LECTURE 12

Lossy Converters (Static State Losses but Neglecting Switching Losses) HW \#2 Erickson Chapter 3 Problems 6 \& 7
A. General Effects Expected:
$\vee($ load $) \downarrow$ as I(load) \uparrow
B. Switch and Resistive Losses Change M(D) Modified DC Voltage Transfer
Functions M(D) with loss $\neq M(D)$ for no loss

1. General aspects of the origin of $M(D)$ changes in static state loss terms:
R_{L}, V_{d}, R_{d}, and $R_{\text {on }}$
a. $V_{\max } / V_{\text {min }}$
b. V/L Slopes
2. General solution for lossy Boost Converter
a. RL only: $M(D, R L), \eta \neq 1$
b. Static State Device DC losses: M($\mathrm{D}, \mathrm{V}_{\mathrm{d}}, \mathrm{R}_{\mathrm{on}}, \mathrm{R}_{\mathrm{D}}$)
3. Buck Converter
a. Problem 3.3 of Erickson
4. General solution for lossy Buck-Boost Converter
a. $M\left(D, V_{d}, R_{o n}, R_{L}\right)$, Problem 3.4 of

Erickson
5. Compare for a specific task:
a. Buck vs. Buck-Boost Circuits, Problem 3.5 of Erickson

A. GENERAL EFFECTS EXPECTED ON M(D)

Lossy Converters: Consider the static state DC loss only, no dynamic switch loss will be considered here
Generally one expects, due to finite $R_{\text {out }}$, from any power supply for V_{L} to fall as I_{L} increases. In converters $R_{\text {out }}$ is much more complex, especially with feedback.

For fixed $\mathrm{P}_{\text {out }}$ and $\mathrm{V}_{\text {in }}$ for a converter the input current increases proportional to the losses so that $\mathrm{P}_{\text {in }}=\mathrm{P}_{\text {out }}$ losses.
The losses we will consider will also include device losses but only in the static states due to finite $\mathrm{R}_{\text {on }}$ and $\mathrm{V}_{\text {on }}$ values.
B. Effects on voltage DC transfer function M(D) due to resistive and device voltage drops. Besides decreasing converter efficiency static state losses will also effect dc transfer functions. M(D) becomes a function of $R_{L}, V_{o n}, R_{o n}$, etc. when losses are included as shown below.

1. $\mathrm{V}_{\max } / \mathrm{V}_{\text {min }}$ changes as seen by any converter inductor will cause di/dt slope changes.
$\Rightarrow \quad \Delta \mathrm{i}_{\mathrm{L}}=\mathrm{V} / \mathrm{L}$ (in units of $\mathrm{A} / \mathrm{sec}$) slopes change, affecting D and D^{\prime} themselves just by including resistance and device voltage drops. Hence, the value of $M(D)$ changes.
2. Including inductor resistance R_{L}, device $R_{\text {on }}$, as well as $V_{\text {on }}$ changes $M(D)$, from $M(D)$ with these effects ignored. Lets consider the inductor
resistance effects.
a. Illustrative $\mathbf{R L}_{\mathrm{L}}$ (inductor series equivalent resistance) effects in boost topology

M will change from $\mathbf{M (D)}$ to $\mathbf{M}\left(\mathbf{D}, \mathrm{R}_{\mathrm{L}}\right)$ as shown below. R_{L} is finite not only because of simple copper resistive losses. Wound inductors at high frequencies ($0.1-1 \mathrm{MHz}$) have additional core and proximity effect losses. To a first approximation: $\mathbf{R a c} /^{\mathbf{R}_{\mathrm{dc}}}=\mathbf{0 . 5}$ П (wire dia. in $\mathbf{c m}$)X $\mathbf{f}^{1 / 2} \mathbf{x 1 0 0}$ Larger diameter wire has more effect than a small diameter Below we carefully distinguish between R_{L} with the dominant R for the load.

$$
\begin{aligned}
& D\left[V_{g}-I R_{L}\right]+D^{\prime}\left[V_{g}-I R_{L}-V\right]=0 \\
& \Rightarrow V_{g}-I R_{L}-D^{\prime} V=0
\end{aligned}
$$

2. Current-time balance across the capacitor

$$
\begin{aligned}
& D[-V / R]+D^{\prime}[I-V / R]=0 \\
& \Rightarrow D^{\prime} I-V / R=0
\end{aligned}
$$

Second term has all effects of including finite R_{L}. $\leftarrow R_{L}>D^{\prime 2} R$ big effect Also big effects occur for $\mathrm{D}^{\prime} \rightarrow 0$ or for $\mathrm{D} \rightarrow 1.0$
Note some extreme converter operating conditions will amplify finite R_{L} effects.

Fig. 3.9. Output voltage vs. duty cycle, boost converter with inductor copper loss.

Note well:
(1) R is the load resistor
(2) $R_{L}=$ inductor losses

For $\mathrm{D} \rightarrow 1.0$
R_{L} / R has a big effect on M(D)
As $R_{L} / R \rightarrow 0$ no effect on M(D)

Note also as $D \rightarrow \mathbf{1 . 0}, \mathbf{M}(\mathrm{D})$ has big "rollover" if R_{L} is even 1% of the load resistance. Note also in DC gain at high D that for $D_{\leq} 0.2, R_{L}$ effects are minimal.

Summary

The operating duty cycle, D value, amplifies equivalent series resistance , R_{L}, effects.
$D>0.5$ and R_{L} / R even 1% you see big changes to $M(D)$.
D < 0.5 you see no effects.

Equivalent Circuit with "DC Transformer":
Use to get the operating efficiency

$$
\eta=P_{\text {out }} / P_{\text {in }}
$$

Equivalent circuit model of the boost converter, including a D':1 dc transformer and the inductor winding resistance R_{L}.

Referring to the secondary to get one loop equation.

Fig. 3.15. Efficiency vs. duty cycle, boost converter with inductor copper loss.
$\eta\left(\mathrm{D}, \mathrm{R}_{\mathrm{L}} / \mathrm{R}\right)$

1) As the on duty cycle $\mathrm{D} \rightarrow 0$ one gets high η but efficiency is little effected by R_{L}
2) $\mathrm{D} \rightarrow 1$ and $\mathrm{D}^{\prime} \rightarrow 0$ $\eta \rightarrow 0$ still we get much lower η for R_{L} not negligible and much greater sensitivity to R_{L} changes.

Compare the above to the Lossless Boost:

$$
\begin{array}{rlrl}
\mathrm{I}_{2} & =\mathrm{D}^{\prime} I_{1}, & \eta & =\mathrm{D}^{\prime} \mathrm{V}_{\mathrm{o}} / V_{g}=P_{o} / P_{\text {in }} \\
V_{0}=V_{g} / D^{\prime} & & =1.0 \text { (lossless) }
\end{array}
$$

Next we include static device losses to the system loss.
b. Static State Device Loss Effects in the Boost Topology.

In our static states of the switching devices we only consider $\mathrm{R}_{\text {on }}$ from the transistor but both R_{D} and V_{D} for the diode when on, because $\mathrm{V}_{\text {on }}(\mathrm{TR}) \approx 0$. We expect to obtain $M\left(\mathrm{D}, \mathrm{R}_{\mathrm{L}}, \mathrm{V}_{\text {on }}\right.$, $\left.R_{D}, V_{D}\right)$ and $\eta\left(D, R_{L}, R_{o n}, R_{D}\right.$ and $\left.V_{D}\right)$.

Fig. 3.6. Boost converter circuit, including inductor resistance R_{L}. SW position 1: SW position 2:

Fig. 3.22. Boost converter example.

Transistor is on case: $\mathrm{Ron}_{\mathrm{on}}(\mathrm{l})$
Diode on case: V_{D} and R_{D}

Effects of $R_{o n}, V_{D}$ and R_{D} follow from revised circuits which change values of V_{L} and hence circuit D and D ' periods as well.

Period DT Circuit Connections

Period D'T ${ }_{s}$ Circuit
Connections

Next, we invoke both volt-sec and current-sec balance on the inductor voltage, V_{L}, and capacitor current , Ic, respectively.
(1) Volt-sec balance on V_{L} vs. time

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{L}}(\mathrm{t})
\end{aligned}
$$

Input Conditions $=0$ yields:

$$
V_{g}-I R_{L}-I D R_{\text {on }}-D^{\prime} V_{D}-I D^{\prime} R_{D}-D^{\prime} V_{O}=0
$$

This is the input circuit loop for the above equation:

(2) Current-sec balance on I_{c} vs. time

Output conditions yield the simple equivalent output circuit result:

$$
D^{\prime} I-V / R=0
$$

Combining Input/Output with a DC transformer:

$$
\begin{aligned}
& \begin{aligned}
\frac{V_{0}}{V_{g}}= & \frac{1}{D^{\prime}}\left[1-\frac{D^{\prime} V_{D}}{V_{g}}\right] \frac{1}{1+\frac{R_{L}+D_{O N}+D^{\prime} R_{D}}{D^{\prime 2} R}}=M\left(D, R_{L}, V_{o n}, R_{D}, V_{D}\right) \\
& \uparrow \quad \uparrow
\end{aligned} \\
& \text { lossless } V_{D} \\
& \text { ideal factor } \\
& \text { Resistive Effects } \\
& \text { Only for R } \rightarrow \infty \text { do } \\
& \text { we get full output }
\end{aligned}
$$

For the extreme $D=0 \Rightarrow D R_{\text {on }}=0, D^{\prime} R_{D}=R_{D}$ and resistive factor is slightly simplified
$\eta=\frac{P_{0}}{P_{\text {in }}}=\frac{V^{\prime} I}{V_{g} I}=D^{\prime} \frac{V}{V_{g}}$, but V / V_{g} differs with losses
$\eta=\left[\begin{array}{c}{\left[1-\frac{D^{\prime} V_{D}}{V_{g}}\right] /\left[1+\frac{R_{L}+D R_{\text {on }}+D^{\prime} R_{D}}{D^{\prime 2} R}\right]} \\ \uparrow\end{array}\right] \eta\left(D, R_{L}, R_{\text {on }}, R_{D}, V_{D}\right)$
(3) The following is problem 3.3 of Chapter 3

Erickson

Buck Converter with:

- Input $L_{1}-C_{1}$ filter L_{1} has $R_{L 1}$ winding
resistance due to copper wire

- Transistor with R_{on}

-Diode with R_{D} and V_{D}
Lossless Buck:

$$
\begin{array}{lr}
\mathrm{V}_{\mathrm{o}}=\mathrm{DV}_{\mathrm{g}} & \eta=\mathrm{V}_{\mathrm{o}} /\left(\mathrm{DV}_{\mathrm{g}}\right)=\mathrm{P}_{\mathrm{o}} / \mathrm{P}_{\mathrm{in}} \\
\mathrm{I}_{1}=\mathrm{I}_{2} / \mathrm{D} & \\
& =1.0(\text { lossless })
\end{array}
$$

a) $\underline{Q(o n)}$

$\mathrm{V}_{\mathrm{L} 1}=\mathrm{V}_{\mathrm{g}}-\mathrm{V}_{\mathrm{C} 1}-\mathrm{I}_{1} \mathrm{R}_{\mathrm{L} 1}$
$V_{\mathrm{L} 2}=-\mathrm{I}_{2} \mathrm{R}_{\mathrm{on}}+\mathrm{V}_{\mathrm{C} 1}-\mathrm{V}-\mathrm{I}_{2} R_{\mathrm{L} 2}$
$I_{C 1}=I_{1}-I_{2}$
$\mathrm{I}_{\mathrm{C} 2}=\mathrm{I}_{2}-\mathrm{V} / \mathrm{R}$
Next we will consider the switch case when the transistor is off and the diode is on.

$V_{L 1}=V_{g}-V_{C 1}-I_{1} R_{L 1}$
$V_{L 2}=-V_{D}-I_{2} R_{D}-V-I_{2} R_{L 2}$
$\mathrm{I}_{\mathrm{C} 1}=\mathrm{I}_{1}$
$\mathrm{I}_{\mathrm{C} 2}=\mathrm{I}_{2}-\mathrm{V} / \mathrm{R}$
Do Volt-second balance on L's / Charge balance on C's

1. $L_{1}: D\left(V_{g}-V_{C 1}-I_{1} R_{L 1}\right)+D^{\prime}\left(V_{g}-V_{C 1}-I_{1} R_{L 1}\right)=0$

$$
\therefore \mathrm{V}_{\mathrm{g}}=\mathrm{V}_{\mathrm{C} 1}+\mathrm{l}_{1} \mathrm{R}_{\mathrm{L} 1}
$$

2. $L_{2}: D\left(-I_{2} R_{\text {on }}+V_{C 1}-V-I_{2} R_{L 2}\right)+D^{\prime}\left(-V_{D}-I_{2} R_{D}-V-I_{2} R_{L 2}\right)=0$
$\therefore-\mathrm{DI}_{2} \mathrm{R}_{\text {on }}+\mathrm{DV}_{\mathrm{C} 1}-\mathrm{D}^{\prime} \mathrm{V}_{\mathrm{D}}-\mathrm{D}^{\prime} \mathrm{I}_{2} \mathrm{R}_{\mathrm{D}}-\mathrm{V}-\mathrm{I}_{2} \mathrm{R}_{\mathrm{L} 2}=0$
3. $\mathrm{C}_{1}: \mathrm{I}_{1}-\mathrm{DI}_{2}=0 \quad \therefore \mathrm{I}_{1}=\mathrm{DI}_{2}$
4. $\mathrm{C}_{2}: \mathrm{I}_{2}-\mathrm{V} / \mathrm{R}=0 \quad \therefore \mathrm{I}_{2}=\mathrm{V} / \mathrm{R}$

Input Circuit
From 1, 3, and $4 \quad V_{C 1}=V_{g}-I_{1} R_{L 1}=V_{g}-D_{2} R_{L 1}=V_{g}-D R_{L 1} \frac{V}{R}$

$$
\therefore \mathrm{V}_{\mathrm{C} 1}=\mathrm{V}_{\mathrm{g}}-\mathrm{DR}_{\mathrm{L} 1} \frac{\mathrm{~V}}{\mathrm{R}}
$$

Output Circuit:

Then:

(2) $-D R_{o n} \frac{V}{R}+D V_{g}-D^{2} R_{L 1} \frac{V}{R}-D^{\prime} V_{D}-D^{\prime} R_{D} \frac{V}{R}-V-R_{L 2} \frac{V}{R}=0$

Fig. 1

DC Trf Model:

Fig. 2
b) From Fig. 1

$$
V=-D R_{o n} \frac{V}{R}+D V_{g}-D^{2} R_{L 1} \frac{V}{R}-D^{\prime} V_{D}-D^{\prime} R_{D} \frac{V}{R}-R_{L 2} \frac{V}{R}
$$

c) Using the Voltage Divider:

$$
V=\frac{R}{R+D R_{o n}+D^{2} R_{L 1}+D^{\prime} R_{D}+R_{L 2}}\left(D V_{g}-D^{\prime} V_{D}\right)
$$

Filtered Buck

$$
\begin{aligned}
& \frac{V}{V_{g}}=\left(D-D^{\prime} \frac{V_{D}}{V_{g}}\right) \frac{R}{R+D R_{o n}+D^{2} R_{L 1}+D^{\prime} R_{D}+R_{L 2}} \\
\eta= & \frac{V}{D V_{g}}=\left(1-\frac{D^{\prime} V_{D}}{D V_{g}}\right) \frac{R}{R+D R_{o n}+D^{2} R_{L 1}+D^{\prime} R_{D}+R_{L 2}}
\end{aligned}
$$

Next we solve the general equations for the Buck-Boost
4. Buck-Boost solved in general

(a) Equivalent Series Resistance , R_{L}, losses only

- Assume lossless except for R_{L}
-Reflect all to load side. For DC L \rightarrow short and $C \rightarrow$ open.

For DC conditions:

$$
V_{o}=\frac{R}{\frac{R_{L}}{D^{\prime 2}}+R} V_{g} \frac{D}{D^{\prime}}
$$

(b) Device losses only

Buck-Boost with device loss ($\mathrm{R}_{\llcorner } \equiv 0$)
Transistor:
$\mathrm{R}_{\text {on }}$
Diode: $\quad V_{D}$

(c) Buck-Boost Converter including all static losses. This is problem 3.4 from Erickson

$\mathrm{V}_{\text {out }}$ required is +5 V and $\mathrm{V}_{\mathrm{g}}=-1.5 \mathrm{~V}$
Diode: $\quad V_{D}=0.5 \mathrm{~V}$ Schottky
$\mathrm{R}_{\mathrm{D}}=0$ (approx.)
Transistor: $\quad R_{\text {on }}=35 \mathrm{~m} \Omega$
Ideal Buck-Boost:

$$
\frac{V_{0}}{V_{g}}=\frac{-D}{1-D}=\frac{-D}{D^{\prime}}
$$

Real Buck-Boost: we will find in the next few pages

$$
V_{o}=\left[\begin{array}{c}
\left.\frac{D}{D^{\prime}} V_{g}-V_{D}\right] \\
\uparrow
\end{array} \frac{R}{R+\operatorname{other}\left(R_{\text {on }}, R_{L}\right)}\right.
$$

Diode Effect

Resistive Effect

Below we work out Erickson problem 3.4 for illustration of how to do the HW for Chapter 3
HW \# 2 will be Erickson Chapter 3 Dbms. 6 and 7. This will be due next week along with any questions asked in the lectures
(3-4) Buck boost

when cure cindiucts

$\left\{\begin{array}{l}u_{L}(t)=-i_{D}-i R_{L}-v \approx-V_{D}-I R_{L}-V^{\prime} \\ i_{c}(t)=i-\frac{v}{R}=I-\frac{V}{R}\end{array}\right.$
$D C$ component of inductor voltage is given by
$\left\langle U_{L}\right\rangle=D\left(V g-I R_{O H}-I R_{L}\right)+D^{\prime}\left(-V_{D}-I R_{L}-V\right)=0$
$O V_{g}-D I R_{i n}-D I R_{L}-D^{\prime} V_{D}-D^{\prime} I R_{L}-D^{\prime} V=O$
since $D+D^{\prime}=1 \Rightarrow D V_{g}-D I R_{m}-I R_{L}-D^{\prime} V_{D}-D^{\prime} V=0$

$$
\begin{array}{rlr}
\text { and }\langle i c\rangle= & D\left(-\frac{V}{R}\right)+D^{\prime}\left(I-\frac{V}{R}\right)=0 \\
& -D \frac{V}{R}+D^{\prime} I-D^{\prime} \frac{V}{R}=0 & D_{i} I \quad \xrightarrow{V} \quad \xrightarrow{+} \\
& D^{\prime} I-\frac{V}{R}=0
\end{array}
$$

a bo $\langle i g\rangle=I_{g}=D I$
$I_{q}=D I$

Put 3 ccts together,

The cumpleted do equiralent ect modei (Fouck Poost)

(b) Reflecting evelything on the nucidle cct, we git

$$
\begin{aligned}
& V=\left(\frac{D}{D^{\prime}} V_{g}-V_{D}\right)\left(\frac{R}{R+\frac{D}{D^{\prime 2}} R_{m n}+\frac{R_{L}}{D^{\prime 2}}}\right) \quad \text { using voliage civicur } \\
& \Leftrightarrow \frac{V}{V_{g}}=\left(\frac{D}{D^{\prime}}-\frac{V_{D}}{V_{g}}\right)\left(\frac{R D^{\prime 2}}{R D^{\prime 2}+D R_{\text {on }}+R_{L}}\right)=\frac{D}{D^{\prime}}\left(1-\frac{D^{\prime}}{D} \frac{V_{D}}{V_{g}}\right)\left(\frac{1}{1+\frac{D}{D^{\prime 2}} \frac{R_{0}}{R}+\frac{R_{L}}{D^{\prime 2}}}\right. \\
& \text { with } \frac{D}{D^{\prime}} \equiv \text { de cunversion ratio in the iclecal case } \\
& \quad\left(R_{L}=R_{o n}=V_{D}=0\right)
\end{aligned}
$$

$$
\begin{aligned}
\eta=\frac{P_{\text {qut }}}{\rho_{\text {in }}}=\frac{D^{\prime} I V}{D I V g}=\frac{D^{\prime}}{D} \cdot \frac{V}{V_{g}} \quad & \Leftrightarrow 0.7
\end{aligned} \quad=\frac{1-D}{D} \cdot \frac{5}{1.5} .
$$

$$
\text { So } \quad 0.7=\left(1-\frac{0.17}{0.83} \frac{0.5}{1.5}\right)\left(\frac{1}{1+\frac{0.8 j}{0.17^{2}} \cdot \frac{35 m}{5}+\frac{R_{L}}{0.17^{2}(5)}}\right) \quad \Rightarrow \quad R_{L} \approx 20005
$$

$$
I=\frac{1}{D^{1}} I_{2}=\frac{1 \mathrm{Amr}}{D^{\prime}}=\frac{1}{0.1^{7}}=5.88 \mathrm{AmP}
$$

(c) Compute power loss:
 Check: $\quad \eta=\frac{P_{\text {out }}}{P_{\text {in }}}=\frac{5}{7.19}=0.69=0.7 \Rightarrow O K!$
(d) Plots:

(5) Compare Buck vs. Buck-Boost Topology for DC Conditions Only. This is problem 3.5 of Erickson.

Transistor: $\quad R_{0 n}=0.5 \Omega \quad R_{D} \rightarrow 0$
Diode:
$V_{D} \rightarrow 0$
Inductor:
$R_{L} \rightarrow 0$

Find D and η for placing different topologies inside the DCDC converter. Then compare why one topology might be favored over the other for the specified conditions.

Prob. 3.5
Only loss is Mosfet with Ron $=0.5 \Omega$

Buck

Mosfet on and Diode off.

$\mathrm{v}_{\mathrm{L}}(\mathrm{t})=\mathrm{Vg}-\mathrm{i}$ Ron $-\mathrm{V} \approx \mathrm{Vg}-\mathrm{I}$ Ron -V
$\mathrm{i}_{\mathrm{c}}(\mathrm{t})=\mathrm{i}-10 \approx \mathrm{I}-10$
Mosfet off and Diode on.

$v_{L}(t)=-V$
$\mathrm{i}_{\mathrm{c}}(\mathrm{t})=\mathrm{i}-10 \approx \mathrm{I}-10$
Thus averaging we get:

$$
\begin{aligned}
&<\mathrm{v}_{\mathrm{L}}>=(\mathrm{Vg}-\mathrm{I} \text { Ron }-\mathrm{V}) \mathrm{D}+(-\mathrm{V}) \mathrm{D}^{\prime}=0 \\
&<\mathrm{i}_{\mathrm{c}}>= \mathrm{D}(\mathrm{I}-10)+\mathrm{D}^{\prime}(\mathrm{I}-10)=0 \\
& \mathrm{So} \Rightarrow \mathrm{DVg}-\text { DIRon }-\mathrm{V}=0 \\
& \mathrm{I}-10=0 \Rightarrow \mathrm{I}=10
\end{aligned}
$$

Buck-Boost

Mosfet on and Diode off.

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{L}}(\mathrm{t})=\mathrm{Vg}-\mathrm{i} \text { Ron } \approx \mathrm{Vg}-\mathrm{I} \text { Ron } \\
& \mathrm{i}_{\mathrm{c}}(\mathrm{t})=-10
\end{aligned}
$$

Mosfet off and Diode on.

$v_{L}(t)=-V$
$\mathrm{i}_{\mathrm{c}}(\mathrm{t})=\mathrm{i}-10 \approx \mathrm{I}-10$
Thus averaging we get:

$$
\begin{aligned}
&<\mathrm{v}_{\mathrm{L}}>=(\mathrm{Vg}-\mathrm{I} \text { Ron }) \mathrm{D}+(-\mathrm{V}) \mathrm{D}^{\prime}=0 \\
&<\mathrm{i}_{\mathrm{c}}>= \mathrm{D}(-10)+\mathrm{D}^{\prime}(\mathrm{I}-10)=0 \\
& \text { So } \Rightarrow \mathrm{DVg}-\mathrm{I} \text { Ron } \mathrm{D}-\mathrm{V}+\mathrm{VD}=0 \\
& \text { ID' }-10=0 \Rightarrow \mathrm{I}=10 / \mathrm{D}^{\prime}
\end{aligned}
$$

First we need D:
DVg - 10RonD $-\mathrm{V}=0$
$\mathrm{D}=\mathrm{V} /(\mathbf{V g}-\mathbf{I R o n})$
$\mathrm{D}=\underline{\mathbf{0 . 8 1} ; ~} \mathrm{D}^{\prime}=\underline{\mathbf{0 . 1 9}}$
Solving for efficiency: $\mathbf{I g}=\mathbf{D I}$
$\eta=\mathrm{P}_{\text {out }} / \mathrm{P}_{\text {in }}=\mathrm{V} \mathrm{I}_{\text {load }} / \mathrm{VgDI}$
$=(4000) /[\mathrm{DVg}(10)]$
$\eta=0.99=\mathbf{9 9 \%}$

DVg - 10RonD/D' - VD' $=0$
$\mathrm{DVg}-\mathrm{VgD}{ }^{2}-10$ RonD $-\mathrm{V}+2 \mathrm{VD}-\mathrm{VD}^{2}=0$
$\mathrm{D}^{2}(-\mathrm{Vg}-\mathrm{V})+\mathrm{D}(2 \mathrm{~V}+\mathrm{Vg}-10 \mathrm{Ron})-\mathrm{V}=0$
Using the quadratic equation for D :
$D=0.45 ; D^{\prime}=\underline{0.55}$
Solving for efficiency: $\mathbf{I g}=\mathbf{I D}$
$\eta=\mathrm{P}_{\text {out }} / \mathrm{P}_{\text {in }}=\mathrm{V}_{\text {Ioad }} / \mathrm{VgID}$
$=(4000) /\left[\mathrm{VgD}\left(10 / \mathrm{D}^{\prime}\right)\right]$
$\eta=0.978=\mathbf{9 7 . 8 \%}$
$\mathrm{P}_{\text {loss }}=\mathrm{P}_{\text {in }}-\mathrm{P}_{\text {out }}$
$\mathrm{P}_{\text {loss }}=\mathrm{P}_{\text {in }}-\mathrm{P}_{\text {out }}$
$\mathrm{P}_{\text {loss }}=4050-4000=\mathbf{5 0}$ Watts
$\mathrm{P}_{\text {loss }}=4090-4000=90$ Watts

The BUCK is better for this application!

Another way to calculate the Power loss is to use the voltage divider and find Vg with Respect to V as shown below:
$V=\frac{R D V g}{R+D R o n}$
$V=\frac{R D V g}{D^{\prime}\left(R+\frac{D R o n}{D^{\prime 2}}\right)}$
Knowing that:
$\mathrm{V}=\mathrm{DVg}$ for the lossless Buck:
$\mathrm{V}=\mathrm{DVg} / \mathrm{D}$ ' for the Buck-Boost:
we can see that $\frac{R}{R+D R o n}=1$
for the lossless Buck case thus:
$\eta=\frac{R}{R+D R o n}$
$\eta=0.99=\mathbf{9 9 \%}$
$\eta=\frac{R}{\left(R+\frac{D R o n}{D^{\prime 2}}\right)}$
since $\eta=$ Pout/Pin:
Pin $=$ Pout $/ \eta=4000 / .99=4040.4 \mathrm{~W}$
Ploss $=4040.4-4000=40.4 \mathbf{W}$
$\eta=0.98=\mathbf{9 8 \%}$

The BUCK is better for this application!

