LECTURE 7
 ILLUSTRATIVE PROBLEMS AND HOMEWORK HINTS FOR OUTPUT FILTER AC WAVEFORMS

I. ERICKSON PROBLEM 2.9

A. $\mathrm{V}_{\mathrm{L} 1}, \mathrm{i}_{\mathrm{c} 1}$, input filter vs. time
$\mathrm{V}_{\mathrm{L} 2}$, $\mathrm{i}_{\mathrm{C} 2}$ output filter vs.time
B. I (transistor) vs. TIME

I (diode) vs. TIME
C. L_{1}, L_{2} - volt-sec balance gives steady state voltages
$\mathrm{C}_{1}, \mathrm{C}_{2}$ - charge balance gives
steady state voltages
D. RIPPLE ON INPUT FILTER
a. C_{1} FOR $\Delta \mathrm{V}_{\mathrm{C}_{1}}$ SPEC
b. L_{1} FOR $\Delta l_{L 1}$ SPEC
II. HOMEWORK PROBLEM HINTS,ANSWER

QUESTIONS AND CATCH-UP TOPICS
LECTURE

OUTPUT AND INPUT AC WAVEFORMS CAUSED BY SWITCHING

I. ERICKSON Problem 2.9

Fig. 2.32
Q1 and D1 form a two position switch for the double pole double throw switch of the Buck topology.

D1 is off
Q1 is on
Switch in position 1 circuit topology

For D'T ${ }_{s}(S W$ off $)$
D1 is on
Q1 is off
Switch in position 2 circuit topology

i_{T} WAVEFORM: $\mathrm{V}_{\mathrm{ON}}($ Transistor $) \equiv 0$
$I_{\text {out }}(D C)=I_{T}(D C)$ During $D T_{S}$
$\Delta \mathrm{i}_{\mathrm{out}}(\mathrm{ac})=\Delta \mathrm{i}_{\mathrm{T}}(\mathrm{ac})$ During $D \mathrm{~T}_{\mathrm{s}}$
During $D T_{s}$ interval transistor is on and assumed $\mathrm{V}_{\text {on }}=0$:

$$
\Delta \mathrm{i}_{\mathrm{L} 2} \equiv \frac{\mathrm{~V}_{\mathrm{g}}-\mathrm{V}_{\mathrm{L} 1}-\mathrm{V}_{\text {out }}}{\mathrm{L}_{2}} D T_{\mathrm{s}}
$$

During the $\mathrm{D}^{\prime} \mathrm{T}_{\mathrm{s}}$ interval the current is zero because the transistor is off and D1 is on.

$\Delta \mathrm{i}_{\mathrm{L} 2}$ is symmetric about $l_{\text {DC }}$

$\mathrm{s}_{\mathrm{u}}=$ SLOPE OF i_{T} RISE $=\left(\mathrm{V}_{\mathrm{g}}-\mathrm{V}_{\mathrm{L} 1}-\mathrm{V}_{\text {out }}\right) / \mathrm{L}_{2}$
NOTICE $I_{\text {peak }}=I_{D C}+\Delta i_{L 2}$
AGAIN IN "D" CONTROL SCHEME I Ieak DEPENDS ON $I_{D C}+\Delta i_{L}$. IF Δi_{L} RIPPLE IS TOO BIG THEN $I_{\text {peak }}$ RATINGS OF TRANSISTOR OR DIODE MAY BE EXCEEDED. SOLID STATE DEVICES ARE KILLED FOR i > i(critical) IN nsec.

ASIDE:
CHAPTER 11of Erickson shows a method for current control of a switched converter where the switch transistor current can never exceed a set current. We set the value of $i(\max)$ to be below the transistor maximum. at this point the transistor is switched off before it is destroyed.

$I_{T}>I_{C} \equiv I_{\text {peak }}$ Switch throws to turn off series transistor before $I_{T}>I_{C} \equiv I_{\text {peak }}$ for transistor

Now apply v-sec balance to all inductors and charge balance to all capacitors.

L_{1} VOLT-SEC BALANCE: GIVES STEADY STATE CONDITION

$$
D\left(V_{g}-V_{C 1}\right)+D^{\prime}\left(V_{g}-V_{C 1}\right)=0 \Rightarrow V_{g}=V_{C 1} \text { IN S.S. }
$$

L_ 2 VOLT-SEC BALANCE: GIVES f(D) EQUALS "D" FOR A BUCK

$$
D\left(V_{C 1}-V_{\text {out }}\right)+D^{\prime}\left(-V_{\text {out }}\right)=0 \Rightarrow V_{\text {out }}=D V_{C 1}=D V_{g}
$$

(Steady State Buck Converter)

\underline{C}_{1} CHARGE BALANCE:

$D\left(I_{1}-I_{L}\right)+D^{\prime}\left(I_{1}\right)=0$
$\mathrm{I}_{1}=\mathrm{Dl}_{2}$
$I_{2}=V_{\text {out }} / R=D V_{g} / R \Rightarrow I_{1}=D^{2}\left(V_{g}\right) / R, I_{1}$ IN TERMS OF V_{g}

$\underline{\mathrm{C}}_{2}$ CHARGE BALANCE:

$D\left(l_{2}-V_{\text {out }} / R\right)+D^{\prime}\left(L_{L}-V_{\text {out }} / R\right)=0$
$\mathrm{I}_{2}=\mathrm{V}_{\text {out }} / \mathrm{R}=\mathrm{DV}_{\mathrm{g}} / \mathrm{R}$

SUMMARIZE STEADY STATE:

$$
\begin{array}{cl}
V_{C 1}=V_{g} & \mathrm{I}_{1}=\mathrm{D}^{2} \mathrm{~V}_{\mathrm{g}} / R \\
\mathrm{~V}_{\mathrm{C} 2}=\mathrm{V}_{\text {out }}=\mathrm{DV} V_{\mathrm{g}} & \mathrm{I}_{2}=\mathrm{DV}_{\mathrm{g}} / R
\end{array}
$$

Having all the steady state conditions gives us $f(d)$ the dc transfer function and all operating effective dc values. we next look at ripple. to do so we use the simplified analysis.

CALCULATE RIPPLE VALUES FOR ALL FOUR REACTIVE ELEMENTS.

$\Delta \mathrm{i}_{\llcorner 1}$
$\Delta \mathrm{v}_{\mathrm{C} 2}$
Are two pole cases where ripple from drive not negligible. We must take ripple into account. Cannot use the small ripple approximation.
$\Delta \mathrm{v}_{\mathrm{C} 1} \quad$ Can use the small ripple approximation for $\Delta \mathrm{i}_{\mathrm{L} 2}$ these cases.

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{D}}=\mathrm{i}_{\mathrm{C} 1} / \mathrm{C}\left(\text { during } \mathrm{DT}_{\mathrm{s}}\right)=\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right) / \mathrm{C} \\
& \left.\mathrm{~S}_{\mathrm{u}}=\mathrm{i}_{\mathrm{C} 1} / \mathrm{C} \text { (during } \mathrm{D}^{\prime} \mathrm{T}_{\mathrm{s}}\right)=\mathrm{I}_{1} / \mathrm{C}
\end{aligned}
$$

NOW IN STEADY STATE:

$$
\begin{aligned}
\mathrm{I}_{1} & =\mathrm{D}^{2} \mathrm{~V}_{g} / R, \mathrm{I}_{2} \quad 2 \Delta \mathrm{~V}_{\mathrm{C} 1}=\left(\mathrm{D}^{2} V_{g} / R\right)\left(\mathrm{D}^{\prime} T_{s} / C_{1}\right) \\
& =\mathrm{DV}_{g} / R
\end{aligned}
$$

$\begin{aligned} 2 \Delta V_{C 1} & =S_{u} D^{\prime} T_{s} \quad C_{1} \text { (to specify } \Delta v_{C 1} \text { ripple) }=\frac{V_{g} D^{2} D^{\prime}}{2 R \Delta v_{C 1}} T_{S} \\ & =I_{1} D^{\prime} T_{s} / C_{1}\end{aligned}$
EXAMPLE: BUCK CONVERTER STEADY STATE SPECS:
$\mathrm{V}_{\mathrm{g}}=48, \mathrm{~V}_{\mathrm{o}}=36, \mathrm{R}=4, \mathrm{~V}_{\mathrm{o}}=\mathrm{DV} \mathrm{g}_{\mathrm{g}}$
$\Rightarrow D=0.75$ and $D^{\prime}=0.25$
NOW WE HAVE THE INPUT FILTER WITH V V_{C}. LET'S SET $\Delta \mathrm{V}_{\mathrm{C} 1}=0.02 \mathrm{~V}_{\mathrm{C} 1}(2 \%)$ AS OUR MAXIMUM ALLOWED. $\mathrm{V}_{0}{ }^{2} / \mathrm{R}=\mathrm{P}_{\text {out }}=324 \mathrm{~W}$.
WHAT'S C ${ }_{1}$ VALUE WE NEED TO ACHIEVE 2\% RIPPLE SPEC?

$$
C_{1}=\frac{V_{g} D^{2} D^{\prime}}{2 R \Delta v_{C 1}}
$$

For $\mathrm{f}_{\mathrm{sw}}=100 \mathrm{kHz}$ GIVES $\mathrm{C}_{1}=5.86 \mu \mathrm{f}$
For $\mathrm{f}_{\mathrm{sw}}=500 \mathrm{kHz}$ GIVES $\mathrm{C}_{1}=1.17 \mathrm{uF}$

NEXT CALCULATE L_{1} VALUES REQUIRED FOR A GIVEN $\Delta \mathrm{i}_{\mathrm{L} 1}$ SPECIFICATION
$2 \Delta i_{\mathrm{L} 1}=\frac{\int \Delta \mathrm{v}_{\mathrm{C} 1} \mathrm{dt}}{\mathrm{L}}$
$d t=\frac{T_{s}}{2}$
$\int \Delta v_{C 1} d t \equiv \frac{1}{2}\left(\frac{T_{\mathrm{s}}}{2}\right) \Delta \mathrm{v}_{\mathrm{C} 1}$
$\Delta \mathrm{i}_{\mathrm{L} 2}\left(\right.$ due to $\left.\Delta \mathrm{v}_{\mathrm{C} 1}\right)=\frac{\Delta \mathrm{v}_{\mathrm{C} 1} \mathrm{~T}_{\mathrm{S}}}{8 \mathrm{~L}_{1}}$
$\Delta v_{C 1}=\frac{D^{2} D^{\prime} V_{g}}{2 R C_{1}} T_{s}$
$\Delta \mathrm{i}_{\mathrm{L} 1}=\frac{\mathrm{D}^{2} \mathrm{D}^{\prime} \mathrm{V}_{g}}{16 R L_{1} C_{1}} T_{s}{ }^{2}$
$L_{1}=\frac{D^{2} D^{\prime} V_{g} T_{s}{ }^{2}}{16 R C_{1} \Delta i_{L 1}}$
IMAGINE $\Delta \mathrm{i}_{\mathrm{L} 1}$ IS ALL EMI AND WE WANT TO MINIMIZE IT. SO FOR A $\Delta \mathrm{i}_{\mathrm{L}}$ SPEC OF 20 mA ALLOWED INTO THE MAINS FROM THE SWITCHED NETWORK:

IF $\mathrm{f}_{\mathrm{sw}}=100 \mathrm{kHz}, \mathrm{L}_{1}=60 \mu \mathrm{H}$
IF $\mathrm{f}_{\mathrm{sw}}=500 \mathrm{kHz}, \mathrm{L}_{1}=12 \mu \mathrm{H}$

Finally HW\#1 Due next week:

1. Answer Questions asked throughout lectures 1-2.
2. Chapter 2 Problems 2, 3, 4 and 6.

NOW SOME HINTS TO THE HW

