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Lecture 46
Bode Plots of Transfer Functions:II
A. Low Q Approximation for Two Poles
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C. Algebra on a Graph Graphically
Combining Asymptotes to Find Z(total)
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a. Overview and Simple XC Measurement
b. Choice of proper injection point for

T(s) Measurements is artful
c. Measure Zout of a System
d. Grounding Issues In Measurement
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Lecture 46
Bode Plots of Transfer Functions:II

A. Low Q Approximation for Two Pole T(s)
Often our two pole transfer functions have widely separated poles
in frequency space allowing some nice approximate solutions
to G(s).

The T(s) function,
2

1

o o

2

V (s)
V (s)
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Qw
 +  (
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w

)

, needs to be solved for the pole locations.  From the pole
locations we can sketch the Bode plot by inspection when the
poles are far apart.  When the poles are close a resonant
response can be constructed from the asymptotic curves by
employing a method called “Q peaking”.
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We can solve for the two roots.

The roots can be put into the Q form as follows in order to better
see how the poles change as Q of the circuit changes.

Can you see what occurs for low Q?
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The high frequency pole of the two pole pair is.

The low frequency pole can be shown to be Qf0.  Both poles
appear in the low Q approximation Bode plot as follows:

Note above, by knowing that Q is low and the value of f0 we can
rapidly draw the Bode plot of T(s).  When the exact value of Q is
specified so are the two pole locations. F0 is easily known from L
and C values.
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As Q reduces below 1/2 the roots separate from their original
position,both located at wo , to widely separate and ultimately
isolated.
For Q < ½ we find:

wlow  =  Q wo

F(Q)

whigh = ow
Q

|← ---------------|----------------→ |

wL = Qwo              wo                   H
ow  =  w

Q
 =  

R
L

     ≈ 1/RC    Hw f(c)≠
wL ≠ f(L) Notice as L →  0
For very large C this pole heads out
wL →  0 to high w

Future use of low Q approximation in analyzing two-pole
transfer functions will occur.  Specifically, the DCM mode of
operation of the boost circuit in Chapter 10 Figure 10.17b, is
reproduced below on page 6.  Looking ahead we will find an
equivalent circuit as shown below whose transfer function ,VO/ d
we need to solve.  The very low Q approximation we have been
playing with will be employed.  That is we will end up the
discussion with a live example.  It may be hard to see because
the transfer function is from the input duty cycle to the output
voltage.  We are not yet familiar with this concept.
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DCM boost switch network small-signal ac model
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^
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Find Gvd(s) =   o

V =0

 V (s)
d(s)

  L shorts the input
g

| ⇒

We will find the output voltage to duty cycle transfer function:

vd
ovd z

1 2
2G (s)  =  G (s- w )

1+ a s+ a s
1  with two poles and a RHP zero

For now forget about the right-half plane zero.  In standard form

the denominator will be:  1+
s

Qw
 +  (

s
w

) ,  w  =  
1
LCo o

2
o

We can rapidly sketch out the pole locations using the low Q

approximation method.

whigh = R
L

 →  ∞   or above the fsw   as L ↓



7

7

wlow  =  1
RC

 →  0 for very high C

This allows us to see circuit conditions for which we go from two
poles to a single pole.  ⇒  Gvd(s) has a single pole when L values
are chosen very low, see Erickson Table 10.3 for other conditions.

-40 db/dec

-20 db/dec

||G||db

0 db fo
f1=Qfo/F(Q)

~Qfo
f1=foF(Q)/Q

~fo/Q

From T(s) plots we can estimate system stability, via the Nyquist
criteria.  Explain the Nyquist criteria.
B. Construction from T(s) Asymptotes the
Actual T(s) Analytical Forms

1. Given the three T(s) plots below
Problems 8.2 / 8.3 of Erickson.  Find analytic expressions for the
low f asymptote in terms of G∞ and the break frequencies.

+20 db/dec

fo
G∞

Q1

Q2

f1

f2
-40 db/dec

G∞
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Q

f1
f2

-40 db/dec

G∞
f3

-20 db/dec

Solutions to Erickson Problems 8.2 and 8.3 follow.  Given the
Bode plots on the left find analytical expressions for low f
asymptotes.  Also get G(s) in factored pole zero form.  First find
T(s)s →  0 then T(s) →  low frequency asymptote.

G∞fo

+20 db/dec
G∞
wo

G(w)

w0
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G(s) G s
s w0

=
+

∞   →   G
w

s
0

∞ as  s →  0

G∞ w1

G(w)
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w2
2

2
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Q2
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f2

Double pole

-40 db/dec

Double zero
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
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
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s

s
w

2
2

2

2

1
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w
2
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1
2

∞   s→ 0
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G∞
w1w2

G(w)

w0

w3
2 constant

Q

f1
f2

-40 db/dec

Double zero
G∞
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-20 db/dec

Pole
Pole
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1+ w
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3
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1 2

∞   s →  0

2. Erickson Problem 8.5
Given experimental data of Figure 8.56 find the proper
asymptotes.

After some noodling,
Zero →  f1 = 180Hz
pole →  f2 = 150Hz
pole →  f3 = 4.4KHz
RHP zero →  f4 =
150KHz
(since |A| ↑ and ∠A ↓

So F A(s) K(s w )(s w )
(s w )(s w )

1 4

2 3
= + −

+ +
    ←  Right Half Plane zero pushes 

gain up vs. f, Phase down
From graph, K = 35.3 dB ≈ 58.3
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3. Given T(s) Plot, Find the analytical form in the standard
format with poles and zeros.  This is Erickson problem 8.1 for
plot(c) found on page 315 of the text.

Q

f1

f2
Double pole

-20 db/dec

Inverted zero

G∞

+20 db/dec

G(s) G
1+ w

s

1+ s
Q w

s
w

2

1 1 1

2=







+ 





∞

C. Algebra on a Graph Graphically Adding
Asymptotes to calculate Z(total)

1. Combining Series R-C Elements
Plot each Z(f) part separately first

1uF
10 ohms

Zin
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fcrossover = 1
2 RCπ

“Algebra on a graph”
For Z(total) in series
always “Take the bigger
of the two”

2. Series R - L - C
Plot each, X(f) ,individually.  Then for a series connection always
take the largest value for Z(total)=Z(f).

0.1uF

1mH1K

Zin

Plotted on the left is the case when the resistance, R, is larger
than the value of R0 = wL= 1/wC.   What if R lies below , R0, the
crossing of wL and 1/wc?  Then we take a “nose dive” from the
reactive Z asymptotes to reach R and observe Q peaking in the
impedance plot at ω0. Clearly Zin at resonance is R because @  fo
+ jwL cancels -j/wC. Both are equal in magnitude. 

oR  =  |
1

|  =  |wL|
wC

, which occurs only at ω0

The relative value or R compared to R0 is then the key to
determining whether or not we see Q peaking in the Z(f) plots.
The case of Q peaking for the series R-L-C is seen on page 12,
while the non-peaking plots are shown above.
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For Z(total) take the
largest except just at
resonance when R is less

than Ro = wL = 1
wC

Note: |Q| =|Ro / R|  and is
plotted symmetrically.

What if R > Ro?  Return to top of page 11 and you are done.

If we combine series X(f) plots using the largest value
for the total impedance, what do you think would be the rule
for combining parallel X(f) plots?
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3. Combining Parallel Impedance’s
Plot each X(f) separately and then combine for Z(total)

0.1uF1mH10ohms

“Take the smaller of the three” for Z(total) in parallel

What if R >|1/wc| = |wL| = Ro

4. Combining Series / Parallel Combinations

33nF20k

3.3nF5kR2

R1 C1

C2
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First do 1
wC

|
1

|R1 and for Z(total) in parallel “Take the smaller of

the two”

Next do 1
w C

||
2

R2  and for Z(total) in parallel “Take the smaller of

the two”

R1 to 1
w 1C

 is one curve

R2 to 1
w 2C

is the 2nd curve

Add these two curves in
series

For series combinations Z(total) = the higher of the two
f1 is one curve f2 is 2nd curve “Take the higher of the two”

Note in the middle a new
frequency at the crossing

3
2 1

f  =  
1

2 R Cπ
 since its

“R2"|| 
1

w C1

5. Voltage Dividers : Division of Asymptotes

Z1

Vin Z2 Vo

o

in

2

1 2

2

in

V (s)
V (s)

 =  z
z + z

 +  z
z

zin the is series combo seen at Vin

In some other cases we may already know Zout (looking in from
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Vo) so we want to express the transfer function differently:
o

in

2 1

1 2 1

out

1

V (s)
V (s)

 =  Z Z
Z Z

 
1
Z

 =  Z
z+

Sometimes it’s easier to do a Series Combo or a Parallel Combo
Consider the two pole circuit model below where Leffective = L/(D’)2

as occurs in the boost or buck-boost circuit model.  That is, the
duty cycle choice effects the effective inductance see by the small
signal model.  For small values of duty cycle, D’, to achieve DC
operation goals L appears bigger in the dynamic model than its
circuit value. By equations alone it is sometimes difficult to see
these duty cycle ,“D”, design choice effects” on ac models.

R

e(s)d(s)

j(s)d(s) v(s)vg(s)

+

-
C^ ^

^

^^ ve(s)

Le+

-

..
1 : M(D)

He(s)

Zin

Z1 Z2

Zout = R||C||Le

Le = L/D' 2

Z1Z2

Algebra on the graph however provides a visualization aid.
From the secondary of the
transformer to the output.

o 2

1 2

2

in

out

1

V (s)
V (s)

 =  z
z + z

 =  z
z

 =  z
ze

Now lets plot versus frequency
out

1

Z
z

   via algebra on a graph

⇒
           ↑

wL
(D )2′

CL/D' R2 Zout

Z1 Z2
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Zout is the smallest of three asymptotes because it represents all
three elements in parallel.  Z1 is just an increasing positive slope
but it is offset by the duty cycle,D’, choice.  For D ↑ D’ ↓ just shift
the wL/ (D’)2 asymptote as shown upwards toward the left.

outz
1z

  ratio for w < wo is clearly unity but for w > wo what is this

ratio?

out o

1 o c c

z (w < w )
z (w > w )

 =  

1
w
w L

 =  
1

L C
C

w2 } Sharp 40 db/decade slope

Zout and Z1 plotted
together versus f

Zout /Z1 plotted versus f

Section C, I hope, illustrates the value of algebra on a graph to
better visualize changes in transfer functions:

* Effects of varying quiescent point via duty cycle, D
,which in turn changes the dynamic model.
* Effect of changing element values like C, L, or R on 
  the transfer functions
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D. Measuring Transfer Functions and
Impedance’s

1. Narrow Band Tracking Voltmeter

Mixer
Narrow
Band
Filter

Vin

fbase

Useful tool for PWM Converters where signals are typically
complex with various frequency components present.

Vout

t

switching
spikes

Slow varying output at signal
frequency with fsw  ripple

We will need to make Z(s) and T(s) measurements versus f.
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The required test equipment for T(s) and Z(s)
measurements includes:

The front panel of a network analyzer looks like:

The Z(s) or T(s) data is in db and angles.  We also have a
probe signal VZ(f) available.
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2. Measuring T(s) Overview and Simple XC Measurement

Below we measure X(f) for a Capacitor.

For a tantalum capacitor we find XC(f):

C values and ESR values are both found.
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a. Choice of proper injection point for T(s)
Measurements is artful

We use the signal frequency to inject an input into a system to
measure the transfer function, T(s).  To avoid undesired loading
when we break a feedback loop, Vz(f) is injected and Vx/Vy is
measured versus f(applied) as shown below schematically.

vŷ vx^vz^ into the unknown
system

we could
use a

feedback
loop for
signal

injection

 Vy is the return signal from the unknown system. The above
measurement scheme is for a feedback loop analysis where we
need to inject a signal to measure the loop gain.

⇒  Plots of Vo/Vin
amplitude versus f and
∠Vo/Vin phase versus f
can both be measured

The DC bias shown should simulate actual operating conditions
before we broke the loop for signal injection, so it will have no
effect on the measurement Vo(s)/Vin(s)
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c.  Measure Zout

o
o

o
(s)  =  V (s)

i (s)
Z

Vx from io , Vy  from Vo o
o

o

y

x
Z (s) =  V (s)

i (s)
V (s)

V (s)
=

The test set-up requires us to simulate the input impedance that
normally drives the circuit to accurately measure ZOUT.
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The DC bias simulates Vo of prior stage into input.  Injection of Vz

via Zs, composed of Rs &  1/wC, creates a current into Zo.  AC
input to the device must be zero.

Value of sZ (R )= +
1

jwC
 and amplitude of Vz do not effect Zout

measurement

d. Grounding Issues

1. Statement of the problem
iout above the injected into Zo at the top terminal in the figure
above comes back towards - Vz along the bottom return path. The
current return can choose either the -Vy path or the  -Vz path
when it exits the G(s) at the bottom terminal.
iout splits < kio to  - Vz ground

      < (1 - k)io  to - Vy ground
But the sum of both paths is Io.

K depends on the
relative impedance’s of
the two paths
Zprobe  into - Vy gnd
Zrz  into - Vz gnd

Z is actual impedance of the sample
Zo measured is:  o probe y rcZ  =  Z +  Z (into - V )||Z .  This situation
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sets a lower limit on the smallest Z you can accurately measure.
Z >> Zprobe||Zrc
Easy solution for low Z: Buffer Vz with a transformer

Finally, For HW#3 Due in 1 week:
1.  Answer any Questions asked throughout lectures 45-46.
2.  Chapter 8 of Erickson do Problems 6 and 10.
3.  Explain the measurement below in as much detail as

possible.


