Lecture 38

Establishing DCM Vout/ Vin Quadratic Relations

- A. DCM DC Transfer Functions via Quadratic Relations
 - 1. Overview of the DCM Operation Conditions
 - 2. V_o for the Buck
 - 3. V_o for the Boost
 - 4. V_o for the Buck-Boost
 - 5. Summary
 - 6. L_{critical} for the Three Major Circuits
 - 7. Critical Capacitance: C_{critical}

B. Homework Solutions and Hints

- 1. Problem 5.1
- 2. Problem 5.9
- 3. Hints for Problem 5.4
- 4. Hints for Problem 5.14

Lecture 38

Establishing DCM V_{out}/V_{in} Quadratic Relations</sub> A. DCM DC Transfer Functions via Quadratic

Relations

1. Overview

The figure below summarizes DCM operation for all three major converters: buck, boost and buck-boost using transistor and diode switches. Note I_L (inductor) goes to zero each switch period and hence is insured to start form zero at the start of each switch period. We will show i_L (on far left), i_{in} (middle plot), and i_d (far right) for each circuit versus time. Note that V_o in DCM comes only from solving a quadratic equation not from M(D), assuming V_{in} is constant over the switch period. $P_{in} = P_{out}$ is also assumed. We will use linear variations of all currents as a good first approximation.

1. V_o Buck

The three circuit topologies for the buck are as above:

The circuit and associated waveforms are shown below in DCM operation.

$$V_{in} \xrightarrow{i_{1}} c \xrightarrow{$$

b. Derivation of DCM DC Transfer Function Since D_1T_s is set by the control circuit and V_{in} is assumed constant, the peak inductor current is from the far left waveform:

$$i_L(\text{peak}) = D_1 T_s \left[\frac{(V_{in} - V_{out})}{L} \right]$$

From iin triangular waveforms in the middle plot we calculate:

$$I_{in}(av) = \frac{D_1}{2} i_L(peak) = D_1^2 T_s \left[\frac{(V_{in} - V_{out})}{2L} \right]$$
$$P_{in}(av) = V_{in}(constant) I_{in}(av) = D_1^2 T_s \left[\frac{(V_{in}^2 - V_{in} V_{out})}{2L} \right]$$

For lossless converters we can say the following:

 $P_{in} = P_{out} = V_{out}^2/R$ Yielding a quadratic equation in V_{out} . Solving:

$$V_{o}(\text{DCM Buck}) = \frac{-D_{1}^{2}V_{in}RT_{s}}{4L} + D_{1}V_{in}\sqrt{\frac{RT}{2L}} + \frac{R^{2}T_{s}^{2}D_{1}^{2}}{16L^{2}}$$

c. Alternative Derivation

Two equations and two unknowns (V and D_2):

$$V = V_{g} \frac{D_{1}}{D_{1} + D_{2}}$$
 (from inductor volt-second balance)
$$\frac{V}{R} = \frac{D_{1}T_{s}}{2L} (D_{1} + D_{2}) (V_{g} - V)$$
 (from capacitor charge balance)

Eliminate D_2 , solve for V:

 $\frac{V}{V_g} = \frac{2}{1 + \sqrt{1 + 4K / D_1^2}}$ where $K = 2L / RT_s$ valid for $K < K_{crit}$

We get this from doing out steady-state balance. The resulting plot for the buck DCM transfer function vs. D is:

Again note the trend for the DCM DC transfer function to be bigger for all D values than the CCM transfer function.

3 .V_o Boost in DCM Operation

a. General

The three circuit topologies for the DCM boost are shown below:

b. Derive DCM DC Transfer Function We also show below the three boost circuit current waveforms $I_L(inductor), I_t(switch)$ and $i_D(diode)$:

Since D_1 is set by the control circuit the and V_{in} is fixed the peak inductor current from the left side plot is:

$$i_L(peak) = \frac{D_1 T_s V_{in}}{L}$$

From the middle I_{in} plot vs. time in the middle we can find:

$$\begin{split} \mathsf{I}_{\mathsf{in}}(\mathsf{av}) &= \mathsf{I}_{\mathsf{L}}(\mathsf{av}) = \frac{\mathsf{D}_1 + \mathsf{D}_2}{2} \, \mathsf{i}_{\mathsf{L}}(\mathsf{peak}) \\ \mathsf{I}_{\mathsf{in}}(\mathsf{av}) &= \frac{(\mathsf{D}_1 + \mathsf{D}_2) \mathsf{V}_{\mathsf{in}} \mathsf{D}_1 \mathsf{T}_{\mathsf{s}}}{2\mathsf{L}} \\ \mathsf{P}_{\mathsf{in}}(\mathsf{av}) &= \mathsf{V}_{\mathsf{in}}(\mathsf{fixed}) \mathsf{I}_{\mathsf{in}}(\mathsf{av}) = \frac{(\mathsf{D}_1 + \mathsf{D}_2) {\mathsf{V}_{\mathsf{in}}}^2 \mathsf{D}_1 \mathsf{T}_{\mathsf{s}}}{2\mathsf{L}} \\ \mathsf{P}_{\mathsf{in}}(\mathsf{av}) &= \mathsf{P}_{\mathsf{out}}(\mathsf{av}) = \mathsf{V}_{\mathsf{o}}^2 / \mathsf{R}_{\mathsf{L}} \\ \mathsf{Both} \, \mathsf{D}_2 \text{ and } \mathsf{V}_{\mathsf{out}} \text{ are unknown.} \end{split}$$

5

Yielding a quadratic equation in V_{out} . Fortunately the sawtooth diode current waveform drives the load so that

$$I_{out}(av) = V_{out}/R = \frac{D_2}{2}i_{diode}(peak)$$

Which sets $D_2 = \frac{2V_0L}{RV_{in}D_1T}$ and we obtain a new quadratic

equation for V_o .

Solving:

$$V_{o}(\text{Boost DCM}) = \frac{V_{in}}{2} + \frac{V_{in}}{2}\sqrt{1 + \frac{2RT_{s}D_{1}}{L}}$$

c. Alternative DCM Transfer Function Derivation Two equations and two unknowns (V and D_2):

$$V = \frac{D_1 + D_2}{D_2} V_g$$
 (from inductor volt-second balance)
$$\frac{V_g D_1 D_2 T_s}{2L} = \frac{V}{R}$$
 (from capacitor charge balance)

Eliminate D_2 , solve for V. From volt-sec balance eqn:

$$D_2 = D_1 \frac{V_g}{V - V_g}$$

Substitute into charge balance eqn, rearrange terms:

$$V^2 - VV_g - \frac{V_g^2 D_1^2}{K} = 0$$

This can be solved via the quadratic formula as shown on page 7.

Solving for $V_o / V_g(input)$ we find:

$$V^2 - VV_g - \frac{V_g D_1}{K} = 0$$

Use quadratic formula:

.

$$\frac{V}{V_g} = \frac{1 \pm \sqrt{1 + 4D_1^2 / K}}{2}$$

Note that one root leads to positive V, while other leads to negative V. Select positive root:

$$\frac{V}{V} = M(D_1, K) = \frac{1 + \sqrt{1 + 4D_1^2 / K}}{2}$$

where $K = 2L / RT$

valid for $K < K_{crit}(D)$

Transistor duty cycle D = interval 1 duty cycle D_1

This comparative plot again shows the DCM DC transfer

function lying above the CCM values for all D.

4. V_o Buck-Boost DCM Operation a. General

We skip to the current waveforms I_L (inductor) on the right, I_{in} in the middle and I_d (diode) on the right hand side.

 $I_L(DC) = I_{in}(DC) + I_{out}(DC)$

Derive the DCM DC Transfer Function b. Since D₁ is known and V_{in} is constant the peak inductor current when the Tr is on is:

$$i_{L}(\text{peak}) = \frac{D_{1}T_{s}V_{in}}{L}$$
From the sawtooth $i_{in}(t)$ waveform:

$$I_{in}(av) = \frac{D_{1}}{2}i_{L}(\text{peak}) = \frac{V_{in}D_{1}^{2}T_{s}}{2L}$$

$$P_{in}(av) = V_{in}(\text{const})I_{in}(av) = \frac{V_{in}^{2}D_{1}^{2}T_{s}}{2L} = P_{out} = V_{o}^{2}/R$$
Solving for V_{out} directly:

Solving for V_{out} directly:

$$V_{o}(Buck-Boost DCM) = -D_1 V_{in} \sqrt{\frac{RT_s}{2L}}$$

Alternative derivation C.

For HW# 2 YOU Derive the buck-boost transfer function using the proper balance equations

DCM operation occurs for small L, L < L_c (critical), i_L goes to zero before the end of the cycle and when the Tr goes on i_{L} always starts from zero. That is the ratio RT_s/L has to be below a critical level to avoid DCM and remain in CCM operation.

5. A summary would include:

Table 5.2. Summary of CCM-DCM characteristics for the buck, boost, and buck-boost converters

Converter	$K_{crit}(D)$	DCM M(D,K)	$DCM D_2(D, K)$	CCM M(D)
Buck	(1 - D)	$\frac{2}{1+\sqrt{1+4K/D^2}}$	$\frac{K}{D}M(D,K)$	D
Boost	$D(1-D)^{2}$	$\frac{1+\sqrt{1+4D^2/K}}{2}$	$\frac{K}{D}M(D,K)$	$\frac{1}{1-D}$
Buck-boost	$(1 - D)^2$	$-\frac{D}{\sqrt{K}}$	\sqrt{K}	$-\frac{D}{1-D}$

with $K = 2L / RT_s$. DCM occurs for $K < K_{criv}$.

This could also be plotted as shown below:

- DCM buck and boost characteristics are asymptotic to M = 1 and to the DCM buck-boost characteristic
- DCM buck-boost characteristic is linear
- CCM and DCM characteristics intersect at mode boundary. Actual *M* follows characteristic having larger magnitude
- DCM boost characteristic is nearly linear

Next we get expressions for $L_c(critical)$ for each converter topology.

6. L_c(critical) for the Three Major Circuits

We expose the DCM / CCM boundary in terms of an L_c (critical). When $L = L_c$ the i_L waveform is always triangular within T_s , so that $D_1 + D_2 = 1$. At this value of L we can also use the DCM expressions for V_o. Setting the two V_o expressions equal sets L_c .

a. Buck critical L

For
$$V_o = D_1 V_{in}$$
 (at DCM-CCM boundary)

$$\frac{V_{in}^2 D_1}{R} = \frac{D_1^2 T_s}{2L_c} [V_{in}^2 - D_1 V_{in}^2]$$

$$L_c = \frac{RT_s}{2} (1 - D_1)$$

The buck circuit below provides 100W at 5V with a 48V input.

What is L_c? At the DCM-CCM boundary using V_{out} = D_1V_{in} yields $D_1 = 5/48$ and $D_2 = 43/48$. $P_{av} = 100$ implies $I_{out}(av) = 20A$ and $\Delta i_L(peak) = 2I_{av} = 40A$. $e = L_c di/dt$ where $dt = D_1 10\mu s$ $43 = L_c * 40/(5*50/48)$ or $L_c = 1.1 \mu H$ For L < L_c DCM operation for L > L_c CCM operation.

b. Boost critical L

For V_o = V_{in}/(1-D₁) (at DCM-CCM boundary)

$$\frac{V_{in}^{2}}{(1-D_{1})^{2}} = \frac{V_{in}^{2}D_{1}^{2}T_{s}R}{2L_{c}} + \frac{V_{in}^{2}}{1-D_{1}}$$

$$L_{c} = \frac{D_{1}RT_{s}}{2}(1-D_{1})^{2}$$

In the boost circuit below $V_{in} = 48V$, $V_o = 200V$, L = 15 μ H and $f_{sw} = 50$ kHz ($T_s = 20 \ \mu$ s)

What is load P(min) so that $L \ge L_c$? At the DCM / CCM boundary using $V_{out} = V_{in}/(1-D_1)$ yields $D_1 = 0.76$ and $D_2 = 0.24$. When the Tr is on V_L is 48V for a time dt = 0.76*20 µs.

 $V_{L} = Ldi/dt$ The di range during this time is $2I_{L}(av) = 2I_{in}(av)$ $2I_{L}(av) = di > 48*0.76*20 / 15 \ \mu s = 48.64$ The load power must be at least $48*48.6 / 2 = 1167 \ W.$

c. Buck-Boost critical L_c

For $V_o = D_1 V_{in}/(1-D_1)$ (at DCM-CCM boundary) Likewise from the DCM relations

$$V_{out}^{2} = \frac{V_{in}^{2} D_{1}^{2} R T_{s}}{2L_{c}} = \frac{V_{in}^{2} D_{1}^{2}}{(1 - D_{1})^{2}}$$
$$L_{c} = \frac{R T_{s}}{2} (1 - D_{1})^{2}$$

The buck-boost circuit below has $V_{in} = 24V$, $V_o = -12V$ and provides 60 W on average.

Find L_c vs. f_{sw} . $I_{out}(av) = 60/12 = 5A$. For V_{in} = 24V $I_{in}(av) = 25A$. Now $I_L = I_o + I_D = 7.5A$ provided we are in CCM and

 $L > L_c$. Then i_L is a triangle wave from 0 to 2. $I_{av} = 15A$ over the time D_1T_s . Again $V_o = V_{in}D_1 / (1-D_1)$ yields $D_1 = 1/3$.

 $V_{L} = Ldi/dt = L^{*}dI_{av} / D_{1}T_{s}$ 24 = L_c*15 / (1/3)(f_{sw})

Lc = 8Ts / 15 = 8 / (15) f_{sw} (µH)

 $L_c(1kHz) = 533 \ \mu H$ but $L_c(1MHz) = 0.5 \ \mu H$. Clearly higher f_{sw} is desired to make L_c as small as possible.

For **HW#2** use the buck converter shown below:

A buck converter is designed for nominal 48 V input and 5 V output. It switches at 100 KHz. In practice the input can be anywhere between 30 V and 60 V. the load power ranges between 10 W and 200 W. What is L_{crit} for this converter? Conversely, what is the maximum inductance that will ensure discontinuous mode under all allowed conditions?

5. Critical Capacitance C_c(critical)

 $C_{CRITICAL}$ is the capacitance required to keep $V_c > 0$ for all circuit conditions. The Cuk circuit shown below has $V_{in} = 24V$, $V_o = -12$, $f_{sw} = 200$ kHz and provides 120 W.

What is C_c(critical)?

 $I_o(av) = 120/12 = 10A$, $R_L = 1.2\Omega$, $D_1 = 1/3$ and $I_{in}(av) = 120/24 = 5A$. At the CCM / DCM boundary the boost portion provides a voltage on average across the capacitor $V_{in}/(1-D1) = 36V$ which is the sum of the input and output (12+24).

For C_c the V_c will vary from 0 to $2V_c(av) = 72V$ while the transistor is on for

$$\begin{split} D_1 T_s &= (1/3)5 \ \mu s. \\ i_c &= C_c^* dV/dt = \left[C_c^* 2V_c(av)\right] / \left[(1/3)^* 5\right] = C_c^* 72^*(3) \ / \ 5 \\ C_c &= 0.23 \ \mu F \end{split}$$

At C_c we get V_o = -12 for V_{in} = 24V. Will this V_o increase / decrease as C \leq C_c? What if C = C_c/2 = 0.116 μ F?

Since we have DCM V_c will ramp down to zero while the Tr is on. When V_c goes negative the diode goes on while the Tr is on. This causes $D_1 + D_2 > 1$. While the diode is on for a time

 $\Delta t(1-D_1)T_s = 3.33 \ \mu s.$ The voltage varies from 0 to 2(V_{in} +V_{out}).

 $I_c = I_{in} = P_{in} / V_{in} = C\Delta V / \Delta t$

1.
$$(P_{in}/V_{in}) = C_c^* 2(V_{in} + V_{out})/3.33 \mu s$$

2. $P_{in} = P_{out} = V_o^2/R$

Combining 1. and 2. we obtain DCM: $V_o^2 - 2V_o - 48 = 0$ $V_{out} = 8V$ $P_{out} = V_o^2/1.6 = 53.33$ W $I_{in} = 2.2A$ Hence V_o drops for C < C_c

C. Homework Solutions and Hints 1. Problem 5.1

Erickson Problem 5.1: Buck-boost is given on pages 14-16

Ç

(a) From prob 2.1:

$$V = -\frac{D}{D}, V_{3}; T = \frac{DV_{3}}{(D)^{3}R}; \Delta i = \frac{DT_{1}}{2L} V_{3}$$
Knowing For CCN: $I > \Delta i$
 $DCM: I < \Delta i$
 $We want DCM thus $\underline{T < \Delta i}$ or $\underline{DV_{3}} < \underline{DT_{1}} V_{3}$ $\underline{0}$
Relating $K < K_{crit}(D)$ we solve for K and $K_{crig}(D)$
From $\underline{0}$ simplified $\Rightarrow (D')^{2} > \frac{2L}{RT_{5}}$ or $\frac{2L}{RT_{5}} < (D')^{3}$
 $K = \frac{2L}{RT_{5}}$ and $\underline{K_{crit}} = (D')^{3}$
(b) Find $\underline{V_{3}}$ for DCM :
 $v_{3} \subseteq \frac{v_{1}E}{RT_{5}} < \frac{v_{1}}{R} = \frac{v_{1}}{V}$ $v_{3} \subseteq \frac{v_{1}E}{RT_{5}} < \frac{v_{1}}{R} = \frac{v_{1}}{V_{3}} = 0$
 $\langle v_{1} \rangle = D_{1}(v_{3}) + D_{3}(v) + D_{3}(o) = 0$ rearranging $\Rightarrow V = -D_{1}V_{3}$
 $v_{2} \subset \frac{V_{2}}{R} = \frac{V_{3}}{V} = 0$ or $\langle i \rangle_{2} = -\frac{V_{3}}{R}$
No dc current through "C".
 $v_{1} \sim v_{1} = \frac{v_{1}}{R} = \frac{v_{1}}{R} = \frac{v_{1}}{R} = \frac{v_{2}}{R}$$

14

AND:
$$\langle i_0 \rangle = \frac{1}{T_s} \int_0^{T_s} i_0(t) dt = \frac{Areaq}{T_s} = \frac{V_s i_{pk} D_s T_s}{T_s}$$

 $i_{pk} = \left(\frac{V_g}{L}\right)(D_t T_s)$ thus: $\langle i_0 \rangle = \frac{(1)V_g D_t D_s T_s}{2L}$
 $relating \langle i_0 \rangle$ from earlier $\Rightarrow \langle i_0 \rangle = \frac{V_g D_t D_s T_s}{2L} = -\frac{V_g}{R}$
 $Knowing from (1) \quad V = -\frac{D_t}{D_s} V_g$: $\frac{V_g D_t D_s T_s}{2L} = \frac{V_s D_t}{D_s R}$ or $D_s = \sqrt{\frac{2L}{RT_s}} = \sqrt{K}$
 $N_t = \frac{V_g}{V_g} = -\frac{D_t}{D_s} = -\frac{D_t}{\sqrt{K}}$

exceeds the transistor and Diode ratings. To avoid this a minimum load can be used to prevent R-> or a control network to reduce n to 0 when is because too lo

 Erickson Problem 5.9
 EMI Noise Issues from Converters to Mains: Example of Input Filter PWM dc-dc buck converter

 $\Rightarrow \ell_{2} \Rightarrow NO \ SRA \Rightarrow \boxed{\Delta v_{c_{2}} = \Delta v_{2} = \underline{\Delta i_{2} \cdot T_{5}}_{\mathcal{B} C_{2}}} \Rightarrow Fa. (2-60), R. 32.$

Now determine when the DCM occurs by plotting $v_1(t)$ with DC value and ripple

Find Q_1 conducts but when V_1 tries or goes negative diode conducts. K(critical) = D^2D' .

 3. Hints for Erickson Problem 5.4
 Watkins Johnson Converter in CCM (See Erickson's Chapter 6 page 137for the #6 topology and timing)

DTs	D'T _s
Q_1, Q_2 on	Q_1, Q_2 off
D_2 , D_2 off	D_1 , D_2 on

Note: Be careful when dividing by a negative number. If you divide by a negative number you must change the sign of the operator \Rightarrow -5a < b or a > -b/5 but not a < -b/5, Try a=1 and b=1

4. Hints for Erickson Problem 5.14

A. $V_g(min)$, Maximum D values, M_{max} , I_{max} , k_{max} , P_{max}

 I_{max} & Max D \Rightarrow worst case $D_3 = 0.1$ is lowest \equiv Point A

- B. V_g(max), M_{min}, I_{max}, k_{max}, P_{max} Intermediate D values
- C. $V_g(min)$, Intermediate D, M_{max} , I_{min} , k_{min} , P_{min}
- D. $V_g(max), M_{min}, I_{min}, k_{min}, P_{min}, D_{min}$

A is choice for boundary of CCM \leftrightarrow DCM and D₃ = 0.1 at A as per statement in problem D₃(min) = 0.

From here use steady state DCM Boost equations

$$D_1 = f(k,M) = \sqrt{k(m-1)M}$$

$$D_2 = f(D_1, k) = ?? {Lots of algebra}$$

Use
$$D_1$$
 above and: $k = \frac{2L}{RT_s}$

D₂ should be:
$$\sqrt{\frac{2LI}{V_gT_s(M-1)}}$$

Show all work!

Set
$$D_3 = 0.1 = 1 - D_1 = D_2$$

 $D_3 = 1 - M \left[\frac{2LI}{T_s V_g (M-1)} \right]^{1/2}$

 $D_{1} \text{ at point } A = \sqrt{k_{max} (M_{max} - 1) M_{max}}$ $\bigcup_{U \in U} U \text{ se equations on a spreadsheet}$

$$D_1 = \sqrt{\frac{2LI(M-1)}{T_s V_g}}$$
 and specs

Gives L around 5µH

Output capacitor-

- 1. Use i_D vs. time to get Q $2\Delta v_c \approx Q/C \rightarrow \text{Estimate C for } \Delta v = 2v \text{ or } \pm 1V$
- 2. Use i_{peak} I vs. time to get Q $2\Delta v_c = Q/C \rightarrow \text{Estimate C for } \pm 1 \text{ V ripple.}$

The following is a list of equations used to derive the spreadsheet values. Where a, b, c, and d refer to points A, B, C, and D respectively.

$$Ts = \frac{1}{fs} \quad Imin = \frac{Pmin}{V} \quad Imax = \frac{Pmax}{V} \quad Rmin = \frac{V}{Imax} \quad Rmax = \frac{V}{Imin}$$

$$Mmax = \frac{V}{Vgmin} \quad Mmin := \frac{V}{Vgmax} \quad L = \left(\frac{1-D3}{Mmax}\right)^2 \cdot Ts \cdot Vgmin \cdot \frac{Mmax - 1}{2 \cdot Imax}$$

$$Da := \sqrt{2 \cdot L \cdot Imax} \cdot \frac{Mmax - 1}{Ts \cdot Vgmin} \quad Db = \sqrt{2 \cdot L \cdot Imax} \cdot \frac{Mmin - 1}{Ts \cdot Vgmax}$$

$$Dc = \sqrt{2 \cdot L \cdot Imin} \cdot \frac{Mmax - 1}{Ts \cdot Vgmin} \quad Dd = \sqrt{2 \cdot L \cdot Imin} \cdot \frac{Mmin - 1}{Ts \cdot Vgmax}$$

$$Ka = \frac{2 \cdot L \cdot Imax}{Ts \cdot Mmax \cdot Vgmin} \quad Kb = \frac{2 \cdot L \cdot Imax}{Ts \cdot Mmin \cdot Vgmax} \quad Kc = \frac{2 \cdot L \cdot Imin}{Ts \cdot Mmax \cdot Vgmin} \cdot Kd = \frac{2 \cdot L \cdot Imin}{Ts \cdot Mmin \cdot Vgmax}$$

$$Kcrita = Da \cdot (1 - Da)^2 \quad Kcritb = Db \cdot (1 - Db)^2 \quad Kcritc = Dc \cdot (1 - Dc)^2 \quad Kcritd = Dd \cdot (1 - Dd)^2$$

$$ipka = \frac{Vgmin \cdot Da \cdot Ts}{L} \quad ipkb = \frac{Vgmax \cdot Db \cdot Ts}{L} \quad ipkc = \frac{Vgmin \cdot Dc \cdot Ts}{L} \quad ipkd = \frac{Vgmax \cdot Dd \cdot Ts}{L}$$

$$D2a := \sqrt{\frac{2 \cdot L \cdot Imax}{Vgmin \cdot Ts \cdot (Mmax - 1)}} \quad D2b = \sqrt{\frac{2 \cdot L \cdot Imax}{Vgmax \cdot Ts \cdot (Mmin - 1)}}$$

$$D2d = \sqrt{\frac{2 \cdot L \cdot Imax}{Vgmax \cdot Ts \cdot (Mmin - 1)}}$$

$$D3a := 1 - Da - D2a \quad D3b := 1 - Db - D2b \quad D3c := 1 - Dc - D2c \quad D3d := 1 - Dd - D2d$$

$$C := \frac{(ipka - Imax)^2 \cdot D2a \cdot Ts}{L}$$

4∙ipka•1