LECTURE 5
 PULSE-WIDTH MODULATED CONVERTERS AND ASSOCIATED AC WAVEFORMS

A. REVIEW of unregulated ac mains to dc converters: $\mathrm{v}_{\text {out }}$ control via duty cycle on time " D "; $v_{\text {out }}=v_{\text {dc }}$ (in) $)^{*} f(D)$

1. DC TRANSFER FUNCTIONS
$f(D)$, where $D=$ duty cycle on time,
for buck, boost and buck-boost
converters
B. TYPICAL VOLTAGE AND CURRENT WAVEFORMS IN SIMPLE L-C
OUTPUT FILTERS
2. INDUCTORS: v_{L} (step) and
i_{L} (ramp) waveforms
3. CAPACITORS: i_{c} (step)
and v_{c} (ramp) waveforms
4. Unsymmetric i_{I} and v_{c} waveforms of equal integrated area

REVIEW OF PULSE-WIDTH MODULATED CONVERTERS AND ASSOCIATED AC WAVEFORMS CAUSED BY SWITCHING

A. UNREGULATED AC MAINS TO DC CONVERTERS:

Linear Electronics Vs Power Electronics

Linear Electronics: Example

1. Key issues in power electronics are:

- Energy Efficiency
- Size/Weight
- Reliability and Tendency to Instability
-Cost
On the next page we compare the full on/full off methodology of switch mode methods to supply power more efficiently and the simple trick to achieve bigger efficiency.

Bipositional Switch Implementation

$$
\left(i_{L}>0\right)
$$

$$
\begin{aligned}
q(t) & =0 \\
& =1 \\
v_{A}(t)=q(t) V_{d} & =V_{d} \\
& =0
\end{aligned}
$$

- Transistor operates as a switch
- fully ON (or)
- fully OFF

2. DC Transfer Functions in Terms of pulsed Duty Cycle

We reduced all the complexity of the switch mode power source by considering only the DC response in steady state and found to a first approximation that:

$$
\frac{V_{\text {out }}}{V_{D C}(\text { in })}=f(D)
$$

Last time we gave intuitive arguments and dc transfer functions versus on time duty cycle for $\mathrm{v}_{\text {out }} / \mathrm{V}_{\text {in }}=\mathrm{f}$ (duty cycle) for three illustrative circuits, where D is the fractional on-time during the switching cycle.

In reality the transfer function will depend on more factors than just DUTY CYCLE-that comes later. But clearly
the high frequency switched mode has advantages as summarized below.

Power Electronics

ripple in $v_{A}(t)$ filtered out by the low - pass filter $\left[f_{c, \text { filter }} \ll f_{s}\right]$

- $f_{S} \uparrow \Rightarrow L \downarrow C \downarrow \Rightarrow$ small size
- high energy efficiency

The switched square wave output has two major components: Large signal DC and small signal ac.

$$
\underset{\text { Large }}{\mathrm{V}_{\text {out }}}=\underset{\text { Small@ } \mathrm{f}_{\mathrm{s}}}{\left.\mathrm{~V}_{\text {dc }} \text { (average }\right)}+\underset{\mathrm{A} \text { (ripple })}{\mathrm{V}_{\mathrm{Ac}}}=\mathrm{V}_{\mathrm{g}} \mathrm{f}(\mathrm{D})
$$

For an equal on/off square wave, $\mathrm{D}^{\prime} \mathrm{D}^{\prime}=1 / 2$, we can show by Fourier analysis that: V_{dc} (average) $=\mathrm{V}$ (peak) D .
$\mathrm{V}_{\mathrm{AC}}=\sum a_{n} \operatorname{Sin}\left(\frac{n \pi}{2}\right)$ and $\mathrm{a}_{\mathrm{n}}=\frac{2 V(\text { peak })}{n \pi}$
Fourier Components drop-off as $1 / n$. Fundamental component has $\frac{2 V(\text { peak })}{\pi}$ value.
When we employ a series inductor in the output (not shown) $V_{A C}$ peak to peak at the output is usually reduced to $\leq 10 \%$ of the dc $\mathrm{V}_{\text {out }}$ provided the inductor is big enough.As the switch f_{sw} varies from kHz up to MHz we can use smaller inductors to achieve the same level of ripple.
f_{sw} is usually limited to MHz \& below because:
\bullet Fast solid state switches at high vand i
are still limited to MHz values at high
power levels
-magnetic materials don’t work well above MHz. Magnetic core losses increase
dramatically above 1 MHz due to
hysterisis and eddy currents. SEE LATER LECTURES FOR DETAILS.

To reduce the ripple component at $f_{s w}$ we add passive simple R-C or even L-C filters after the switch and before the load with L in series to limit kvl violations and C across the output to reduce ac variations. This double L-C action allows us to reduce the ac ripple on the dc output to designated levels. similar filters are put at the input to prevent switched waveforms from polluting the mains. There are now laws for allowable NOISE YOU CAN CONDUCT ONTO THE AC MAINS that originate in the switch-mode power supply. WE WILL ANALYZE BOTH CASES SEPERATELY LATER. In this lecture we focus only on output DC filters as a first case.

TODAYS LECTURE will focus first on the output load where we have a specified v_{dc} (output) and further specify allowable $v_{a c}$ and $i_{a c}$ at the load. This sets the values of the filter components L and C .
SUPRISE Both L and C required in switched mode designs will vary with d the on time duty cycle employed as well as with $\mathrm{f}_{\text {sw }}$. The duty cycle will depend on:

- The chosen topology and the desired output voltage
-The given input voltage
That is D is set by the $f(D)$ functions once topology and output levels are chosen for the given input. Before we can understand filters whose components will vary with D, simple i_{L} and v_{c} waveforms will be analyzed.

NOTE WELL: The $f(D)$ functions in steady state assume that we are working in the continuous conduction mode. In fact this is not always the case as shown below.

Discontinuous conduction mode

$D=\frac{T_{1}}{T_{s}} \mapsto$ constant
R changing

\square for $I_{o}<I_{o, c r i t}, i_{L}$ becomes discontinuous

- $v_{L}=0$ while $i_{L}=0$

\square as shown by the waveforms V_{o} rises (average $v_{L}=0$)

Discontinuous conduction has its own transfer function.

B. TYPICAL VOLTAGE AND CURRENT WAVEFORMS IN SIMPLE L-C PASSIVE FILTERS

Throughout this lecture we assume a given converter type exists which for $v_{\text {in }}$ and $v_{\text {out }}$ sets unique values of d and d'. we only ask what are the required $L(D)$ and $C(D)$ values in the load filter given the allowed ripple. That is we specify allowed i_{ac} and find $L(D)$ or specify allowed $\mathrm{vac}_{\mathrm{ac}}$ and specify C(D).

1. INDUCTORS: i_{L} WAVEFORMS VS t

IN CASE v_{L} IS A STEP $\rightarrow i_{L}=\frac{1}{L} \int v_{L} d t$
\rightarrow SIMPLE INTEGRAL RELATIONSHIP

IF V_{L} IS A STEP DURING DT
THEN I_{L} IS A RAMP DURING DT

SLOPE OF RAMP IS V/L, WITH UNITS OF (A/sec)
We assume $L(D)$ is fixed and not varying with current l(i). due to core effects $L(D)$ will in fact vary with i, having sudden changes in $L(D)$ occuring usually when a magnetic core saturates. $L(D)$ goes from a large value below saturation to a small value after saturation when i exceeds i(critical). This may make the kvl violations occur in switching.
2. CAPACITORS: V_{c} WAVEFORMS VS t

IN CASE i_{C} IS A STEP $\rightarrow \mathrm{v}_{\mathrm{C}}=\frac{1}{\mathrm{C}} \int \mathrm{i}_{\mathrm{C}} \mathrm{dt}$
\rightarrow SIMPLE INTEGRAL RELATIONSHIP

IF I_{C} IS A STEP DURING DT ${ }_{s}$ THEN V_{C} IS A RAMP DURING DTs

Slope of ramp is i_{d} / c with units of $(\mathrm{v} / \mathrm{sec})$
Note for both i and v to reach steady state after a full period of t_{s} the following integral relationships must hold:

$$
\begin{array}{lll}
\mathrm{L}: & \begin{array}{l}
\text { For achieving steady-state during the } \\
\mathrm{T}_{s} \\
\mathrm{v}_{\mathrm{L}} \mathrm{dt}=0
\end{array} & \begin{array}{l}
\mathrm{D} \mathrm{~T}_{\mathrm{s}} \text { interval, we must return to } \mathrm{DC} \text { levels } \\
\text { that started } \mathrm{DT} T_{s} \text { period. This means the }
\end{array} \\
\mathrm{C}: & \begin{array}{l}
\text { net area under the } \mathrm{v}_{\mathrm{L}} \text { and } \mathrm{i}_{\mathrm{c}} \text { curves must }
\end{array} \\
\int_{0}^{\mathrm{T}_{s}} & \begin{array}{l}
\text { cancel. For the } \mathrm{L} \text { case this is termed } \\
\text { "volt-sec balance" and for the C case it is } \\
\text { termed "charge balance." }
\end{array}
\end{array}
$$

Note as dt decreases when $f_{s w}$ increases the balance is closer to zero in magnitude for fixed v_{L} and i_{C} values.

3. DC TRANSFER FUNCTIONS f(D) FOR BUCK, BOOST, AND BUCK-BOOST

Below we again summarize $v_{\text {out }} / v_{\text {in }}=f(d)$ relations for three basic converters that we will derive later. We will do this repeatedly to allow $v_{\text {out }} / v_{\text {in }}=f(d)$ to be better understood when we are doing $L(D), C(D)$ and $L(D)-C(D)$ filtering design calculations. Note component choice depends on D values.

We state again that the inductor or capacitor required to achieve a specified level of ripple on the output of a PWM converted will depend on the operating range of D . Design will have to account for worst case situations, as we will show in detail in Lecture 7

SIMPLE SWITCH MODE CONVERTERS

BUCK The buck is limited in that $\mathrm{V}_{\text {out }}<\mathrm{V}_{\text {in }}$ only		$\begin{aligned} & \mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{o}} \text { or } \mathrm{V}_{\mathrm{DC}}-\mathrm{V}_{\mathrm{o}} \\ & \text { of }(\mathrm{D})=\mathrm{D} \end{aligned}$ - Never get negative output - $\mathrm{V}_{\mathrm{o}}(\mathrm{min})=0$
BOOST The boost is limited in that $\mathrm{V}_{\text {out }}>\mathrm{V}_{\text {in }}$ only		$\begin{aligned} & \hline \text { of }(\mathrm{D})=1 /(1-\mathrm{D}) \\ & \text {-Never get zero } \\ & \text { output: } \\ & \mathrm{V}_{\mathrm{o}}(\min) \neq 0 \\ & \mathrm{~V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{DC}}-\mathrm{V}_{\mathrm{o}} \text { or } \mathrm{V}_{\mathrm{o}} \end{aligned}$
BUCK-BOOST The buck-boost is limited to negative voltages		$\begin{aligned} & \text {-f(D)=-D/(1-D) } \\ & \text {-Inverting output } \\ & \text { w.r.t. } V_{g} \\ & V_{L}=V_{o}=-V_{D C} \\ & \text { for } D=1 / 2 \end{aligned}$

4. UNSYMMETRIC i_{L} AND v_{C} WAVEFORMS OF EQUAL INTEGRATED AREA IN THE ABOVE THREE CONVERTERS

> L: Volt-sec balance so $\mathrm{i}_{\mathrm{L}} \neq \infty$
> C: Charge Balance so $\mathrm{v}_{\mathrm{c}} \neq \infty$

SINCE IN STEADY STATE:
$V_{D C}$ AND $V_{\text {out }}$ ARE BOTH MOSTLY DC BUT $V_{D C} \neq V_{\text {out }}$
During switching pulsed dc steps are applied to the inductor

Notice for above three circuits v_{L} is across the inductor and is unique during the d cycle. It will be either of two possibilities:
$+V_{D C}-V_{\text {out }}$ FOR BOTH THE BUCK AND BOOST OR $-V_{D C}$ ONLY FOR BUCK-BOOST AS ON SIDE OF THE INDUCTOR IS AT GROUND. In practice $v_{d c}$ and $v_{\text {out }}$ are primarily crudely rectified AC which looks like dc levels to a first approximation.

THUS DURING DT ${ }_{\mathrm{s}}$ INTERVAL WE CAN FIND $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$:
$i_{L}=\frac{1}{L} \int v_{L} d t$ where $V_{L}=V_{g}-V_{\text {out }}$ during $D T_{s}$ (buck, boost)

$$
V_{L}=-V_{D C} \quad \text { during } D^{\prime} T_{S} \text { (buck-boost) }
$$

Upward i_{L} ramp for buck and boost with fixed $\left(\mathrm{V}_{\mathrm{g}}-\mathrm{V}_{0}\right)$ during D cycle
Note also the polarity of $\mathrm{V}_{\text {out }}$ for buck-boost can be negative during the $\mathrm{D}^{\prime} \mathrm{T}_{\mathrm{s}}$ cycle, so we get down ramp.

Downward i_{L} ramp for buckboost for fixed V_{0} during d cycle.

During the D' cycle íL ramps up.
Finally, For HW\#1 Due in 1 week:

1. Answer Questions asked throughout lectures 1-7.
2. Chapter 2 Erickson Problems 2, 3, 4 and 6.
HOMEWORK is 60 percent of the course grade.

Midterm is 20 percent and the term paper is 20 percent. The paper is due AFTER Thanksgiving break.

