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Lecture 46
Bode Plots of Transfer Functions:ll

A. Low Q Approximation for Two Pole T(s)
Often our two pole transfer functions have widely separated poles
in frequency space allowing some nice approximate solutions

to G(s).
Given a second-order denominator polynomial, of the form

- 1
Gls) = [ +as+a,s? or Gls) =

When the roots are real, i.e., when Q < 0.5, then we can factor the
denominator, and construct the Bode diagram using the asymptotes
for real poles. We would then use the following normalized form:

G(s) = (1 +_0§T)1(1 +652-)

This is a particularly desirable approach when Q<< 0.5, i.e., when the
corner frequencies m, and m, are well separated.

The T(s) function,
Va(s) _ 1
Vl(S) 1+i + (S)Z

QWO Wo
, heeds to be solved for the pole locations. From the pole
locations we can sketch the Bode plot by inspection when the
poles are far apart. When the poles are close a resonant

response can be constructed from the asymptotic curves by
employing a method called “Q peaking”.




R-L-C network example: L

() 1
=30~ L "
( n(s) ]+ s% +s:LC Vi) Ci) C=  Rg )

Use quadratic formula to factor denominator. Corner frequencies are:

L/R+\/(L/IR) -4LC
2LC

We can solve for the two roots.

M, 0, =

LiRe (LR —d1C

W, O, = STC

This complicated expression yields little insight into how the corner
frequencies o, and o, depend on R, L, and C.

When the corner frequencies are well separated in value, it can be
shown that they are given by the much simpler (approximate)
expressions

~_L
RC

(l), = §’ 0)2
o, is then independent of C, and w, is independent of L.
These simpler expressions can be derived via the Low-Q Approximation.

The roots can be put into the Q form as follows in order to better
see how the poles change as Q of the circuit changes.

Given

Use quadratic formula to express corner frequencies w,; and w, in
terms of O and w,, as:

o=@ 1-V1-40° o = Q0 1+V1-40°
l"‘Q 2 2_Q 2

Can you see what occurs for low Q?



The high frequency pole of the two pole pair is.

oo @ L +V1-40°

70 2 F(Q) 3
can be written in the form 07 \

('0() U
= F 0.5 e :
w0 =5 Q) ]
where 025 1
F)=L[14yT-a0° ol —
‘ 0 0.1 0.2 0.3 0.4 0.5
For small Q, F(Q) tends to 1. 0

We then obtain
For Q < 0.3, the approximation F(Q) =1 is

= N for Q<< % within 10% of the exact value.

0
The low frequency pole can be shown to be Qf,. Both poles
appear in the low Q approximation Bode plot as follows:

Gl f = FQ(S)

0dB o R 74((%)

—-20dB/decade

—40dB/decade

Note above, by knowing that Q is low and the value of f, we can
rapidly draw the Bode plot of T(s). When the exact value of Q is
specified so are the two pole locations. Fy is easily known from L
and C values.



As Q reduces below 1/2 the roots separate from their original
position,both located at w, , to widely separate and ultimately
isolated.

For Q <% we find:

Wiow = QWO ro ]
FQ o
W 0.5
Whigh = 60 s
0 0 0;1 0.=2 03 0.'4 05
Q
Fig. 8.24 F(Q) vs. Q. as given by Eq. (8.72). The approximation F(Q)=~ 1 is within 10% of the exact valm
for 0 <0.3.
s I ®|
W R
WL = QW Wo WH = —2> = —
Q L
» 1/RC wh t f(C)
w1 f(L) Noticeas L ® O
For very large C this pole heads out
w® 0 to high w

Future use of low Q approximation in analyzing two-pole
transfer functions will occur. Specifically, the DCM mode of
operation of the boost circuit in Chapter 10 Figure 10.17b, is
reproduced below on page 6. Looking ahead we will find an
equivalent circuit as shown below whose transfer function ,Vo/ d
we need to solve. The very low Q approximation we have been
playing with will be employed. That is we will end up the
discussion with a live example. It may be hard to see because
the transfer function is from the input duty cycle to the output
voltage. We are not yet familiar with this concept.



DCM boost switch network small-signal ac model

: o+
Vg (D Vi i jla\gggl\ll\z ¢ T g1 (sza\ ro /\\/2 c~ v

Find Gyq(s) = Vol | P L shortstheinput
d(S) V,=0

We will find the output voltage to duty cycle transfer function:
_ Gudo(Swy)

S =
Gua (9 1+aStaps’

For now forget about the right-half plane zero. In standard form

: , S S \2 1
the denominator will be: 1+ + S Wo = ——
Qw, (wo) ° JLC

We can rapidly sketch out the pole locations using the low Q

with two poles and a RHP zero

For the previous example:

. vy($) 1 QLGN |
(I(S) = = j() = =
v,(s) 1 +S*1% + 52L.C 2n _275\/ LC
0=ry/§

Use of the Low-Q Approximation leads to

(O,zQ(,O(,ZR\/ % h_rgfzg

~ (O() —_ 1

Do_ 1T 1 _
@ VIC 4 f—ng R

approximation method.

I_

]

Whigh = % ® ¥ orabovethefs, asL
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1 .
Wiow = — ® 0 for very high C
lo RC y g

This allows us to see circuit conditions for which we go from two

poles to a single pole. b Gy(s) has a single pole when L values
are chosen very low, see Erickson Table 10.3 for other conditions.

IGllaw 1=Qfo/F(Q)

0 db ~Qfo fo
------------------------ L B=F(Q)IQ

."-‘_"*fo/Q

-20 db/dec

-40 db/dec

From T(s) plots we can estimate system stability, via the Nyquist
criteria. Explain the Nyquist criteria.

B. Construction from T(s) Asymptotes the

Actual T(s) Analytical Forms

1. Given the three T(s) plots below
Problems 8.2 / 8.3 of Erickson. Find analytic expressions for the
low f asymptote in terms of Gy and the break frequencies.

Gy
fo

+20 db/dec

<+ Q1

-40 db/dec

Q2 —»



f1

-20 db/dec
fo

-40 db/dec

Solutions to Erickson Problems 8.2 and 8.3 follow. Given the
Bode plots on the left find analytical expressions for low f
asymptotes. Also get G(s) in factored pole zero form. First find

T(S)se® o then T(s) ® low frequency asymptote.

a
(a) o Gy G
+20 db/dec %
0 > W
GyS G
G(s)=—*— ® —¥s ass®O0
S+WwWj W
(b) y— Double pole
<« Q1 G(w)
A
-40 db/dec — w22 | constant
Gy W2,
f2 w1
Q2 —» Gy
4 Double zero 0 > W
.2
1+ gz +85W23 2 2 aow.?
S S w S w
G(s) = Gy 2 5850 ® Gy —5-*x— = ——2 B0
1+ W1 @10 > W W1

Qs €s9



(c)

f14 ™ Pole
fo & Pole G(w)
A

-20 db/dec ~_«

-40 db/dec ~ w32 | constant

f3 G W1W2
—» ¥
Q 4__ Double zero 0 » W

&s b 2
G(S):G¥ Q3S S - ®G¥W_:Z>(S_xi:G¥$ s® 0

2. Erickson Problem 8.5
Given experimental data of Figure 8.56 find the proper
asymptotes.

After some noodling, $2048/dsc
Zero ® f; = 180Hz 35.348 ey

pole ® f, = 150Hz R = dac

pole ® f; = 4.4KHz 12:: e i m:
RHP zero ® f; = = : kil
150KHz

(since |A| - and BA

-45*

-135°

10Hz 100Kz WHz 10KkHz 100kHz IMHz

K(s+wq)(s- wy)

=0 P A = W) s wy)

- Right Half Plane zero pushes

gain up vs. f, Phase down
From graph, K=35.3 dB » 58.3
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3. Given T(s) Plot, Find the analytical form in the standard
format with poles and zeros. This is Erickson problem 8.1 for
plot(c) found on page 315 of the text.

+20 db/dec gH 325
— G(s) = Gy -
Double pole t Gy 1+ S + ®S 9
X Qw; 8w, o

Inverted zero

C. Algebraon a Graph Graphically Adding
Asymptotes to calculate Z(total)

1. Combining Series R-C Elements
Plot each Z(f) part separately first

o 80 dBQ T 10kQ
60 dBQ o
10 ohms @ e
40 dBO —20 dB/decade
Zin 1uF—— 7 100Q
20 dBQ
R=10Q = 20dBQ 10Q
0dBQ 1Q
=10 159kHz/1/\
20 dBQ ‘ ; ; 019
100 Hz 1 KHz 10 kHz 100 KHz 1 MHz

832 Impedance magnitudes of the individual elements in the network of Fig. 8.31.
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f 1 80 dBQ - 10kQ |
CrOSSOVGr - 2 RC 60 dBQ 1kQ
(] ” 40 dBQ 100 Q
Algebra on a graph R\Q\
. . 20 dBQ 100
For Z(total) in series B
0 dBQ A SmRC = 16 kHz ol 119
(] H
always “Take the bigger o e
” 100 Hz 1kHz 10kHz 100 kHz 1 MHz
of the two
Fig. 8.33 Construction of the composite asymptotes of ||Z||. The asymptotes of the series combination can b
approximated by simply selecting the larger of the individual resistor and capacitor asymptotes.

2. SeriesR-L-C
Plot each, X(f) ,individually. Then for a series connection always
take the largest value for Z(total)=Z(f).

100 dBQ nzi 100kQ
_VW\_/WY\_ N \< > 10kQ2
1K 1mH 60 dBQ 1kQ
R fTe LR
Zin 40 dBQ 100 Q
0.1uF 204dBQ oL . T @C 10Q
> } 0de L B
100 He 1kHz 10 kHz 100 kHz 1 MHz

Pig. 835 Graphical construction of [|Z| of the series R-L-C network of Fig, 8.34, for the element values
specified by Eq. (8.139).

Plotted on the left is the case when the resistance, R, is larger
than the value of Rp = wL=1/wC. What if R lies below , Ro, the
crossing of wL and 1/wc? Then we take a “nose dive” from the
reactive Z asymptotes to reach R and observe Q peaking in the
iImpedance plot at wp. Clearly Zj, at resonance is R because @ f,
+ jwL cancels -j/wC. Both are equal in magnitude.

Ro = |W—1C| = |wL|, which occurs only at wo

The relative value or R compared to Ry is then the key to
determining whether or not we see Q peaking in the Z(f) plots.
The case of Q peaking for the series R-L-C is seen on page 12,
while the non-peaking plots are shown above.

11



100dBQ 1zl 100Kk$2
80dBQ 10k0
60dBQ 1kQ
f; .
sBQY 3 <k, 1002
""""" "s_.‘\..
0GB oot e 100
. B
0dBQ +—== oC o
100z 10kHz 100KH: 1MHz

Fig. 8.36. Graphical construction of impedance asymptotes

for the series R-L-C network example, with R
decreased to 10Q.

100dBQ

80dBQ

60dBQ

40dBQ

20dBQ

0dBQ
100Hz

series R-L-C example. The inductor and capacitor

10kHz

10CkHz
Fig. 8.37. Actual impedance magnitude (solid line) for the

100k

10kQ

1kQ

10002

100

12

IMH2

impedances cancel out at = f,, and hence Z(jaj) = R.

12
For Z(total) take the
largest except just at
resonance when R is less

than R, = wL = i
wC

Note: |Q| =|Ro/ R| and is
plotted symmetrically.

What if R > R,? Return to top of page 11 and you are done.

If we combine series X(f) plots using the largest value

for the total impedance, what do you think would be the rule

for combining parallel X(f) plots?

12



3.

Combining Parallel Impedance’s
Plot each X(f) separately and then combine for Z(total)

10ohms

ImH 0.1uF-—

13

80dBQ | .. 710k
60 dBQ oC ol 11k
40 dBQ 100Q
20480 L& (o 100
5 f
0dBQ | 10
Al
—-20dBQ 0.1Q
100 Hz 1 kHz 10kHz  100KHz | MHz

Fig. 8.39 Construction of the composite asymptotes of ||Z||, for the parallel R—L~C example. The asymptol
of the parallel combination can be approximated by simply selecting the smallest of the individual resisy

inductor, and capacitor asymptotes.

“Take the smaller of the three” for Z(total) in parallel

What if R >|1/w| = [wi] = Re

80dBQ

60dBQ

40dBQ

204BQ

0dBQ

-20dBQ
100Hz

Fig. 8.40. Graphical construction of impedance asymptotes
for the parallel R-L-C example, with R increased to 1kQ.

4.

1kHz 10kHz 100kHz

r 10kQ 80dBQ T r 10k
oL 1 \‘\\ /
60dBQ : e k0
40dBQ 1+ acrual curve — S~ L 1000
204BQ | | 100
7
= 04BQ ;
-~ Nz 1Y 10
-20dBQ 019
iy 100Hz 1kHz 10kHz 100kHz IMHz

Combining Series / Parallel Combinations

R1

R2

20k Ci1 —— 33nF

5k C2-—-3.3nF

Fig. 8.41. Actual impedance magnitude (solid line) for the
parallel R-L-C example. The inductor and capacitor

impedances cancel out at f= Jo» and hence Z(jw,) =R.

120BQ T 1 - 1 1MQ
“0C T 0C,
~-..33nF ~.. 3.3nF
100 dBQ | 100 kQ
R _20kQ ™ )
80dBQ {r 510 10kQ
60 dBQ L DR
40 dBQ e Tioa
20 dBQ . 100
10 Hz 100 Hz 1 KHz 10 kHz 100 kHz

843 Impedance magnitudes of the individual elements in the network of Fig. 8.42.

13



14

First do illR:L and for Z(total) in parallel “Take the smaller of

wCiq
the two”
1 . [11
Next do ——||R, and for Z(total) in parallel “Take the smaller of
WC»
the two”
1 .
P g et ™ Ryto —— is one curve
e R wC1
0dBQY AN e r, 10k 1
17 R, to ——is the 2nd curve
AN
i S, .
B B | .. Add these two curves in
10 Hz 100 Hz 1 kHz 10 kHz 100 kHz

series

844 Graphical construction of asymptotes for parallel combinations (solid and shaded lines).

For series

combinations Z(total) = the higher of the two

f1 is one curve f; is 2nd curve “Take the higher of the two”

T e Note in the middle a new
e T . ' frequency at the crossing
80 dBQ X f, R, T 10kQ 1 - -
60 dBQ fy 1kQ f3 = — siInce Its
404BQ Nz 1009 2p R2C1
R 100 Hz 1 kHz 10 kHz lOOkHIZOQ “R2"” i

Fig. 8.45 Graphical construction of composite asymptotes for [|Z|}. Cl

5. Voltage Dividers : Division of Asymptotes

Vol - 22 | 22
Z1 Vin(9) z1t72  Zin

Z2 > Vo Zin the is series combo seen at Vi,

In some other cases we may already know Z,: (looking in from

14
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V,) so we want to express the transfer function differently:

Vo(s) _ 2221 1 _ Zout

Vin(9) Z1tZ2 s 71

Sometimes it's easier to do a Series Combo or a Parallel Combo
Consider the two pole circuit model below where Lefrecive = L/(D’)?
as occurs in the boost or buck-boost circuit model. That is, the
duty cycle choice effects the effective inductance see by the small
signal model. For small values of duty cycle, D’, to achieve DC
operation goals L appears bigger in the dynamic model than its
circuit value. By equations alone it is sometimes difficult to see
these duty cycle ,“D”, design choice effects” on ac models.

A — Le = L/D'?
e(s)d(s) ;~~~~~~~~~;;;;;;>¢”””//
O 1:MD) Ao §
. . + : €
* + A N -Zin
v ) (ieds) Ve(s) “p R «—— Zout=RI[C]lLe
N —_— *
Z2 Z1

Algebra on the graph however provides a visualization aid.

From the secondary of the

transformer to the output. D2 = C R <2
Vol _ z2 _ z2 _ zou

Ve  z1tz2  zin al IO

Z1 Z2

Now lets plot versus frequency
Zout

1

- B

via algebra on a graph

15



Zot IS the smallest of three asymptotes because it represents all
three elements in parallel. Z; is just an increasing positive slope
but it is offset by the duty cycle,D’, choice. For D - D’ just shift
the wL/ (D’)? asymptote as shown upwards toward the left.

Zout ratio for w < We is clearly unity but for w > w, what is this

21
ratio?
1
zoxW<wo) _ wC _ L1 }gnarp 40 db/decade slope
z1(W > wo) Wlec weLC

Zot and Z; plotted
together versus f

Zout 1Z1 plotted versus f

Section C, | hope, illustrates the value of algebra on a graph to
better visualize changes in transfer functions:
* Effects of varying quiescent point via duty cycle, D
,which in turn changes the dynamic model.
* Effect of changing element values like C, L, or R on
the transfer functions

16
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D. Measuring Transfer Functions and
Impedance’s

1. Narrow Band Tracking Voltmeter

Vi Narrow
el Band —»

Filter

fbase

Useful tool for PWM Converters where signals are typically
complex with various frequency components present.

Vout

A

>

switching
spikes
t

4 .
Slow varying output at signal
frequency with fsw ripple

We will need to make Z(s) and T(s) measurements versus f.

Frequency Response Measurements

Why Measure?

- Models often overlook important effects

- Models are often missing for important technologies

- Component parasitics frequently dominate response

- Measurement and model almost always disagree first time

Why Teach?

- Most power electronics students are poorly prepared for real
circuit design

- Many products are inadequately designed for control

- University models are often rendered unusable since they are
not confirmed by lab data, and are often contradicted.

- Conferences, industry do not fill this role.

- If time is short, measurement is far more critical than modeling

Frequency Response Measurements

Equipment needed
Control measurements
Signal Injection
Grounding

Technique

Impedance measurements
Examples

17
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The required test equipment for T(s) and Z(s)

measurements includes:
Essential Laboratory Equipment

Network Anaiyzer

Outputs test signal, measures ratio (gain and phase) of 2 test signals
at the same frequency as test signal.

0.1 Hz to 10 MHz operation

Narrowband receiver selectivity to 1 Hz
Good output signal (1 V or more)
Automatic sweep (save time)

Automatic averaging (better noise rejection)

HP4194A (330k)

HP4195 ($35k +)

Used HP ($15k +)

AP Instruments ($7k)

Signal Generator and scope (8500) (manual, low noise only)
Accessories

Injection devices (isolated)

Reference impedances
Inpedance accessories

The front panel of a network analyzer looks like:

Network Analyzer
Injection source Measured inputs Data
v v ~ Data bus
itude  frequency Vy fo computer
magnitude  frequency " 173 dB
o o —
p—
ﬁ. ‘7.\’ ‘7\'
output input input s N
- + - . R
0O o o o o /;} [ ~134.7
SRR

A A A A

A 4 A

The Z(s) o'r T(s) datais in db and angles. We also have a

probe signal Vz(f) available. N



2. Measuring T(s) Overview and Simple Xc Measurement

* Injection source produces sinusoid ¥. of controllable amplitude and
frequency

* Signal inputs 7. and ¥, perform function of narrowband tracking
voltmeter:

Component of input at injection source frequency is measured

Narrowband function is essential: switching harmonics and other
noise components are removed

* Network analyzer measures

v,
2 and L
v, V.

Below we measure X(f) for a Capacitor.

;

~
¥

—

! AP 102 NETWORK ANALYZER j
|

]

|

\m ChA cChB
Sy f
{

] 7 oe

For a tantalum capacitor we find Xc(f):

Network Analyzer Impedance Measurements

-20

1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+0
Frequency (Hz)

Tantalum Capacitor
Measured Value Real m
Frequency F Ohm ohm

100000 Hz 9.50E-061 2.77E-014 1.75E-01

C values and ESR values are both found.
19
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a. Choice of proper injection point for T(s)
Measurements is artful
We use the signal frequency to inject an input into a system to
measure the transfer function, T(s). To avoid undesired loading
when we break a feedback loop, V,(f) is injected and V,/Vy is
measured versus f(applied) as shown below schematically.

@ we could
; : use a
A A oA feedback
vy Vz © Vx into the unknown loop for
. . system signal
injection

Vy is the return signal from the unknown system. The above
measurement scheme is for a feedback loop analysis where we
need to inject a signal to measure the loop gain.

Network Analyzer
M%«de quo,:u\:m-y M ‘% U mac!gm:iter
Quipur inp Iv inpur_ Z% s
i
block.g,g — p PIOtS Of V0/V|n
capector amplitude versus f and
v, bV,/Vi, phase versus f
. l can both be measured
bias S -\
adjust T é 615 i:,f
—_

Device
under test

The DC bias shown should simulate actual operating conditions
before we broke the loop for signal injection, so it will have no

effect on the measurement Vy(S)/Vin(S)
20
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c. Measure Zgyt

» Treat output impedance as transfer function from output current to
output voltage:

(s v(s)
7(S) = T(l Z,,,,,(S) =7 : .
I(S) lnnl(“) amplifier _ 0

ac input

* Potentiometer at device input port establishes correct quiescent
operating point

* Current probe produces voltage proportional to current; this voltage
is connected to network analyzer channel "

» Network analyzer result must be multiplied by appropriate factor, to
account for scale factors of current and voltage probes

Vo (9)
i0(S)

Vy fromi,, Vy fromV,  Z4(s) =

Zo(9) =
Vo(S) — Vy (s)

lo (S) V x (S)
v z
cc .
° Device —_—
under test DC blocking
DC ; capacitor  p
blas jut I source
adjust - o) - r"_"v ] Current !
B Gls) 5|l b ’
E (s) _g Eou probe v,
- N n ¥ N
> 7 7
Voltage I ,
probe |
\ vy
+ -+ -
v, 7,

The test set-up requires us to simulate the input impedance that
normally drives the circuit to accurately measure Zoyr.

21
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The DC bias simulates V, of prior stage into input. Injection of V,
via Zs, composed of Rs & 1/wC, creates a current into Z,. AC
input to the device must be zero.

Value of zs=(R+ jvviC) and amplitude of V; do not effect Zyy

measurement
d. Grounding Issues

1. Statement of the problem
lout above the injected into Z, at the top terminal in the figure
above comes back towards - V, along the bottom return path. The
current return can choose either the -V, path or the -V, path
when it exits the G(s) at the bottom terminal.
lout SPlits < ki, to - V; ground

< (1 - k)i, to-Vyground
But the sum of both paths is .

Injection Network Analyzer
Impedance source

under test retum Injection source
connection

P =

SN

g | Csowree
I

2 | H z, V?D K depends on the
T W relative impedance’s of
a-0i,] PP— the two paths
inputs H
I\J’roolglege_m< - P+ ) Zprobe |nt0 = Vy gnd
Voluge - - Z, into -V, gnd
e Z e .
LTV T
(1=Kt Z prope

Z is actual impedance of the sample
Zo measuredis: Zo = Z + Zprope(into-Vy)||Z. This situation
22



sets a lower limit on the smallest Z you can accurately measure.

Z >> Zprovel|Zrc

Easy solution for low Z: Buffer V, with a transformer

Finally, For HW#3 Duein 1 week:
1. Answer any Questions asked throughout lectures 45-46.
2. Chapter 8 of Erickson do Problems 6 and 10.
3. Explain the measurement below in as much detail as

possible.

Measuring a Power Supply Loop Gain

Input | Power Stage | ¢
| - Load
A
‘Gate Drive . Sensed
: Current
N Fs = 5 |
P J_‘ ; !+ Compensating ! :
: f | - | /LRamp ; 3
[ : FT L= A ;
| Mod | i §
od + H |
( +! E/A | ‘! Vref 20 ohm ! @
Control | T :
Chip

: PWM Controller

AP 102B NETWORK
ANALYZER SYSTEM

o o~ [}
Channel A ﬁOut}J Channel B

Put Channel B at 2, and Channel A at 1 to measure loop gain

Put Channel B at 2, and Channel A at 3 to measure power stage control-to-output gain

Put Channel B at 3, and Channel A at 1 to measure compensator gain
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