Lecture 38
Establishing DCM Vout $\mathrm{V}_{\text {in }}$ Quadratic Relations
A. DCM DC Transfer Functions via Quadratic Relations

1. Overview of the DCM Operation Conditions
2. $\quad V_{0}$ for the Buck
3. V_{0} for the Boost
4. V_{0} for the Buck-Boost
5. Summary
6. Lecritical for the Three Major Circuits
7. Critical Capacitance: $\mathrm{C}_{\text {critical }}$
B. Homework Solutions and Hints
8. Problem 5.1
9. Problem 5.9
10. Hints for Problem 5.4
11. Hints for Problem 5.14

Establishing DCM V ${ }_{\text {out }} / \mathrm{V}_{\text {in }}$ Quadratic Relations A. DCM DC Transfer Functions via Quadratic Relations

1. Overview

The figure below summarizes DCM operation for all three major converters: buck, boost and buck-boost using transistor and diode switches. Note I_{L} (inductor) goes to zero each switch period and hence is insured to start form zero at the start of each switch period. We will show $\mathrm{i}_{\mathrm{L}}(o n$ far left), i_{in} (middle plot), and i_{d} (far right) for each circuit versus time. Note that V_{0} in DCM comes only from solving a quadratic equation not from $M(D)$, assuming $V_{i n}$ is constant over the switch period. $\mathrm{P}_{\text {in }}=\mathrm{P}_{\text {out }}$ is also assumed. We will use linear variations of all currents as a good first approximation.

1. V_{0} Buck

The three circuit topologies for the buck are as above:

The circuit and associated waveforms are shown below in DCM operation.

$v_{L}=D_{1}\left(V_{\text {in }}-V_{\text {out }}\right)+D_{2}\left(-V_{\text {out }}\right),\left(D_{1}+D_{2}\right) V_{\text {out }}=D_{1} V_{\text {in }}$ $I_{L}(D C)=V_{\text {out }} / R=1 / 2\left(D_{1}+D_{2}\right) i_{L}($ max $)$
b. Derivation of DCM DC Transfer Function

Since $D_{1} T_{s}$ is set by the control circuit and $V_{\text {in }}$ is assumed constant, the peak inductor current is from the far left waveform:

$$
\mathrm{i}_{\mathrm{L}}(\text { peak })=\mathrm{D}_{1} \mathrm{~T}_{\mathrm{s}}\left[\frac{\left(\mathrm{~V}_{\text {in }}-\mathrm{V}_{\text {out }}\right)}{\mathrm{L}}\right]
$$

From $\mathrm{i}_{\text {in }}$ triangular waveforms in the middle plot we calculate:

$$
\begin{aligned}
& I_{\text {in }}(a v)=\frac{D_{1}}{2} i_{L}(\text { peak })=D_{1}{ }^{2} T_{s}\left[\frac{\left(V_{\text {in }}-V_{\text {out }}\right)}{2 L}\right] \\
& P_{\text {in }}(a v)=V_{\text {in }}(\text { constant }) I_{\text {in }}(\text { av })=D_{1}^{2} T_{s}\left[\frac{\left(\mathrm{~V}_{\text {in }}{ }^{2}-V_{\text {in }} V_{\text {out }}\right)}{2 L}\right]
\end{aligned}
$$

For lossless converters we can say the following:

$$
P_{\text {in }}=P_{\text {out }}=V^{2}{ }_{\text {out }} / R
$$

Yielding a quadratic equation in $\mathrm{V}_{\text {out }}$.
Solving:

$$
\mathrm{V}_{0}(\text { DCM Buck })=\frac{-\mathrm{D}_{1}{ }^{2} \mathrm{~V}_{\text {in }} \mathrm{RT}_{\mathrm{s}}}{4 \mathrm{~L}}+\mathrm{D}_{1} \mathrm{~V}_{\text {in }} \sqrt{\frac{\mathrm{RT}}{2 \mathrm{~L}}+\frac{\mathrm{R}^{2} \mathrm{~T}_{\mathrm{s}}^{2} \mathrm{D}_{1}{ }^{2}}{16 \mathrm{~L}^{2}}}
$$

c. Alternative Derivation

Two equations and two unknowns (V and D_{2}):

$$
\begin{array}{ll}
V=V_{g} \frac{D_{1}}{D_{1}+D_{2}} & \text { (from inductor volt-second balance) } \\
\frac{V}{R}=\frac{D_{1} T_{s}}{2 L}\left(D_{1}+D_{2}\right)\left(V_{g}-V\right) & \text { (from capacitor charge balance) }
\end{array}
$$

Eliminate D_{2}, solve for V :

$$
\frac{V}{V_{g}}=\frac{2}{1+\sqrt{1+4 K / D_{1}^{2}}}
$$

where

$$
K=2 L / R T_{s}
$$

valid for $\quad K<K_{\text {crit }}$
We get this from doing out steady-state balance. The resulting plot for the buck DCM transfer function vs. D is:

Again note the trend for the DCM DC transfer function to be bigger for all D values than the CCM transfer function.
3 .Vo Boost in DCM Operation
a. General

The three circuit topologies for the DCM boost are shown below:

b. Derive DCM DC Transfer Function

We also show below the three boost circuit current waveforms I_{L} (inductor), $\mathrm{I}_{\mathrm{t}}($ switch $)$ and $\mathrm{i}_{\mathrm{D}}($ diode $):$

$\mathrm{V}_{\mathrm{L}}=\mathrm{D}_{1}\left(\mathrm{~V}_{\text {in }}\right)+\mathrm{D}_{2}\left(\mathrm{~V}_{\text {in }}-\mathrm{V}_{\text {out }}\right),\left(\mathrm{D}_{1}+\mathrm{D}_{2}\right) \mathrm{V}_{\text {in }}=\mathrm{D}_{2} \mathrm{~V}_{\text {out }}$
$I_{L}(D C)=I_{\text {in }}(D C)=1 / 2\left(D_{1}+D_{2}\right) i_{L}(\max)$
Since D_{1} is set by the control circuit the and $V_{\text {in }}$ is fixed the peak inductor current from the left side plot is:

$$
\mathrm{i}_{\mathrm{L}}(\text { peak })=\frac{\mathrm{D}_{1} \mathrm{~T}_{\mathrm{s}} \mathrm{~V}_{\text {in }}}{\mathrm{L}}
$$

From the middle $l_{\text {in }}$ plot vs. time in the middle we can find:

$$
\begin{aligned}
& l_{\text {in }}(a v)=I_{L}(a v)=\frac{D_{1}+D_{2}}{2} i_{L}(\text { peak }) \\
& l_{\text {in }}(a v)=\frac{\left(D_{1}+D_{2}\right) V_{\text {in }} D_{1} T_{S}}{2 L} \\
& P_{\text {in }}(a v)=V_{\text {in }}(\text { fixed }) l_{\text {in }}(a v)=\frac{\left(D_{1}+D_{2}\right) V_{\text {in }}{ }^{2} D_{1} T_{S}}{2 L} \\
& P_{\text {in }}(a v)=P_{\text {out }}(a v)=V_{0}^{2} / R_{L}
\end{aligned}
$$

Both D_{2} and $\mathrm{V}_{\text {out }}$ are unknown.

Yielding a quadratic equation in $\mathrm{V}_{\text {out. }}$. Fortunately the sawtooth diode current waveform drives the load so that

$$
\mathrm{I}_{\text {out }}(\mathrm{av})=\mathrm{V}_{\text {out }} / \mathrm{R}=\frac{\mathrm{D}_{2}}{2} \mathrm{i}_{\text {diode }}(\text { peak })
$$

Which sets $D_{2}=\frac{2 V_{0} L}{R V_{i n} D_{1} T}$ and we obtain a new quadratic equation for V_{0}.

Solving:

$$
\mathrm{V}_{0}(\text { Boost } \mathrm{DCM})=\frac{\mathrm{V}_{\text {in }}}{2}+\frac{\mathrm{V}_{\text {in }}}{2} \sqrt{1+\frac{2 \mathrm{RT}_{s} \mathrm{D}_{1}}{\mathrm{~L}}}
$$

c. Alternative DCM Transfer Function Derivation

Two equations and two unknowns (V and D_{2}):

$$
\begin{array}{ll}
V=\frac{D_{1}+D_{2}}{D_{2}} V_{g} & \text { (from inductor volt-second balance) } \\
\frac{V_{g} D_{1} D_{2} T_{s}}{2 L}=\frac{V}{R} \quad, & \text { (from capacitor charge balance) }
\end{array}
$$

Eliminate D_{2}, solve for V. From volt-sec balance eqn:

$$
D_{2}=D_{1} \frac{V_{g}}{V-V_{g}}
$$

Substitute into charge balance eqn, rearrange terms:

$$
V^{2}-V V_{g}-\frac{V_{g}^{2} D_{1}^{2}}{K}=0
$$

This can be solved via the quadratic formula as shown on page 7.

Solving for $\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{g}}$ (input) we find:

$$
V^{2}-V V_{g}-\frac{V_{g}^{-} \boldsymbol{D}_{i}^{-}}{K}=0
$$

Use quadratic formula:

$$
\frac{V}{V_{g}}=\frac{1 \pm \sqrt{1+4 D_{1}^{2} / K}}{2}
$$

Note that one root leads to positive V, while other leads to negative V. Select positive root:

$$
\frac{V}{V^{\prime}}=M\left(D_{1}, K\right)=\frac{1+\sqrt{1+4 D_{1}^{2} / K}}{2}
$$

$$
\begin{array}{ll}
\text { where } & K=2 L / R T_{3} \\
\text { valid for } & K<K_{c r i i}(D)
\end{array}
$$

Transistor duty cycle $D=$ interval 1 duty cycle D_{L}

This comparative plot again shows the DCM DC transfer

function lying above the CCM values for all D.
4. V_{0} Buck-Boost DCM Operation
a. General

We skip to the current waveforms I_{L} (inductor) on the right, $\mathrm{l}_{\text {in }}$ in the middle and l_{d} (diode) on the right hand side.

$\mathrm{V}_{\mathrm{L}}=\mathrm{D}_{1}\left(\mathrm{~V}_{\text {in }}\right)+\mathrm{D}_{2}\left(\mathrm{~V}_{\text {out }}\right), \mathrm{D}_{1} \mathrm{~V}_{\text {in }}=-\mathrm{D}_{1} \mathrm{~V}_{\text {out }}$
$I_{L}(D C)=I_{\text {in }}(D C)+I_{\text {out }}(D C)$
b. Derive the DCM DC Transfer Function

Since D_{1} is known and $V_{\text {in }}$ is constant the peak inductor current when the Tr is on is:

$$
i_{L}(\text { peak })=\frac{D_{1} T_{s} V_{\text {in }}}{L}
$$

From the sawtooth $\mathrm{i}_{\mathrm{in}}(\mathrm{t})$ waveform:

$$
\begin{aligned}
& \mathrm{l}_{\text {in }}(\mathrm{av})=\frac{\mathrm{D}_{1}}{2} \mathrm{i}_{\mathrm{L}}(\text { peak })=\frac{\mathrm{V}_{\text {in }} D_{1}^{2} T_{\mathrm{s}}}{2 L} \\
& \mathrm{P}_{\text {in }}(\mathrm{av})=V_{\text {in }}(\text { const }) l_{\text {lin }}(a v)=\frac{V_{\text {in }}{ }^{2} D_{1}{ }^{2} T_{\mathrm{s}}}{2 L}=P_{\text {out }}=V_{0}^{2} / R
\end{aligned}
$$

Solving for $\mathrm{V}_{\text {out }}$ directly:
$\mathrm{V}_{0}($ Buck-Boost DCM $)=-\mathrm{D}_{1} \mathrm{~V}_{\text {in }} \sqrt{\frac{\mathrm{RT}_{\mathrm{s}}}{2 \mathrm{~L}}}$
c. Alternative derivation

For HW\# 2 YOU Derive the buck-boost transfer function using the proper balance equations DCM operation occurs for small $\mathrm{L}, \mathrm{L}<\mathrm{L}_{\mathrm{c}}$ (critical), i , goes to zero before the end of the cycle and when the Tr goes on i_{L} always starts from zero. That is the ratio $R T_{s} / \mathrm{L}$ has to be below a critical level to avoid DCM and remain in CCM operation.
5. A summary would include:

Table 5.2. Summary of CCM-DCM chamacteristics for the buck, boost, and buck-boost converters

Converter	$K_{\text {cri }}(D)$	$D C M M(D, K)$	$D C M D_{2}(D, K)$	$C C M M(D)$
Buck	$(l-D)$	$\frac{2}{1+\sqrt{1+4 K / D^{2}}}$	$\frac{K}{D} M(D, K)$	D
Boost	$D(l-D)^{2}$	$\frac{1+\sqrt{1+4 D^{2} / K}}{2}$	$\frac{K}{D M(D, K)}$	$\frac{1}{1-D}$
Buck-boost	$(l-D)^{2}$	$-\frac{D}{\sqrt{K}}$	\sqrt{K}	$-\frac{D}{1-D}$

$$
\text { with } \quad K=2 L / R T_{s} . \quad D C M \text { occurs for } K<K_{\text {cri }}
$$

This could also be plotted as shown below:

- DCM buck and boost characteristics are asymptotic to $M=1$ and to the DCM buck-boost characteristic
- DCM buck-boost characteristic is linear
- CCM and DCM characteristics intersect at mode boundary. Actual M follows characteristic having larger magnitude
- DCM boost characteristic is nearly linear

Next we get expressions for L_{c} (critical) for each converter topology.

6. L_{c} (critical) for the Three Major Circuits

We expose the DCM / CCM boundary in terms of an L_{c} (critical). When $L=L_{c}$ the i_{L} waveform is always triangular within T_{s}, so that $D_{1}+D_{2}=1$. At this value of L we can also use the DCM expressions for V_{0}. Setting the two V_{0} expressions equal sets L_{c}.
a. Buck critical L

$$
\begin{aligned}
& \text { For } \mathrm{V}_{\mathrm{o}}=\mathrm{D}_{1} \mathrm{~V}_{\text {in }}(\text { at } \mathrm{DCM}-\mathrm{CCM} \text { boundary }) \\
& \qquad \begin{array}{c}
\frac{V_{\text {in }}^{2} D_{1}}{R}=\frac{D_{1}^{2} T_{s}}{2 L_{c}}\left[\mathrm{~V}_{\text {in }}^{2}-D_{1} V_{\text {in }}^{2}\right] \\
L_{c}=\frac{R T_{s}}{2}\left(1-D_{1}\right)
\end{array}
\end{aligned}
$$

The buck circuit below provides 100 W at 5 V with a 48 V input.

What is L_{c} ? At the DCM-CCM boundary using $\mathrm{V}_{\text {out }}=$ $D_{1} V_{\text {in }}$ yields $D_{1}=5 / 48$ and $D_{2}=43 / 48 . \quad P_{a v}=100$ implies $\mathrm{I}_{\text {out }}(\mathrm{av})=20 \mathrm{~A}$ and $\Delta \mathrm{i}_{\mathrm{L}}($ peak $)=2 \mathrm{I}_{\mathrm{av}}=40 \mathrm{~A}$.

$$
\mathrm{e}=\mathrm{L}_{\mathrm{c}} \mathrm{di} / \mathrm{dt} \text { where } \mathrm{dt}=\mathrm{D}_{1} 10 \mu \mathrm{~s}
$$

$$
43=\mathrm{L}_{\mathrm{c}}{ }^{*} 40 /\left(5^{*} 50 / 48\right) \quad \text { or } \mathrm{L}_{\mathrm{c}}=1.1 \mu \mathrm{H}
$$

For $L<L_{c} D C M$ operation for $L>L_{c} C C M$ operation.

b. Boost critical L

For $\mathrm{V}_{0}=\mathrm{V}_{\text {in }} /\left(1-\mathrm{D}_{1}\right)$ (at DCM-CCM boundary)

$$
\frac{\mathrm{V}_{\text {in }}{ }^{2}}{\left(1-\mathrm{D}_{1}\right)^{2}}=\frac{\mathrm{V}_{\text {in }}{ }^{2} \mathrm{D}_{1}{ }^{2} \mathrm{~T}_{\mathrm{s}} \mathrm{R}}{2 \mathrm{~L}_{\mathrm{c}}}+\frac{\mathrm{V}_{\text {in }}{ }^{2}}{1-\mathrm{D}_{1}}
$$

$$
\mathrm{L}_{\mathrm{c}}=\frac{\mathrm{D}_{1} \mathrm{RT}_{\mathrm{s}}}{2}\left(1-\mathrm{D}_{1}\right)^{2}
$$

In the boost circuit below $\mathrm{V}_{\text {in }}=48 \mathrm{~V}, \mathrm{~V}_{0}=200 \mathrm{~V}$,
$\mathrm{L}=15 \mu \mathrm{H}$ and $\mathrm{f}_{\mathrm{sw}}=50 \mathrm{kHz}\left(\mathrm{T}_{\mathrm{s}}=20 \mu \mathrm{~s}\right)$

What is load $P(\min)$ so that $L \geq L_{c}$? At the DCM / CCM boundary using $\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {in }} /\left(1-\mathrm{D}_{1}\right)$ yields $\mathrm{D}_{1}=0.76$ and D_{2} $=0.24$. When the Tr is on V_{L} is 48 V for a time $\mathrm{dt}=$ $0.76 * 20 \mu \mathrm{~s}$.

$$
\mathrm{V}_{\mathrm{L}}=\mathrm{Ldi} / \mathrm{dt}
$$

The di range during this time is $2 \mathrm{~L}_{\mathrm{L}}(\mathrm{av})=2 \mathrm{l}_{\mathrm{in}}(\mathrm{av})$
$2 \mathrm{l}_{\mathrm{L}}(\mathrm{av})=\mathrm{di}>48^{*} 0.76^{*} 20 / 15 \mu \mathrm{~s}=48.64$
The load power must be at least $48^{\star} 48.6 / 2=1167 \mathrm{~W}$.

c. Buck-Boost critical L_{c}

For $\mathrm{V}_{0}=\mathrm{D}_{1} \mathrm{~V}_{\text {in }} /\left(1-\mathrm{D}_{1}\right)$ (at DCM-CCM boundary)
Likewise from the DCM relations

$$
\begin{aligned}
& \mathrm{V}_{\text {out }}^{2}=\frac{\mathrm{V}_{\text {in }}{ }^{2} \mathrm{D}_{1}{ }^{2} \mathrm{RT}_{\mathrm{s}}}{2 \mathrm{~L}_{\mathrm{c}}}=\frac{\mathrm{V}_{\text {in }}{ }^{2} \mathrm{D}_{1}{ }^{2}}{\left(1-\mathrm{D}_{1}\right)^{2}} \\
& \mathrm{~L}_{\mathrm{c}}=\frac{\mathrm{RT}_{\mathrm{s}}}{2}\left(1-\mathrm{D}_{1}\right)^{2}
\end{aligned}
$$

The buck-boost circuit below has $\mathrm{V}_{\text {in }}=24 \mathrm{~V}, \mathrm{~V}_{0}=-12 \mathrm{~V}$ and provides 60 W on average.

Find L_{c} vs. $f_{s w} . I_{\text {out }}(a v)=60 / 12=5 \mathrm{~A}$. For $V_{\text {in }}=24 \mathrm{~V}$ $\mathrm{I}_{\text {in }}(\mathrm{av})=25 \mathrm{~A}$. Now $\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{0}+\mathrm{I}_{\mathrm{D}}=7.5 \mathrm{~A}$ provided we are in CCM and
$L>L_{c}$. Then i_{L} is a triangle wave from 0 to 2 . $I_{\mathrm{av}}=15 \mathrm{~A}$ over the time $D_{1} T_{s}$. Again $\mathrm{V}_{0}=\mathrm{V}_{\text {in }} \mathrm{D}_{1} /\left(1-\mathrm{D}_{1}\right)$ yields $\mathrm{D}_{1}=$ 1/3.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{L}}=\mathrm{Ldi} / \mathrm{dt}=\mathrm{L}^{*} \mathrm{dl}_{\mathrm{av}} / \mathrm{D}_{1} \mathrm{~T}_{\mathrm{s}} \\
& 24=\mathrm{L}_{\mathrm{c}}^{*} 15 /(1 / 3)\left(\mathrm{f}_{\mathrm{sw}}\right) \\
& \mathrm{Lc}=8 \mathrm{Ts} / 15=8 /(15) \mathrm{f}_{\mathrm{sw}}(\mu \mathrm{H})
\end{aligned}
$$

$\mathrm{L}_{\mathrm{c}}(1 \mathrm{kHz})=533 \mu \mathrm{H}$ but $\mathrm{L}_{\mathrm{c}}(1 \mathrm{MHz})=0.5 \mu \mathrm{H}$. Clearly higher $f_{s w}$ is desired to make L_{c} as small as possible.

For HW\#2 use the buck converter shown below:

A buck converter is designed for nominal 48 V input and 5 V output. It switches at 100 KHz . In practice the input can be anywhere between 30 V and 60 V . the load power ranges between 10 W and 200 W . What is $\mathrm{L}_{\text {crit }}$ for this converter? Conversely, what is the maximum inductance that will ensure discontinuous mode under all allowed conditions?

5. Critical Capacitance C_{c} (critical)

$\mathrm{C}_{\text {Critical }}$ is the capacitance required to keep $\mathrm{V}_{\mathrm{c}}>0$ for all circuit conditions. The Cuk circuit shown below has $\mathrm{V}_{\text {in }}=$ $24 \mathrm{~V}, \mathrm{~V}_{\mathrm{o}}=-12, \mathrm{f}_{\mathrm{sw}}=200 \mathrm{kHz}$ and provides 120 W .

What is C_{c} (critical)?
$\mathrm{I}_{\mathrm{o}}(\mathrm{av})=120 / 12=10 \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=1.2 \Omega, \mathrm{D}_{1}=1 / 3$ and $\mathrm{I}_{\mathrm{in}}(\mathrm{av})=$
120/24 = 5A. At the CCM / DCM boundary the boost portion provides a voltage on average across the capacitor $\mathrm{V}_{\text {in }} /(1-$ $D 1)=36 \mathrm{~V}$ which is the sum of the input and output ($12+24$).

For C_{c} the V_{c} will vary from 0 to $2 \mathrm{~V}_{\mathrm{c}}(\mathrm{av})=72 \mathrm{~V}$ while the transistor is on for $D_{1} T_{s}=(1 / 3) 5 \mu \mathrm{~s}$.

$$
\mathrm{i}_{\mathrm{c}}=\mathrm{C}_{\mathrm{c}}{ }^{*} \mathrm{dV} / \mathrm{dt}=\left[\mathrm{C}_{\mathrm{c}}{ }^{*} 2 \mathrm{~V}_{\mathrm{c}}(\mathrm{av})\right] /\left[(1 / 3)^{*} 5\right]=\mathrm{C}_{\mathrm{c}}{ }^{*} 72^{*}(3) / 5
$$

$$
\mathrm{C}_{\mathrm{c}}=0.23 \mu \mathrm{~F}
$$

At C_{c} we get $\mathrm{V}_{\mathrm{o}}=-12$ for $\mathrm{V}_{\text {in }}=24 \mathrm{~V}$. Will this V_{0} increase / decrease as $\mathrm{C} \leq \mathrm{C}_{\mathrm{c}}$? What if $\mathrm{C}=\mathrm{C}_{\mathrm{c}} / 2=0.116 \mu \mathrm{~F}$?

Since we have DCM V_{c} will ramp down to zero while the Tr is on. When V_{c} goes negative the diode goes on while the Tr is on. This causes $D_{1}+D_{2}>1$. While the diode is on for a time
$\Delta t\left(1-D_{1}\right) \mathrm{T}_{\mathrm{s}}=3.33 \mu \mathrm{~s}$. The voltage varies from 0 to $2\left(\mathrm{~V}_{\mathrm{in}}\right.$ $+\mathrm{V}_{\text {out }}$).
$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\text {in }}=\mathrm{P}_{\text {in }} / \mathrm{V}_{\text {in }}=\mathrm{C} \Delta \mathrm{V} / \Delta \mathrm{t}$

1. $\left(\mathrm{P}_{\text {in }} / \mathrm{V}_{\text {in }}\right)=\mathrm{C}_{\mathrm{c}}{ }^{*} 2\left(\mathrm{~V}_{\text {in }}+\mathrm{V}_{\text {out }}\right) / 3.33 \mu \mathrm{~s}$
2. $P_{\text {in }}=P_{\text {out }}=V_{o}^{2} / R$

Combining 1. and 2. we obtain DCM:

$$
\begin{aligned}
& \mathrm{V}_{0}^{2}-2 \mathrm{~V}_{0}-48=0 \\
& \mathrm{~V}_{\text {out }}=8 \mathrm{~V} \\
& \mathrm{P}_{\text {out }}=\mathrm{V}_{0}^{2} / 1.6=53.33 \mathrm{~W} \\
& \mathrm{I}_{\text {in }}=2.2 \mathrm{~A}
\end{aligned}
$$

Hence V_{o} drops for $C<C_{c}$

C. Homework Solutions and Hints

1. Problem 5.1

Erickson Problem 5.1: Buck-boost is given on pages 14-16

(a) From prob. 2.1:

$$
V=\frac{-D}{D^{\prime}} V_{g} ; I=\frac{D V_{g}}{\left(D^{\prime}\right)^{\prime} R} ; \Delta i=\frac{D T_{j}}{2 L} V_{g}
$$

Knowing For $C C M$: $I>\triangle i$

$$
\begin{equation*}
D C M 1: I<\Delta i \tag{1}
\end{equation*}
$$

We want $D(M)$ thus $I<\Delta i$ or $\frac{D V_{g}}{\left(D^{\prime}\right)^{2} A}<\frac{D T_{s} V_{g}}{2 L}$

- Relating $K<K_{\text {cr, }}(D)$ we solve for K and $K_{\text {crit }}(D)$

$$
\text { From © } 0 \text { simplified } \Rightarrow\left(D^{\prime}\right)^{2}>\frac{2 L}{R T_{s}} \text { or } \frac{2 L}{R T_{s}}<\left(D^{\prime}\right)^{2}
$$

$$
k=\frac{\partial L}{R T_{s}} \text { and } \underline{k_{c r i t}=\left(D^{\prime}\right)^{2}}
$$

(b) Find $\frac{V}{V}$ for $D C M$:

$$
\begin{align*}
& \left\langle v_{L}\right\rangle=D_{i}\left(V_{g}\right)+D_{2}(V)+D_{3}(0)=0 \quad \text { rearranging } \Rightarrow V=\frac{-D_{1} V_{g}}{D_{2}} \tag{1}\\
& \left\langle i_{c}\right\rangle=i_{0}+\frac{V}{R}=0 \quad \text { or }\left\langle i_{0}\right\rangle=-\frac{V}{R}
\end{align*}
$$

No de current through "C".
adrian

$$
i(t)
$$

$$
\begin{aligned}
& \text { AND: }\left\langle i_{0}\right\rangle=\frac{1}{T_{s}} \int_{0}^{T_{s}} i_{D}(t) d t=\frac{\text { Area } q}{T_{s}} q=\frac{1 / 2 i_{p \kappa} D_{2} T_{s}}{T_{s}} \\
& i_{p k}=\left(\frac{V_{g}}{L}\right)\left(D_{1} T_{s}\right) \text { this: }\left\langle i_{0}\right\rangle=\frac{\left(\| v_{g} D_{1} D_{2} T_{s}\right.}{2 L}=\frac{V_{g} D_{1} D_{2} T_{s}}{2 L} \\
& \text { relating }\left\langle i_{0}\right\rangle \text { from earlier } \Rightarrow\left\langle i_{b}\right\rangle=\frac{V_{j} D_{,} D_{\alpha} T_{s}}{\alpha L}=\frac{-V}{R} \\
& \text { Knowing from (D) } V=\frac{-D_{1}}{D_{2}} V_{y}: \frac{V_{y} D D_{1} D_{2} T_{s}}{2 L}=\frac{V_{y} \theta_{2}^{R}}{O_{2} R} \text { or } D_{2}=\sqrt{\frac{2 L}{R T_{s}}}=\sqrt{K} \\
& M=\underline{\frac{V}{V_{g}}=\frac{-D_{1}}{D_{2}}=\frac{-D_{1}}{\sqrt{k}}}
\end{aligned}
$$

(c) $k=0.1$, plot V / u_{y} over $0 \leq D \leq 1$

(d) $K=.1, D_{1}=.3 \quad$ knowing $D_{\alpha}=\sqrt{k}=.316$ and $D_{3}=1-D_{1}-D_{2}=.3838$ All threctime periods Known

$$
i_{r k}=\frac{V_{g} V_{1} T_{s} \Rightarrow \frac{V}{V_{g}}=\frac{-0}{\sqrt{k}} \cong .95}{\underline{5}}
$$

(e) $A \rightarrow \infty ; \quad K=\frac{\alpha L}{A T_{s}} \rightarrow 0 \quad K<k_{\text {crit }} D C M . \quad M=\frac{K}{V_{g}}=\frac{-D_{1}}{\sqrt{\kappa}} \rightarrow-\infty \quad-\infty$ V tends toward $-\infty$. Since U becomes very large it probably
exceeds the transistor and Diode ratings. To avoid this a minimums load cum be used to prevent $R \rightarrow \infty$ or a control network to reduce

Erickson Problem. 5.9

a) WHEN THE TMANSISTOR Qi is ON (DL DFF) THE TRAN-
 CURRENT (e(t) INCREASES LINEEARLY AS WERL AS ITH).

 Q1 ON:
$\mathrm{D}_{1} \cdot \mathrm{ON}:$

$\Rightarrow L_{1}$ VOLT-SEC BALANEE: (Obs. SRA \Rightarrow IMALL RIPMIE AFPROXIMATION)
 \Rightarrow La VOLT-SEC balance:

$$
\begin{aligned}
\frac{\lambda_{2}}{T_{s}}=0=D(V \operatorname{la}-V)+D^{\prime}(-V)=0 \Rightarrow & \bar{V}=\overline{D V A} \text { (2) USE SRA! } \\
& \text { NTTH (1) } \Rightarrow V-D V g]
\end{aligned}
$$

$\Rightarrow C 1$ charges balance:

$$
\begin{aligned}
& \frac{Q_{1}}{T_{s}}=0=D\left(I_{1}-I_{2}\right)+D^{\prime}\left(I_{1}\right)=0 \Rightarrow I_{1}=D I_{2} \text { (3) USE } S R A! \\
& \text { witH (4) \& (2) } \Rightarrow I_{1}=D \frac{V}{k} \& I_{1}=\frac{I^{2} V_{G}}{R_{k}}
\end{aligned}
$$

\Rightarrow CO CHARGE BALANCE:

Summary of V_{i} versus time

$$
\begin{aligned}
& V_{1}=V_{g}, V=D V_{g}, \quad I_{1}=D \frac{V}{R}=D^{2} \frac{V_{g}}{R}, \quad I_{2}=\frac{V}{R} \\
& 2 \Delta v_{3}=\left(\frac{I_{1}}{C_{1}}\right)\left(D T_{s}\right) \\
& \Delta v_{1}=\frac{V_{g} D^{2} D^{\prime} T_{s}}{2 R C_{1}}
\end{aligned}
$$

Now Conditions CV V_{1} fordcm as well as $\Delta i_{1}, \Delta l_{2}$ and ΔV_{2}
C) Let's evaluate the ripple for: L_{1}, L_{2}, C_{1} \& Ca:

$$
\begin{aligned}
& \Rightarrow L_{1} \Rightarrow \text { NO SKA } \Rightarrow \Delta i_{1}=\frac{\Delta U e_{1} \cdot I_{s}}{81} \Rightarrow \overrightarrow{(5)} \text { DeAL FOR EQ. }(2-60) . \\
& \Rightarrow L_{2} \Rightarrow \text { USE SKA } \Rightarrow 2 \Delta v a=\left(\frac{V q-V}{L 2}\right)\left(D T_{5}\right) \Rightarrow \Delta x_{z}=\frac{(V q-V) D T_{5}}{2 L_{2}} \text { (G) } \\
& \Rightarrow C_{1} \Rightarrow \text { USE } S R A \Rightarrow 2 \Delta V_{C 1}=\left(\frac{I_{1}}{C_{1}}\right)\left(D^{\prime} T_{s}\right) \Rightarrow \Delta v_{1-1}=\frac{\frac{V}{R} D(1-D) T_{s}}{2 C_{1}} \text { (7) } \\
& \Rightarrow C_{2} \Rightarrow N 0 S R A \Rightarrow \Delta v_{c_{2}}=\Delta v_{1}=\frac{\Delta i_{\alpha} \cdot T_{5}}{8 C_{2}} \Rightarrow(8) E Q \cdot(2-60), R 32 .
\end{aligned}
$$

Now determine when the DCM occurs by plotting $\mathrm{v}_{1}(\mathrm{t})$ with DC value and ripple

$V_{1}(d c) K=\frac{2 R C_{1}}{T_{s}}$

Find Q_{1} conducts but when V_{1} tries or goes negative diode conducts. $\mathrm{K}($ critical $)=\mathrm{D}^{2} \mathrm{D}^{\prime}$.

aid FOR $D C M \Rightarrow \Delta V_{\perp}>V_{1}, O R=\left\{\begin{array}{l}\text { FOR THE } \\ \text { CAPACITOR } C_{1}\end{array}\right.$
$\frac{D^{2} V_{2} D^{\prime} T_{s}}{2 R C_{1}}>V_{g} \Rightarrow D E F I N E \frac{K=\frac{2 R C_{1}}{T_{s}}}{\Rightarrow}$
$\Rightarrow K<D^{2} D^{\prime} \quad$ OR $K<K_{\text {CRiT }} \Rightarrow K_{\text {CRIT }}=D^{2} D^{\prime}$.
3. Hints for Erickson Problem 5.4

Watkins Johnson Converter in CCM
(See Erickson's Chapter 6 page 137for the \#6 topology and timing)
$D T_{s}$
$\mathrm{D}^{\prime} \mathrm{T}_{\mathrm{s}}$
$\mathrm{Q}_{1}, \mathrm{Q}_{2}$ on
$\mathrm{Q}_{1}, \mathrm{Q}_{2}$ off
$\mathrm{D}_{2}, \mathrm{D}_{2}$ off
D_{1}, D_{2} on

Note: Be careful when dividing by a negative number. If you divide by a negative number you must change the sign of the operator $\Rightarrow-5 \mathrm{a}<\mathrm{b}$ or $\mathrm{a}>-\mathrm{b} / 5$ but not $\mathrm{a}<-\mathrm{b} / 5$, Try $\mathrm{a}=1$ and b=1
4. Hints for Erickson Problem 5.14

DCM Boost

Draw a plot to find "worst case" DCM operation or nearly CCM. $D_{3}=0.1$ is minimum

Fill in the box for all cases of I vs. M.
Four Boundary Points
A. $\quad \mathrm{V}_{\mathrm{g}}(\mathrm{min})$, Maximum D values, $\mathrm{M}_{\max }, \mathrm{I}_{\max }, \mathrm{k}_{\max }, \mathrm{P}_{\text {max }}$
$I_{\text {max }} \& \operatorname{Max} D \Rightarrow$ worst case
$\mathrm{D}_{3}=0.1$ is lowest \equiv Point A
B. $\quad V_{g}(\max), M_{\text {min }}, I_{\text {max }}, k_{\text {max }}, P_{\text {max }}$ Intermediate D values
C. $\quad \mathrm{V}_{\mathrm{g}}(\mathrm{min})$, Intermediate $\mathrm{D}, \mathrm{M}_{\text {max }}, \mathrm{I}_{\text {min }}, \mathrm{k}_{\text {min }}, \mathrm{P}_{\text {min }}$
D. $\mathrm{V}_{\mathrm{g}}(\max), \mathrm{M}_{\text {min }}, \mathrm{I}_{\text {min }}, \mathrm{k}_{\text {min }}, \mathrm{P}_{\text {min }}, \mathrm{D}_{\text {min }}$

A is choice for boundary of CCM \leftrightarrow DCM and $D_{3}=0.1$ at A as per statement in problem $D_{3}(\min)=0$.

From here use steady state DCM Boost equations

$$
\begin{aligned}
& D_{1}=f(k, M)=\sqrt{k(m-1) M} \\
& D_{2}=f\left(D_{1}, k\right)=? ? \quad \text { LLots of algebra\} }
\end{aligned}
$$

Use D_{1} above and: $k=\frac{2 L}{R T_{S}}$
D_{2} should be: $\sqrt{\frac{2 L I}{V_{g} T_{S}(M-1)}}$

Show all work!

Set $D_{3}=0.1=1-D_{1}=D_{2}$
$D_{3}=1-M\left[\frac{2 L I}{T_{s} V_{g}(M-1)}\right]^{1 / 2}$

D_{1} at point $A \equiv \sqrt{\operatorname{Kmax}_{\max }\left(M_{\max }-1\right) M_{\max }}$ $\Downarrow \quad \Downarrow$ Use equations on a spreadsheet

$$
\mathrm{D}_{1}=\sqrt{\frac{2 \mathrm{LI}(\mathrm{M}-1)}{\mathrm{T}_{\mathrm{s}} \mathrm{~V}_{\mathrm{g}}}} \text { and specs }
$$

Gives L around $5 \mu \mathrm{H}$

Output capacitor-

1. Use i_{D} vs. time to get Q $2 \Delta v_{c} \approx Q / C \rightarrow$ Estimate C for $\Delta v=2 v$ or $\pm 1 \mathrm{~V}$
2. Use $\mathrm{i}_{\text {peak }}$ - I vs. time to get Q $2 \Delta V_{c}=Q / C \rightarrow$ Estimate C for $\pm 1 \mathrm{~V}$ ripple.

The following is a list of equations used to derive the spreadsheet values. Where a, b, c and d refer to points A, B, C, and D respectively.
$\mathrm{Ts}=\frac{1}{\mathrm{fs}} \quad \mathrm{Imin}=\frac{\mathrm{Pmin}}{\mathrm{V}} \quad \operatorname{Imax}=\frac{\mathrm{Pmax}}{\mathrm{V}} \quad \operatorname{Rmin}=\frac{\mathrm{V}}{\mathrm{Imax}} \quad \mathrm{Rmax}=\frac{\mathrm{V}}{\operatorname{Imin}}$
$\operatorname{Mmax}=\frac{V}{V g \min } \quad \operatorname{Mmin}:=\frac{V}{V \max } \quad L=\left(\frac{1-D 3}{M \max }\right)^{2} \cdot T s \cdot V \min \cdot \frac{M \max -I}{2 \cdot \operatorname{Imax}}$
$\mathrm{Da}:=\sqrt{2 \cdot \mathrm{~L} \cdot \operatorname{Imax} \cdot \frac{\mathrm{Mmax}-1}{\mathrm{Ts} \cdot \mathrm{Vgmin}}}$
$\mathrm{Db}=\sqrt{2 \cdot L \cdot \operatorname{Imax} \cdot \frac{M \min -1}{\mathrm{Ts} \cdot V_{\operatorname{gmax}}}}$
$\mathrm{Dc}:=\sqrt{2 \cdot \mathrm{~L} \cdot \mathrm{Imin} \cdot \frac{\mathrm{Mmax}-1}{\mathrm{Ts} \cdot \mathrm{Vgmin}}}$
$\mathrm{Dd}=\sqrt{2 \cdot L \cdot \operatorname{Imin} \cdot \frac{\mathrm{Mmin}-1}{T s \cdot V_{\operatorname{gmax}}}}$
$\mathrm{Ka}=\frac{2 \cdot \mathrm{~L} \cdot \operatorname{Imax}}{\mathrm{~T} \cdot \mathrm{Mmax} \cdot \mathrm{Vgmin}} \mathrm{Kb}=\frac{2 \cdot \mathrm{~L} \cdot \operatorname{Imax}}{\mathrm{Ts} \cdot \mathrm{Mmin} \cdot \mathrm{Vgmax}} \mathrm{Kc}=\frac{2 \cdot \mathrm{~L} \cdot \mathrm{Imin}}{\mathrm{T} s \cdot \mathrm{Mmax} \cdot \mathrm{Vgan}} \quad \mathrm{Kd}=\frac{2 \cdot \mathrm{~L} \cdot \mathrm{Imin}}{\mathrm{Ts} \cdot \mathrm{Mmin} \cdot \mathrm{Vgmax}}$
$\mathrm{Kcrita}:=\mathrm{Da} \cdot(1-\mathrm{Da})^{2} \mathrm{Kcritb}:=\mathrm{Db} \cdot(1-\mathrm{Db})^{2} \quad \mathrm{Kcrite}:=\mathrm{De}(1-\mathrm{Dc})^{2} \quad \mathrm{Kcritd}:=\mathrm{Dd} \cdot(1-\mathrm{Dd})^{2}$
ipka $:=\frac{\mathrm{Vgmin} \cdot \mathrm{Da} \cdot \mathrm{Ts}}{\mathrm{L}} \quad$ ipkb $:=\frac{\mathrm{Vgmax} \cdot \mathrm{Db} \cdot \mathrm{Ts}}{\mathrm{L}} \quad$ ipkc $:=\frac{\mathrm{Vgmin} \cdot \mathrm{Dc} \cdot \mathrm{Ts}}{\mathrm{L}} \quad$ ipkd $=\frac{\mathrm{Vgmax} \cdot \mathrm{Dd} \cdot \mathrm{Ts}}{\mathrm{L}}$

D2a $:=\sqrt{\frac{2 \cdot L \cdot \operatorname{Imax}}{V g m i n \cdot T s \cdot(\operatorname{Mmax}-1)}}$
$\mathrm{D} 2 \mathrm{~b}=\sqrt{\frac{2 \cdot \mathrm{~L} \cdot \operatorname{Tmax}}{\mathrm{Vgmax} \cdot \mathrm{Ts} \cdot(\mathrm{Mmin}-1)}}$
$D 2 c:=\sqrt{\frac{2 \cdot L \cdot I \min }{V \operatorname{gmin} \cdot T s \cdot(\operatorname{Mmax}-1)}}$
$\mathrm{D} 2 \mathrm{~d}=\sqrt{\frac{2 \cdot \mathrm{~L} \cdot \mathrm{Imin}}{\mathrm{Vgmax} \cdot \mathrm{Ts} \cdot(\mathrm{Mmin}-1)}}$
$\mathrm{D} 3 \mathrm{a}:=1-\mathrm{Da}-\mathrm{D} 2 \mathrm{a} \quad \mathrm{D} 3 \mathrm{~b}:=1-\mathrm{Db}-\mathrm{D} 2 \mathrm{~b} \quad \mathrm{D} 3 \mathrm{c}:=1-\mathrm{Dc}-\mathrm{D} 2 \mathrm{c} \quad \mathrm{D} 3 \mathrm{~d}:=1-\mathrm{Dd}-\mathrm{D} 2 \mathrm{~d}$
$\mathrm{C}=\frac{(\text { ipka }-\operatorname{Imax})^{2} \cdot \mathrm{D} 2 \mathrm{a} \cdot \mathrm{Ts}}{4 \cdot \mathrm{ipka} \cdot 1}$

