Lecture 15
 The Forward PWM Converter Circuit Topology and Illustrative Examples

I. Erickson Problem 6.4 A DCM Two
 Transistor Flyback Converter

II. Forward Converter

A. Overview
B. Forward Converter with a Three Winding Transformer Drive: Two Case Studies

1. One Transistor Implementation
2. Two Transistor Implementation
C. Forward Converter Transformer
D. External Reset of a Transformer:

Erickson Problem 6.9

Forward PWM Converter Circuit Topologies

I. Erickson Problem 6.4 A DCM Two Transistor Flyback Converter

b) Erickson Problem 6.10: One transistor Flyback implementation in the DCM mode of operation.

We will consider only DCM operation below:

Note the ability to provide $\pm 15 \mathrm{~V}$ as well as +5 easily. If we employed feedback for V_{0} stabilization we could use just one of the three V_{0} to monitor and slave the other two. WHAT OTHER WAY IS POSSIBLE??

Neglect:

1. All losses in the electronic circuits.
2. No magnetic core losses.

Also for this problem we arbitrarily set the specification V_{g} is fixed
and $\mathrm{i}_{\text {load }}$ is fixed for the DCM operation.
We expect given 3 DCM time intervals: D_{1}, D_{2}, D_{3} but we arbitrarily fix $D_{3}=0.1 \Rightarrow D_{2}=0.9-D_{1}$.

Goal: Find steady state design, where the V (off) blocking voltages are minimum for both the transistors ($<300 \mathrm{~V}$) and diode ($<30 \mathrm{~V}$) solid state switches.
Below we give circuit conditions for each time interval. Interval $\mathrm{D}_{1} \mathrm{I}_{\underline{s}}$: Control signal puts Q_{1} on and using current flow dot's on the transformer we see that all three diodes in the secondary are off.

Interval $\mathrm{D}_{2} \mathrm{I}_{\underline{s}}$: Control signal puts Q_{1} off, all secondary diodes conduct using current flow dots on the transformer.

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{g}}=0 \quad \mathrm{i}_{\mathrm{c}}=\frac{\mathrm{i}}{\mathrm{n}}-\frac{\mathrm{V}_{0}}{\mathrm{R}} \\
& \mathrm{~V}_{\mathrm{L}}=\frac{\mathrm{V}_{0}}{\mathrm{n}}=\mathrm{V}(\text { primary })
\end{aligned}
$$

Period $\mathrm{D}_{3} \mathrm{I}_{\mathrm{s}}: \mathrm{Q}_{1}$ off, all secondary diodes off V (off diode)

Draw i_{c} waveform versus time using the above circuits to determine values of i_{c} for each interval.

Remember $-\frac{\mathrm{V}_{0}}{\mathrm{n}}=-\mathrm{V}$ (primary) for all ac conditions encountered.

Applying volt-sec balance to the L_{m} inductor:
$<\mathrm{V}_{\mathrm{Lm}}>\mathrm{T}_{\mathrm{s}}=0 \quad \mathrm{D}_{1} \mathrm{~V}_{\mathrm{g}}+\underset{\downarrow}{\mathrm{D}_{2}\left(-\mathrm{V}_{\mathrm{p}}\right)+0}=0$

$$
\begin{gathered}
D_{1} V_{g}=\left(0.9-D_{1}\right) V_{p} \\
D_{1}\left(V_{g}+V_{p}\right)=.9 V_{p} \\
D_{1} \leq \frac{.9 V_{p}}{V_{g}+V_{p}} \text {, setting an upper bound on } D_{1} .
\end{gathered}
$$

For cost considerations we limit maximum voltages to the switches as follows:

Choose: Transistor: $\mathrm{V}_{\text {off }}<300 \mathrm{~V}$
Diode: $\mathrm{V}_{\text {off }}<30 \mathrm{~V}$
$300-\mathrm{V}_{\mathrm{p}}+\mathrm{V}_{\mathrm{g}}$ from primary circuit and transistor maximum standoff voltage spec.
$\mathrm{V}_{\mathrm{p}}=300-\mathrm{V}_{\mathrm{g}}(165)=135$
$D_{1} \leq \frac{0.9(135)}{300}=0.405$
Pick $D_{1}=0.4 \Rightarrow D_{2}=0.5$ Try this 1 st choice and see the effect.
Diode currents for all three secondaries which are similar in time.
Three diode currents each have a unique charge passed through them during $\mathrm{D}_{2} \mathrm{~T}_{\mathrm{s}}$.

Current flow in L_{M} is on for $0.9 T_{s}$, given D_{3} fixed at 0.1 .

Notice the fact that for the buck-boost and flyback:

$$
\mathrm{i}_{\mathrm{Lm}}=\mathrm{i}(\text { diode })+\mathrm{i}(\text { transistor })
$$

The corresponding current in the transistor and the primary winding is:

Remember i_{D} is secondary current, whereas i_{Lm} is the primary current.

Values of Diode Peak Currents: (Given chosen maximum off voltages)

$$
\begin{aligned}
& \mathrm{iD}_{1}(\text { peak })=\frac{2 \mathrm{i}_{1}(\mathrm{DC})}{\mathrm{D}_{2}}=\frac{(2)(1)}{0.5}=4 \mathrm{~A} \\
& \mathrm{i}_{2}(\text { peak })=\frac{2 \mathrm{i}_{2}(\mathrm{DC})}{\mathrm{D}_{2}}=\frac{(2)\left(\frac{1}{2}\right)}{0.5}=2 \mathrm{~A} \\
& \mathrm{i}_{3}(\text { peak })=\frac{2 \mathrm{i}_{3}(\text { peak })}{\mathrm{D}_{2}}=\frac{(2)(4)}{0.5}=16 \mathrm{~A}
\end{aligned}
$$

We must check that each diode can carry these current levels from the diode manufacturer spec. sheets.

Peak $\mathrm{ILm}_{\text {is }}$ is worth calculating because hysteresis core loss varies
with peak current, not rms current.

$$
\begin{gathered}
\mathrm{i}_{\mathrm{Lm}}(\text { peak }) \\
\downarrow \\
\downarrow \\
\sum \mathrm{i}_{\mathrm{Dx}}{ }^{*} 1 / \mathrm{n}_{\mathrm{x}} \\
\downarrow
\end{gathered}
$$

primary secondary
current diode currents
$\mathrm{n}_{1}=\frac{15}{135}=\frac{\mathrm{V}}{\mathrm{V}_{\mathrm{p}}}, \mathrm{n}_{2}=\frac{15}{135}=\frac{\mathrm{V}_{2}}{\mathrm{~V}_{\mathrm{p}}}, \mathrm{n}_{3}=\frac{5}{135}$
iLm $($ peak $)=\frac{4}{9}+\frac{2}{9}+\frac{16}{27}=1.26 \mathrm{~A}$

We must check that this peak current does not saturate the magnetic core.

Transistor peak current

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{TR}}(\text { peak })=\mathrm{i}_{\mathrm{Lm}}(\text { peak })=1.26 \mathrm{~A} \\
& \mathrm{~V}_{\mathrm{Lm}}=\mathrm{L}_{\mathrm{m}} \frac{\mathrm{~d}_{\mathrm{iLm}}}{\mathrm{dt}}
\end{aligned}
$$

$$
\begin{array}{ccc}
165 & .5 & 10^{-5} \\
\downarrow & \downarrow & \downarrow
\end{array}
$$

$$
i \mathrm{Lm}(\text { peak })=\frac{\mathrm{V}_{\mathrm{Lm}}}{L_{m}} \mathrm{D}_{1} \mathrm{~T}_{\mathrm{s}}=\frac{\mathrm{V}_{\mathrm{g}}}{L_{m}} \mathrm{D}_{1} \mathrm{~T}_{\mathrm{s}}
$$

$\mathrm{i}_{\mathrm{L} m}$ depends on L_{m} values. The L_{m} value of the chosen transformer is set by the peak transistor current.

$$
\begin{aligned}
L_{m} & =\frac{V_{g}}{\text { ipeak }} D_{2} T_{s}=\frac{(165)(.4)}{1.26} 10^{-5} \\
& =0.52 \mathrm{mH}
\end{aligned}
$$

Calculate $\mathrm{I}_{\text {RMS }}$ using the above current waveforms and Appendix 1 on pg. 705 of Erickson's text.

$$
\left[I_{x}(\text { output })\right]_{\mathrm{RMS}}=\sum_{\mathrm{x}} \mathrm{i}_{\mathrm{Dx}}(\text { peak }) * \sqrt{\frac{\mathrm{D}_{2}}{3}}
$$

$x=1-3$ for the three secondary windings.
$\mathrm{l}_{1}(\mathrm{rms})=4 * .41=1.63$
$\mathrm{I}_{2}(\mathrm{rms})=2 * .41=0.81$
$I_{3}(\mathrm{rms})=16 * 41=6.53$
$\mathrm{LLm}(\mathrm{rms})=\operatorname{iLm}($ peak $) \sqrt{\frac{\mathrm{D}_{1}+\mathrm{D}_{2}}{3}}=0.69 \mathrm{~A}$

II. Forward Converters

A. Overview

Here we choose in the circuit topology the dots on the transformer coils and the primary / secondary diode placement so that when primary current flows so will secondary current unlike the flyback converter. Hence, the name forward converter. Three secondary arrangements for the forward converter are given below:

- Simple center tapped transformers are the key elements to one approach
- Full wave rectification without isolation of the secondary voltages and without center taps is a second approach to the forward converter topology
- Fully isolated secondaries without center taps with full wave rectification is the third topology approach
Note that in all cases the transformer has the role of dielectric isolation, which is accomplished by the choice of isolation material between wire windings on the transformer. The winding turns ratio provides the step up or step down ratio desired. There is no air gap in the core so the forward transformer stores no energy, it merely transfers energy form the primary coil to the secondary coil. Of, course we must never allow the peak flux in the transformer core to EXCEED THE SATURATION VALUE of the chosen core. Forward converters posses both a transformer and an output choke and this distinguishes them from flybacks of lecture 14.

Forward-mode secondary winding arrangements: (a) center-tapped secondaries; (b) full-wave secondaries; (c) isolated secondaries.

On the next page we will outline the voltage and current waveforms in a simple half-wave forward converter to give a clear picture of the unipolar drive that occurs in each portion of the transformer secondary that is synchronous with the primary drive sequence. In full wave center tapped operation each half of the transformer sees similar waveforms. The full wave rectification in the secondary insures that the current waveforms are unipolar as does half-wave rectification.

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{pk}} \approx \frac{2.8 \cdot \mathrm{P}_{\mathrm{out}}}{\mathrm{~V}_{\mathrm{in}(\mathrm{~min})}} \\
& \mathrm{V}_{\mathrm{SW}} \approx 2 \mathrm{~V}_{\mathrm{in}} \\
& \mathrm{P}_{\mathrm{out}} \approx 0-300 \mathrm{~W}
\end{aligned}
$$

$I_{p r i}$

Notice that the output circuit of an L-C filter directly after the power switch or output rectifier is the CALLING CARD of the forward converter. This is clearly a BUCK-LIKE TOPOLOGY with $\mathrm{V}_{\text {out }}$ being proportional to $\mathrm{D} \times \mathrm{V}_{\text {in }}$.

B. DCM Forward Converter Operation: Two Case Studies

On the following pages we will outline the operation of froward converters operating in the DCM of operation via two illustrative examples. One will employ a single transistor switch while the second will employ two temporally synchronized switches. DCM operation is more complex than CCM operation due to the third time interval that is introduced into the switching period, T_{sw}.

1. DCM operation using only one transistor $\mathrm{I}_{\text {out }}$ is nonpulsating for a fixed load and the L-R-C filtering.

For the Forward Converter notice that: buck- like operation occurs in the secondary circuit to the right of diodes " D_{2} " and " D_{3} ".

To start with, for the dotted transformer windings always assume all currents flow into the dots and $n_{1} i_{1}+n_{2} i_{2}+n_{3} i_{3}=0$.

If the input, or primary, current flow direction is known by circuit means to flow the opposite to that initially assumed then this reverse flow occurs also at other coils. The dotted side specifies which way current flows.

DCM operation has three intervals in T_{s} of duration $D_{1}, D_{2} \& D_{3}$. i_{Lm} is reset to zero so that saturation of the magnetic core does not occur as follows, in DCM operation.

Interval $\mathrm{D}_{1} \mathrm{I}_{\mathrm{s}}: \mathrm{Q}_{1}$ and diode " D_{2} " conduct creating simultaneous primary and secondary transformer currents while diodes " D_{1} " and " D_{3} " are off again by current flows.

All currents are assumed into the dots of all windings.
a) When Q_{1} is on $+V_{g}$ appears across n_{1}
b) A voltage of polarity $-V_{g} n_{2} / n_{1}$ appears across turn $n_{2} \Rightarrow D_{1}$ is off. This is also seen by current flow. i_{1} flows into dot of
coil \#1 $\Rightarrow i_{3}$ flows out of the dot of coil \#3 and D_{2} is on.
c) $+V_{g} n_{3} / n_{1}$ appears across turn $n_{3} \Rightarrow$ diode D_{2} is on drawing a secondary current which appears in the primary as i_{1} '.
Then the current drawn from V_{g} is $\mathrm{i}_{1}=\mathrm{i}_{\mathrm{m}}+\mathrm{i}_{1}$.
Note that the primary is composed of the magnetizing inductance in parallel with the n_{1} winding as per the standard transformer model. Coil \#2 is open because of diode D_{1} being off.

Interval $\mathrm{D}_{2} \underline{I}_{s}$: Q_{1} is put off actively by the control signal forcing a current loop in L_{m} and the n_{1} coil. This causes current to flow out of the n_{1} coil at the dotted end, and current flows into the dotted end of the n_{2} coil.

i_{m} now flows in the n_{1} winding as shown exiting the dot of the n_{1} coil. The n3 coil has current flow into the dotted end.

In total then the conservation of mmf gives:
$-n_{1} i_{1}+n_{2} i_{2}-n_{3} i_{3}=0$

+ sign is into dot
- sign is out of dot
i_{2} and i_{3} coil current directions are as assumed but i_{1} is known to flow out of the dot of the n_{1} coil due to Q_{1} being off during the i_{1} time interval $\mathrm{D}_{2} \mathrm{~T}_{\mathrm{s}}$. Due to the current flow direction we can say that during $\mathrm{D}_{2} \mathrm{~T}_{\mathrm{s}}$:
$\bullet Q_{1}$ is off and diodes D_{1} and D_{3} are on whereas diode D_{2} is off as shown above.
-Diode D_{1} is on because of current flow into the dot of winding n_{2} which turns D_{1} on.
-Diode D_{2} is off because of current flow into the dot of winding n_{3} which turns diode D_{2} off.
-Diode D_{3} is on because of current flow into the dot of winding n_{3} equals I_{3} out of undotted n_{3} turning D_{3} on.

With diode D_{1} on we have:

INPUT
$+\mathrm{V}_{\mathrm{g}}$ across n_{2} coil so
by the dot convention

OUTPUT

Current i_{3} as shown flows from the n_{3} coil to the output
$V_{\mathrm{Lm}}=-V_{\mathrm{g}} \frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}$
and this negative voltage across L_{m} causes the magnetizing
current to decrease with a slope di/dt: $\quad \underline{\mathrm{n}_{1}} \frac{\mathrm{~V}_{\mathrm{g}}}{\mathrm{L}_{\mathrm{g}}}$
$\mathrm{n}_{2} \quad \mathrm{~L} \mathrm{~m}$

Note also that in the primary we have the sum of two voltages across the transistor. $\quad\left[\mathrm{V}_{\operatorname{Tr}} \text { (off) }\right]_{\max }=\mathrm{V}_{\mathrm{g}}\left[1+\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}\right]$

Interval $D_{3} I_{s}: i_{L m}$ will try to reverse sign after the time period $D_{1} T_{s}$ going up and the time period $D_{2} T_{s}$ going down as shown below in the ilm plot versus time.

First $i_{L m}$ hits zero then $i_{L m}$ tries to go negative. At this point a new circuit topology arises as diode D_{1} goes off and diode D_{3} goes on.

If i_{Lm} now goes negative with Q_{1} off then the dot convention tells that the $i_{\text {Lm }}$ current loop now enters the n_{1} winding from the dotted side in the current loop seen below.

This current flow direction for i_{1} causes i_{2} to also try to flow into the dotted side of coil \#2 as shown below:

But i_{2} tries to flow out but diode D_{1} does not allow this direction of current flow. So diode D_{1} goes off.

Likewise $i_{\text {Lm }}$ flow into n_{1} dot \Rightarrow current flow into the n_{3} dot and D_{3} is turned on when $i_{L m}$ hits zero.
Since both transistor Q_{1} and diode D_{1} are off $i_{L m}$ remains zero for the whole period $D_{3} T_{s}$.
A tradeoff must be made in the forward converter since:
$\mathrm{D}_{2}=\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}} \mathrm{D}_{1}$ moving the turns ratio $\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}} \downarrow$ allows the interval $\mathrm{D}_{1} \uparrow$
for fixed interval D_{2}
BUT $\frac{\mathrm{n}_{1}}{\mathrm{n}} \uparrow$ implies that the standoff voltage across the transistor n2
increases since:
V_{Tr} (off) $=\mathrm{V}_{\mathrm{g}}\left[1+\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}\right]$ So we trade off decreased Tr on time
D_{1} for increased voltage stress.
This transistor switch voltage stress may be too much for one transistor to work in its safe operating area (SOA). Below we show a way to solve this by utilizing two rather than one switch and dividing the switch stress between them.
2. Two transistor implementation of the Forward Converter operating in DCM operation.
What do you guess the phasing of Q_{1} and Q_{2} gate control is?

The tandem transistors Q_{1} and Q_{2} have the same phase gate control. So they are both in the same state.

Here our L_{m} is considered large as the core has no slotted opening and the core magnetic reluctance is low. Although i_{Lm} is small we still we need to consider L_{m} effects.
Now the primary voltage when Q_{1} and Q_{2} are both off can be dropped across the two transistors as both are in series, reducing switch stress to more allowable levels.

Interval $\mathrm{D}_{1} \mathrm{I}_{\mathrm{s}}$: Control signal forces both Q_{1} and Q_{2} on, primary diodes D_{1} and D_{2} are both off. Current flow is such that i_{1} (primary) flows into the dot end of the one turn coil so i_{2} flow is out of the secondary winding of n turns. The secondary current is $1 / n$ of the primary current.

when i_{1} flows into the dot on winding 1 a current i_{1} / n flows out of the dot on the n turn winding as shown above. This insures that diode D_{4} is off and diode D_{3} is on.

The current in L_{m} increases linearly during switch interval D_{1} with a slope V_{g} / L_{m}.

Interval $\mathrm{D}_{2} I_{s}$: The external control signal forces both Q_{1} and Q_{2} off. Both primary diodes D_{1} and D_{2} are on as shown below during the interval $D_{2} T_{s}$ driving the magnetizing current down during time $\mathrm{D}_{2} \mathrm{~T}_{\mathrm{s}}$.

Note that i_{Lm} flow is always positive with respect to zero during intervals D_{1} and D_{2}. It first rises during $D_{1} T_{s}$ and then falls during $D_{2} T_{s}$ as shown below.
What occurs if im does not reach zero?

The $i_{L m}$ current period as shown in DCM of operation could lead over a few switch cycles to core saturation if $i_{\text {Lm }}$ did not return to zero. DCM operation, however, guarantees that this occurs. If i_{Lm} tries to go negative, then diodes " D_{1} " and " D_{2} " go off and prevent it from doing so.

Setting/Fixing iLm $=0$ so the core doesn't saturate
We will find below in part 3 for $i_{L m}$ to reset the transistor on time D_{1} $<1 / 2$ is required. Is this clearly why?

Period $\mathrm{D}_{3} \mathrm{I}_{\underline{s}}: \mathrm{Q}_{1}, \mathrm{Q}_{2}$, as well as diodes D_{1} and D_{2} are all off in the primary circuit
$\mathrm{i}_{\mathrm{L} m}=0, \mathrm{~V}_{\text {primary }}=0$

C. Forward Transformer Overview

As stated earlier we must never allow the flux density, B, in the forward converter core to exceed the saturation flux for that core. If we do, the transformer will look like a short circuit and no doubt fry the power switches. We will employ Faraday's law to see the trends between transformer core size and the choice for the
number of turns in the windings.

$$
V(\text { out })=N(\# \text { turns of wire }) \times \omega \text { (radian frequency }) \times \phi(\text { flux })
$$

Where ϕ (flux) given by is given by B (flux density) $\mathrm{x} \mathrm{A}_{\text {core }}$ (core area)
Now each core material has a maximum allowable flux density that it can handle before the onset of core saturation. Hence, we can say that there is a required number of turns on the transformer windings. Consider first the primary windings. We will find below the result that N varies inversely with $\mathrm{B}_{\max }$ (saturation value).

$N_{\text {primary }}=\underline{V}_{\text {primary }} /\left(\omega \times B_{\max } \times \mathrm{A}_{\text {core }}\right)$

That is the MINIMUM number of primary winding turns varies as:

- the input voltage level $\mathrm{V}_{\text {primary }}$
- Inversely with operating frequency
- Inversely with the saturation flux of the core
- Inversely with the core size

Clearly, there is lots of design tradeoffs to be considered.
Regardless, once the number of primary winding turns is set this acts as the reference for all other secondary winding turn choices as described below.

The secondary turns are unique for each secondary voltage desired. We start with the secondary that requires the most output power. The voltage across the output rectifers should also be accounted for. The starting point for all such calculations is the fact that the voltage in a specific winding divided by the number of turns in that winding must be equal to the output voltage of another winding divided by its number of turns. Finally, we have to consider worst case when the input voltage is minimum, $\mathrm{V}_{\text {in }}(\mathrm{min})$, and the duty cycle is maximum, $D_{\text {max.. }}$. That is we find the relationship:

$$
N_{\text {secondary }}=\frac{N_{\text {primary }} x\left(V_{\text {out }}+V_{\text {diode }}\right)}{V_{\text {in }}(\max) \times D_{\text {max }}}
$$

We solve for $\mathrm{N}_{\text {sec }}$ at lowest $\mathrm{V}_{\text {in }}$ and highest D we expect to occur.

The result is always a non-integer number and one must round off to the nearest number of turns. This could result in the output voltage being not what we desire. Again an iterative process is required to meet all desires. Note that adding secondary turns on the primary winding will always move you in the safe direction of a lower flux density, below the dangerous B (saturation)

D. DCM Forward Converter with External Reset to actively avoid core saturation.

Next we explain how to actively achieve L_{m} core reset by use of an external voltage source, with the secondary goal of causing less standoff voltage stress for both Q_{1} and diode D_{2}. Also the duration $D_{1} T_{s}$ can be increased so for a fixed $D_{2} T_{s}$:
$D_{2}=\frac{\mathrm{n}_{3}}{\mathrm{n}_{1}} \mathrm{D}_{1} \Rightarrow \frac{\mathrm{n}_{3}}{\mathrm{n}_{1}}$ can be reduced if $\mathrm{D}_{1} T_{\mathrm{s}}$ increases. Why is this good?
$\downarrow \downarrow \uparrow$
fixed
If $\underline{\mathrm{n}} 3 \downarrow \Rightarrow$ Lower peak transistor current occurs n1

Erickson Problem 6.9: External V_{r} resets the core with less stress than reset with - V_{g} as shown below:

Note that the auxiliary secondary winding n_{2} is not an output circuit, rather it is a reset voltage entry point.
The full schematic is shown on the following page.

In DCM operation there will be 3 periods as shown below:
$\mathrm{D}_{1} \mathrm{I}_{1} \mathrm{I}_{\mathrm{s}}$
Diode D_{2} on
Diode D_{3} off
Diode D_{1} off
$\underline{\mathrm{D}}_{2} \underline{I}_{s}$
Q_{1} off
Diode D_{2} off
Diode D_{3} off
Diode D_{1} on
$\underline{D}_{3} \underline{I}_{s}$
Q_{1} off
Diode D_{2} off Diode D_{3} off
Diode D_{1} off

Interval $D_{1} I_{\underline{s}}$: Diode D_{2} on and diode D_{3} off in the winding n_{3}.

During interval $D_{1} T_{s}$ an effective DC voltage of magnitude $\mathrm{D}\left(\mathrm{n}_{3} / \mathrm{n}_{1}\right) \mathrm{V}_{\mathrm{g}}$ appears across winding n_{3}. As diode D_{1} is off, V_{R} does not affect the core flux levels.

Interval $\mathrm{D}_{2} \underline{I}_{s}$: Diode D_{1} in winding \#3 is on activating the reset current on the magnetic core. The current i_{Lm} flows out of the n_{1} winding dot implying current flows into both n_{2} and n_{3} windings. Hence, diode D_{2} is off and diode D_{1} is on.

Reset of core via integrating V_{R} for the interval $\mathrm{D}_{2} \mathrm{~T}_{\mathrm{s}}$.
Interval $\mathrm{D}_{3} \underline{I}_{s}$: All circuits are open and no volt-sec drive to the magnetic core flux occurs.

Below we calculate the applied V_{R} to the windings required for duration $D_{2} T_{s}$ to cancel V_{g} applied for duration $\mathrm{D}_{1} \mathrm{~T}_{\mathrm{s}}$ to winding \#1.

Magnetizing Inductor: L_{M}
Volt-sec balance to L_{M} has only two components.
$<\mathrm{V}_{\mathrm{Lm}}>\mathrm{T}_{\mathrm{s}}=0 \quad \mathrm{~V}_{\mathrm{g}} \mathrm{D}_{1} \mathrm{~T}_{\mathrm{s}}+\mathrm{D}_{2}\left[-\mathrm{V}_{\mathrm{r}} \frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}\right] \mathrm{T}_{\mathrm{s}}=0$
$<\mathrm{V}_{\mathrm{Lm}}>$ Ts $=0$ sets the relation $\mathrm{D}_{2}=\frac{\mathrm{V}_{\mathrm{g}}}{\mathrm{V}_{\mathrm{r}}} \mathrm{D}_{1} \frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}$
Setting D_{1} and D_{2} still must leave a non-zero interval $D_{3} T_{s}$.
$D_{3}=\left(1-D_{1}-D_{2}\right) \geq 0$
$\Rightarrow \frac{1-D_{1}}{V_{g} D_{1}} \frac{n_{1}}{n_{2}} \geq \frac{1}{V_{R}}$
or $V_{R} \geq \frac{V_{g} D_{1}}{\left(1-D_{1}\right)} \frac{n_{2}}{n_{1}}$ Sets minimum value of V_{R} to be applied during interval $D_{2} T_{s}$ for L_{m} core reset

Consider Switch Stress for Interval $\mathrm{D}_{2} \mathrm{I}_{\underline{s}}$.
$\mathrm{V}_{\mathrm{Tr}}($ off $)=\mathrm{V}_{\mathrm{g}}+\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}} \mathrm{~V}_{\mathrm{R}} \rightarrow$ substitute for via
$+\mathrm{V}_{\mathrm{g}}$ from appears on n_{1} coil due source to V_{R} on n_{2} coil
$V_{T r}$ (off) $=V_{g}\left[1+\frac{D_{1}}{1-D_{1}}\right]$
$\mathrm{V}_{\mathrm{Tr}}(\mathrm{off})=\mathrm{V}_{\mathrm{g}} /\left(1-\mathrm{D}_{1}\right)$
Output Inductor of "Buck": L
$<\mathrm{D} 3>=\mathrm{V}_{0} \Rightarrow\left\langle\mathrm{~V}_{\mathrm{L}}\right\rangle_{\text {Ts }}=0$
\uparrow voltage equal either side
$D_{1} \frac{n_{3}}{n_{1}} V_{g}=V_{0} \Rightarrow D_{1}=\frac{n_{1}}{n_{3}} * \frac{V_{0}}{V_{g}}$ sets $D_{1} T_{s}$ time so L has
$<\mathrm{V}_{\mathrm{L}}>_{\mathrm{T}}=0$ in steady state.

Estimating the Significant Minimum Parameters of the Power Semiconductors

Topology	Bipolar Power Switch		MOSFET Power Switch		Rectifier(s)	
	$V_{\text {CEO }}$	I_{C}	$V_{\text {DSS }}$	10	$V \mathrm{R}$	I_{F}

Flyback $\quad 1.7 V_{\text {in }(\max)} \frac{2 P_{\text {out }}}{V_{\text {in }(\min)}} 1.5 V_{\text {in }(\max)} \frac{2 P_{\text {out }}}{V_{\text {in }(\min)}} \quad 10 V_{\text {out }} \quad I_{\text {out }}$
One Transistor
Forward $\quad 2 V_{\text {in }} \quad \frac{1.5 P_{\text {out }}}{V_{\text {in }(\min)}} \quad 2 V_{\text {in }} \quad \frac{1.5 P_{\text {out }}}{V_{\mathrm{in}(\min)}} \quad 3 V_{\text {out }} \quad I_{\text {out }}$
The above summarizes a comparison between flyback and forward converter topologies as regards the switch stress and a crude estimate of the required SOA for the switches.

Finally, For HW\#3 Due in 1 week:

1. Answer any Questions asked throughout lectures 12-15.
2. Chapter 6 Problems 7, 8, and 11(the forward converter).
