
1

Lecture 48
Review of Feedback

HW # 4 Erickson Problems Ch. 9 #’s 7 &9 and
questions in lectures
I. Review of Negative Feedback

A. General
1.  Overview
2.  Summary of Advantages
3. Disadvantages

B. Buck Converter Example
1. Open Loop Transfer Function

a. Gvd(s) = Vo(s)/ $d (s)
b. Gvg(s) = Vo(s)/Vg(s)
c. Zo(s)

2. Closed Loop Around Vo & d
a. Loop Gain T(s)
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1+ T(s)

 and 
1

1+ T(s)
a. T(s) from Laplace Transform
b. T(f) vs f in db units
c. T
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4. Basic Feedback via Pbm 9.2
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Lecture 48
Review of Feedback

I. Review of Negative Feedback
A. General Issues

1. Overview
We have a switch mode converter, which we wish to stabilize from
load and input changes by employing feedback to maintain the
output level to a pre-established level.

To implement this feedback we need to sense the output and
compare it to a reference value to provide a difference signal,
which drives the pulse width modulator to provide the proper value
of duty cycle to drive the difference to zero.  This is shown on the
top of page 4.  Note also the use of a compensator-box, which is
employed to tailor the open loop response so that when feedback
is used to reduce the effect of sudden load and input changes, no
oscillation occurs.  This use of feedback is artful because the
power supply response is slow and if the feedback acts too fast
the system may oscillate.  The art is to tailor the response of the
error amplifier, via the compensator-box components.
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Later we will represent each box above by a transfer function,
which will both amplitude and phase plots versus frequency called
Bode plots.  The Bode plot employs logarithms so that when we
have a tandem series of transfer functions the combined response
is just the sum of the individual Bode responses.  In block diagram
form we would have a feedback system as shown below.

The block diagram has three components inside the dashed line
box on the right.  Note that both line voltage variations and load
current variations lie outside the feedback loop.  Duty cycle
variations lie within the voltage feedback loop.  We can derive a
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solution to the block diagram output voltage that includes
contributions from VG, Iload and Zout as shown below.

Each of block components determines T(s).  While we can easily
identify the LOOP GAIN, T(s), for the converter system, we now
ask how does it respond to disturbances?  And how does
feedback on the converter vary as the magnitude of T(s) varies
with frequency?  Are all frequencies the same for feedback?

We have to insure that T(s) is large at frequencies of interest. 
This is most readily accomplished by employing a high(<103) gain
operational amplifier in the feedback loop.  Since line frequencies
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are around 50-0 Hertz and harmonics the DC gain is the
determining factor to reduce line frequency variations.  What
about changes in the output due to load current variations?

Here we want T(s) to be large at high frequencies, not just at DC. 
This insures that the high frequency output impedance with
feedback is much less that the open loop output impedance. 
What about the closed loop reference voltage to output voltage
transfer function?  In short ZOUT varies with loop gain.

That is the output of the converter is some fixed ratio of the
reference voltage, if T(s) is LARGE.  We can insure this from DC
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to high frequency by tailoring loop gain T(s).  A typical T(s) and its
amplitude Bode plot versus frequency is shown in the middle of 
page 7.  All the benefits of feedback only occur when T(s) is
LARGE.  Since T(s)= H(s) GC(s) GVD(s) /VM .  We normally rely on
a large value of H(s) from the sensor gain block, which often
includes an operational amplifier and a compensation network to
tailor the loop gain.  The H(s) block is in the low power portion of
the loop and easy to work with.  H(s) often possesses several
isolated poles and several isolated zeros.  The GVD(s) block is the
control duty cycle to output voltage transfer function and usually
possesses two poles at the same frequency,ω P1.  All togeather the
loop gain would contain three poles and one zero as shown below
If H(s) had but one pole and one zero.

When the loop gain goes to unity all the benefits of feedback are
lost.  This has implications as discussed below.



8

It also has effects on how the feedback loop effects the line
voltage and output current disturbances.

2.  Summary of Feedback Advantages
o
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1. Advantages
· Vo variations due to A0L variations are eliminated
· Vo variations due to L, R & C “tolerances” are reduced

for elements inside A0L
· Vo changes due to power supply variations are reduced
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by  
1

1+ A0 L β
· Zo reduced by 1 + A0Lβ  therefore Io variations, less ∆ Vo  ·

Zin increased by 1 + A0Lβ
· Vo changes due to switch changes over time and temp.
3. Feedback Oscillation and Compensation
· After we close the feedback loop, sometimes,

oscillation/instability occurs for frequencies where Aβ  = 1 < 180o or
NEARBY this condition.  To be safe from undesired oscillation the
rule of thumb we will develop later will be:

If Aβ | = 1 we require <Aβ  be 76o from 180o.
To achieve the proper phase shift at unity gain for T(s), we employ
a f compensation element inside the feedback loop.  This is only a
nominal additional expense - it can be done in low power sections.

vref

reference
input

v(t)

compensator pulse-width
modulator

v(t)=F(vg, iload, d)

disturbances

control input

sensor
gain

vg(t)
iload(t)

d(t)vc

error
signal
ve(t)

switching converter
outside the
closed loop

The COMPENSATOR box will contain four possible transfer
functions listed in the table below to tailor the LOOP GAIN to
achieve both load regulation and transient response.

Clearly to achieve both goals, pole-zero combinations are best.
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 The subject of closed loop stability will be given in detail in
Lecture 49, but below we briefly outline the major issues in
anticipation.  We define phase margin, gain margin and excess
phase in the figure below, which contains both amplitude and

phase plots of the OPEN LOOP gain, T(s).
Changes in gain, ∆ G, and changes in phase ∆ φ along a gain

slope are shown for a 20 db per decade slope in the figure below.
 We will often have to be quantitative about gain and phase
changes as we move along gain slopes from one frequency to
another.  In particular we will add COMPENSATION to the open
loop gain via the compensation block to get the proper amplitude
and phase plots in order to achieve the two goals of feedback
both improved load regulation and improved transient
response.  This is artful, as we must trade one benefit off against
another.
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Remember that the compensation box is in series in the loop gain
so it is able to modify and tailor both the amplitude and phase
responses of T(s) individually.  Phase shifts generally kick in at
1/10 the break frequencies for amplitude changes and persist till
10 times the break frequency for amplitude changes.  To quantify
both phase differences and amplitude differences at changing
frequencies in compensation networks we show two rules of
thumb below.

-20 db gain slopes have:
1. ∆ G(f2-f1) =20 log (f2/f1)
2. ∆ φ(f2-f1) =tan –1(f2/ f1)

-40 db gain slopes have:
1. ∆ G(f2-f1) =40 log (f2/f1)
2. ∆ φ(f2-f1) = 2 tan –1(f2/ f1)

What a proper amplitude and phase plot for the open loop gain to
achieve both improved load regulation and improved transient
response will be given later in Lecture 49.
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SHOW for HW # 4 that the four op amp circuits below
provide the following: (a) a single pole filter, (b) a single pole with
gain limiting for achieving both flat high and low frequency
response, (c) a single pole/zero combination and (d) a two
pole/two zero combination.  Draw both the gain and phase plots
for all four circuits indicating the location of all poles and
zeros.  Use you junior electronics to solve each op amp circuit.
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B. Buck Converter Example

1. Open Loop: Three independent inputs:  $d,  $V ,  $ig liter

R

e(s)d(s)

j(s)d(s) v(s)vg(s)

+

-
C ^
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..
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iload(s)^

Open loop relations
out vd vg g o l$V   G (s) d(s) + G (s) V (s) - Z i (s)≡

↑   ↑       ↑

      
$
$
v(s)
d(s) v 0i 0g l= =

$

$

v(s)
v (s)g d 0i 0l= =

$

$

v(s)
i l v 0d 0g = =

Open loop conditions

v(t)

v(t)=F(vg, iload, d)

disturbances

control input

vg(t)
iload(t)

d(t)

switching converter

Vo is also
dependent on
frequency of
input variation

2. Closed Feedback Loop around Vo & Vref
Compare Vo to Vref to drive the duty cycle to drive Vo ≡  Vref
Duty cycle control is “the old way.”  Modern converters use the
“current programmed mode” described in chapter11 of Erickson in
addition to the voltage feedback loop.  Still we start here, with a
simple voltage feedback loop.  The system is as shown below:
Open loop w.r.t.  iload and Vg
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vref(s)
reference

input

   v(s)
output voltage
variation

Gc(s)

H(s)
sensor
gain

iload(s)   load current
     winding

d(s)vc(s)ve(s)
error
signal converter power stage

vg(s)
ac line
variation

1/Vm Gvd(s)

Gvg(s)
Zout(s)

H(s)v(s)

^

^

^

^^ ^^

^

Closed loop w.r.t.  (Vo, Vref) via $d  control and the pulse width
modulator loop, ultimately ∆ Vg,  ∆ Vref and ∆ iload will cause 
∆ Vout  variation.  In the closed feedback loop we find:

T  loop gain =  
H G G

V
 =  T(f)c vd

D
≡

↓
 varies with frequency

Now    Inside Loop    Outside Loop
    ↓                        ↓               ↓

out
ref

g
vg

out
o$V  =  

$V
H

 
T

1+ T
 +  $V  

G (s)
1+ T

 - i  Z
1+ T

If |1+T| is 1000 for frequencies around the mains, then
∆
∆

oV
gV

 is reduced by 1000 by the application of feedback

⇒ say 2V 2nd harmonic @120Hz on Vg only causes 2 mV change
in Vo with the loop closed.

iout∆
∆ Vo  is also reduced by 1000  ⇒  Zo with feedback is

effectively 1000 times smaller, when we achieve T= 1000 over a
limited frequency range.



15

out
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1
H

  ⇒   For stable output use(frequency/temperature)

compensated resistors etc. 0.1% resistor is only 50
cents

3. Frequency Response of the Feedback Loop
There are three parts: Loop Gain T(s), 

T(s) / 1+ T(s)  &  
1

1+ T(s)
a. Consider only T(s) with three Poles and One Zero
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Use low Q approximation to solve for well separated poles or
quadratic equation for close roots.  If in cubic form just
employ a root solver - like on a HP 48 calculator, to get all
three poles.

b. Draw Amplitude of T(s) in db vs frequency: T(f)
Use log-log plots, then express all amplitudes in db.  We can
from pole and zero locations draw both T and T/1+T by hand
to a first approximation.

c. T/1+T comes easily from T via Algebra on graph
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T large: 
T

1+ T
 → 1 or “0" db

T small:  
T

1+ T
  T→

⇒  Easier to do on graph than using algebra!
Asymptote with a double pole will have a “Q peak” as we saw
on page 7.  This “Q peak” will have no effect on T/1+T plots
since when T is very  large T/1+T →  1 anyway.  However this

“Q peaking of T(s)” will effect other plots such as vgG
1+ T

,

oZ
1+ T

 as we will see below.

d. Consider how to plot 1/1+T from T

                  

To

-To

20 db/dec

40 db/dec

40 db/dec

40 db/dec

fz1

fp1

fp2

fz1
fp2

fp1

Easy to plot 1/T from T

T large:   
1

1+ T
  

1
T

→ ⇒ Algebra on a graph for 1/1+T

T small:   
1

1+ T
  1→ ⇒
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Next we include the “Q peaking of T(s)” in T and 1/ (1+T)

Given 
1

1+ T
 plots versus frequency lets see its effect on a

typical open loop GVG(s) factor when we close a feedback loop
around GVG(s).  The closed loop converter characteristics are
found in a three-step process.  First plot the 1/(1+T) characteristic
versus frequency, from known T versus frequency plots by algebra
on the graph.  Next plot the open loop GVG(f) characteristics, which
have a simple double pole at the same frequency break point. 
Finally combine the product of the two terms togeather by algebra
on the graph. 

From DC to the location of the double pole the product
is just GVG divided by 1/(1+T).   Since above the double pole
location ,fP , GVG falls at 40 db per decade while 1/(1+T) rises at 40
db per decade the product is constant.  When the zero at fZ kick’s
in in 1/( 1+T) the product falls off at 20 db per decade all the way
to the crossover frequency of GVG when the product is in the
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negative db region.  See plots below.

f
20 db/dec

1/(1+T)

f

-40 db/dec

Gvg

f

-20 db/dec

Gvg/(1+T)

40 db/dec

fc

fc

fp

vg

fsw

fz

fp

fsw

above fc
1/(1+T)

assume a simple
souble pole Gvg(s)

with no zero's

120 Hz  Vg
reduced

by 1/(1+T)

Below f=fc
feedback works:     Above fc no F.B.
[Gvg]cl is down   :     effect on Gvg

4. Let’s next consider a simple example.  Basic feedback
conditions are shown in a complex system such as that of
Pbm. 9.2 from Erickson.  See page 19
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a. V(error) should ideally be zero!  ⇒  Gc(f=0) →  ∞
b. out

ref

V
V

 =  
1

H(s)
 

T(s)
1+ T(s)

  
1

H(s)
 for T→ → ∞

    out
refV  =  V

H(s)
 =  

3
1/ 5

 =  15V

c. V2 out = ? n:n1      n:n2
V1 = 15V with 64:3 Trf all else the same for 64:1
V2 = 1/3 V1 = 5V


