only good for the two
poles near fc approximation.

A closed loop Q = 1/2 or -6 db
has φm = 76o.
A closed loop Q = 1 or 0 db
has a φm = 52o

Likewise for φm →  0
Q for the closed loop then
skyrockets
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Above plot of Q versus the phase margin is good only for two
close poles.  It is not good for 3 poles near fc.  The Q versus
ϕm above is also good for the case of T(s) crossing unity @
40db/decade with an additional zero at f2 just past the unity gain
crossing as we saw occurred via the fESR for the forward converter.

-20 db/dec

f2/f

(fp/f)

40 db/dec

2

f2

See Pbm. 9.5 for more details on how to analyze this special case.
There are other more interesting T(s) possibilities as shown below.
 What do we do with these cases??  Any suggestions?

FOR HW #4 explain what excess phase will do to the closed loop.
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Voltage Controlled Flyback
Let’s consider next the discontinuous mode flyback converter

controlled by a voltage loop, which has a T(s) very different form
the forward converter examined previously.  In particular we will
find that T(s) has only a single pole, rather than a double pole. 
The ESR of the filter capacitor still introduces a zero to T(s) at a
frequency above that of the pole as shown of the Bode plots of a
DCM flyback shown below .

The output filter pole in the voltage-controlled flyback operating in
DCM DEPENDS on RL = VOUT / IOUT, the load resistance.  This
means that as we change the load conditions ( light versus heavy
load) we are moving the pole location of the output filter around:

fP = 1/ 2π RL C0
As load current decreases( heading to open load) the pole
frequency decreases and vice versa.  This makes error amplifier
compensation schemes more challenging for the flyback.
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B.  PROBLEM 9.5 of Erickson
The forward converter system of Fig. 9.43 is constructed with the
element values shown.  The quiescent value of the input voltage is
Vg = 380V.  The transformer has turns ratio n1/n3 = 4.5. The duty
cycle produced by the pulse-width modulator is restricted to the
range 0 < d(t) < 0.5.  Within this range, d(t) follows the control
voltage vc(t) according to d(t) = ½ vc(t)/Vm with Vm = 3 volts.
(a)  Determine the quiescent

values of: duty cycle D, the
output voltage V, and the
control voltage Vc.

(b)  Sketch a block diagram which
models the small-signal ac
variations in the system, and
determine the transfer function
of each block.

(c)  Construct a Bode plot of the
loop gain magnitude and
phase.  What is the crossover
frequency?  What is the phase
margin?

(d)  Construct a Bode plot of the
closed-loop line-to-output
transfer function magnitude

$
$
v
vg

.  Label important

features.  What is the gain at
120 Hz?  At what frequency do
disturbances in vg have the
greatest influence on the output
voltage?

C
10uF

R
7

+

-

v(t)

vc

..
n1  :  n2  :  n3

vg(t)

L

500uH

fs=150kHz

isolated
transistor

gate driver

.

81.8k

18.2k

5.6k13nF

vref
5.1V

-

+

pulse-width
modulator

H(s) = 18.2/(18.2+81.8) = 0.182
Vo/Vref ≈ 1/H
for T →  ∞     Vo = 5.1/0.182 = 28V

Sensor Circuit
Find D for forward converter

o
3

1
gV  =  (n

n
)  D V   D =  0.332⇒

 ↑         ↑         ↑
28 (4.5)     380
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d(t)  =  
1
2

 V (t)
V

  V  =  2 Vc

M
c⇒

Control Loop Blocks

vref(s) v(s)Gc(s)

H(s)

iload(s)

d(s)vc(s)ve(s)

vg(s)

1/2Vm Gvd(s)

Gvg(s)
Zout(s)

^

^

^^ ^^

^

T(s)

Vm=3V
GR(s)

in general G R(s)
here unity

PWM Flyback Model: Open loop with independent inputs: g$V ,  $d
Forward Model:

RdIn3/n1 vvg

+

-
C

^
^^ ^ (n3/n1)Vg d

L

î1:Dn3/n1

..
iĝ

For the flyback converter:
$V(s)  =  G (s) $V (s)  +  G (s) $d(s) - Z (s) i (s)vg g vd o L

       ↓     ↓
3

1
g

n
n

V - 380

1+
S

QW
 +  (

s
W

)
o o

2

3

1

n
n

 D

1+
S

QW
 +  (

S
W

)
o o

2
   ⇒   open loop

Ggo ≡ (4.5)(380) =  db Gdo = (4.5)(.332) =  db



15

o
4W  =  

1
LC

 =  
1

500 10

H F

 =  2 x10  
rad
sec

µ µ

o
of  =  W

2
 =  2.25 KHz

π

Q W  =  
R
L

  W  =  
R
L

 LC  =  R
c
L

  1.0o o⇒ ≈

Zo element of control block

out

o o

2
Z   =   R||

1
SC

||  =  
sL

1 +  
S

QW
 +  (

S
W

)

  ↓
open loop

Op Amp section of control block

Gc
vcve

H

vref

Vout

GR

op amp transfer
function vc/ve

error voltage of
op amp = 0
if A

dc only
not f(w) unity for

dc only

→  ∞

That is: c c R refV (s)  =  G (s)[G (s) V (s)  -  H(s) V(s)]
Now isolate each contribution
Op Amp relates both Vc/Vref and Vc/V
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c

V=0
c R

V
Vref

 =  G G|

                    ↓      ↓
           Op amp    1
         response
         G(s) V/Ve

R1
81.8k

R2
18.2k

R3
5.6k

C2
13nF

vref

5.1V

-

+

vc

v(t)

virtual
ground

input to op amp Vin ≈ 0 so Vref appears on Z chain from gnd.

c

ref v=0

1 2 3
2

1 2

V
V

  =  
R ||R + R  +  

1
SC

R ||R
|

vc/vref

ffz

-20 db/dec

Bode Plot Vc/Vref vs f

Gc∞ (s →  ∞ ) = [R3 + R1||R2] / [R1||R2]

Next,  c

V

3
2

1

V
- v

  =  
R  +  

1
SC

R
ref =0

| }   V
R

  =  V
R 1/ sC1

c

3 2+

}   so  c 3 2

1

V
V

  =  R 1/ sC
R

+

c

V
c

3
2

1
c

cV
- v

   G H =  
R  +  

1
SC

R
 =  G  [1 +  W

S
]

ref =0

| ∞

GR(s) for non-dc does have a from op amp. 
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For HW # 4 Graduate students show:

R

3
2

1 2

3
2

2 3 1 2

3 2
G  =  

R  +  
1

SC
 +  R ||R

R  +  
1

SC

 =  
1+ SC [R + R ||R ]

1+ sR C

Gr(0) ≡ 1 for dc & Vref only d.c.  Other cases Vref = f(w)

Loop Gain: T(s)  =  G  
1

2 V
 G Hc

M
vd

Break the loop @Ve and inject

T(s)  =  
T (1+ W

s
)

1+ S/ W Q+ (S/ W )

o
c

o o
2 ,  T  =   G

2 V
 G Ho

c

M
do

∞  = 0.96

T(s)  =  
T (1+ W

s
)

1 +  
S

QW
 +  (

S
W

)

o
c

o o

2

Q < 1/2 and is 1.0 as calculated.  Use Q1 for phase asymptotes.
10-1/2fo   10+1/2fo
 |← -----------------fo-------------------→ |
    712 Hz   2.25 kHz 7.12 kHz

   ⇓ ⇓
  90°        90°
                ⇓

*10 fo range for full 180° phase swing

     fc/10   fc   10fc
|← -------------------|------------------→ |

220 Hz     2.2 kHz 22 kHz
   ⇓ ⇓

  45°/decade 45°/decade
                ⇓
*100 fc for full 90° range
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Of special interest is ∠T(f = fc) to evaluate  φm

10 fc
22kHz

-20 db/dec

|T|

fc
2.2kHz

1/(1+T)

0 db
7.12 kHz

-40 db/dec
fo

2.25kHz

180/2 decades
from double pole

T
45/dec

45/dec

180

inverted zero

-90
fc/10

phase margin
= 45 deg.

135
fc

inverted zero

double pole

fo = fc
double pole

712 Hz

220 Hz

Closed loop transfer function for  
[ ]

CL

o

g

OLvgV
V

=
G (s)

1+ T(s)










Gvg does not possess an inverted zero in the numerator from Gc.

[ ]
CL

o

g

go
o o

2

V
V

=
G (s) 1

s
w Q

(
s

w
)

[1+ T(s)]










+ +



  ⇒     Same poles

⇒     same Q as 
1

1+ T(s)
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f

-40 db/dec

Gvg(s)

fo
2.2 kHz

open loop

Ggo = 0.074
or -23 db

Next use algebra on graph to get vgG (s)

1+ T(s)
 from:

the combined plots.

-23 db

fo = 2.2 kHz120 Hz

48 db
20 db/dec

-40 db/dec

Ggo(2.2 kHz)*120/2200 = 0.004 or -48db

Ggo

Vg ripple @ 120 Hz           Vg ripple @ 2.2 kHz
is reduced at Vout by            is reduced by (23 db)
48 db(0.04)            @ Vout 
∆Vg @ 120 Hz = 10V          ∆Vg @ 2.2 kHz is 10V
∆Vout @ 120 Hz = 40mV     ∆Vout @ 2.2 kHz is 74mV

C. Closing Tidbits
We hit on a few trends in T(s) plots at very high frequencies to
close out lecture 49.  We choose a  “sick”open loop T(s) and
prepare for Lecture 50 which will tailor the “sick” T(s) to achieve a
healthy T(s) that will not oscillate when we close the loop around it
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with feedback. Below we look at a measured open loop gain plot
for T(s) of a voltage and current controlled forward converter and
speculate on it’s stability in closed loop.  We also speculate how to
add compensation to the open loop response to achieve closed
loop stability.  The voltage feedback provides for the single pole at
around 1 kHz that presents no problems to closed loop stability.

The current feedback provides for a DOUBLE POLE at ½ the
switch frequency, as we will see in Chapter 11.  This puts a big
dent in the T(s) plots as shown above.  Especially note the
possibility of NEGATIVE phase margin, which would guarantee
system instability in closed loop. Atthough the frequencies
employed in feedback loops and the converter models themselves
are not valid at these high frequencies, if we make the closed loop
gain too high this may cause instability problems at ½ the switch
frequency in the closed loop response.  For HW # 4 Of the four
compensation schemes listed on page 21 , which is best
suited to achieve closed loop stability for the given T(s) above
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and WHY.

Draw sketches of the expected optimum compensation scheme
you choose.


