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Lecture 51
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1. DC Conditions
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Lecture 51
Tailoring Dynamic Response with Compensation
A. Compensation Networks

1. Overview of Gc (Alterations Tailoring)
a. Rude and Crude Single Pole Compensation

Consider an original converter GVD with DC flat response and a 40
db roll-off, starting at fFP, with strong “Q peaking” in the plot below.
 The original control-output GVD crosses unity gain with too little
phase margin and also has a zero due to the ESR in the filter
capacitor.  The op-amp single pole response is a dashed line from
DC at a slope of 20 db/decade as we saw on pg.13 in Lecture 50.

The GVD, has a double pole at fFP due to the L-C filter network,.  It
has a unacceptable phase margin for closed-loop operation.
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The new T(s) involves GCGVD and it’s fC is located at fXO.  At this
frequency the phase plot of the new T(s) must have a phase
margin φM =45° to meet stability.  We create a new T(s) by placing
the error amp GC(single pole) in tandem with the original GVD to
create the new T(s) which lies just below the old T(s) in the plot on
page 2.  The “shift of the new T(s) plot” to the left of the GVD plot is
caused by the single pole GC choice we made.  It reduces the fC of
the new T(s) as compared to the old T(s).  Is this a good thing
entirely?  GC will introduce 270° of CONSTANT phase shift. 
Hence for acceptable phase margin of 45 ° on the new T(s) at fXO,
we can only allow 45° at fXO from the GVD portion of the old T(s). 
Otherwise a potentially unstable closed-loop will result. 
 The new T(s) has a lower fC, typically 50- 500 Hz, which is
too slow.  Momentary transients may cause the output to go to
values OUTSIDE the SPEC’c.  The “Q peaking” of GVD makes the
conservative choice of fXO to be placed at even lower frequencies
to avoid oscillation at the cross-over frequency.  Single pole
compensation is too crude a means to stabilize an original T(s)
with 40 db per decade slope at the cross-over frequency. 

b. Two Pole/ Two Zero Compensation
This is a BETTER WAY to stabilize and improve a GVD that rolls
off at 40 db/decade.  The GC design is very complex as it attempts
to take into account both the desired phase margin, INCREASE
the maximum fC for the new T(s) and it also try’s to cancel out the
parasitic zero in GVD caused by the ESR in the filter capacitor. 
This requires the GC designer to do all of the following:
i) Use a PAIR of zeros from GC to cancel the effect of the two

GVD poles at the L-C resonance of the output filter.. Usually
the zero’s are placed on either side of the fFP location to
minimize the “Q peaking” from the L-C filter double pole.

ii) Chose one of the GC pole locations to cancel out the ESR
zero in the original GVD.  The second pole is at very high
frequency and insures the proper phase margin at cross-over
of the unity gain point of the new modified T(s)
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Page 13 of Lecture 50 has the two zero/ two pole GC Bode plots
versus frequency.  This GC is placed in tandem, with the GVD of the
converter response to from a new T(s) with improved closed-loop
properties.   GC Bode response is shown below by a short length
DASHED lines.  The original GVD plot, with a flat DC response up
to the point fFP, is depicted by a solid line, that crosses unity gain
at 40 db per decade at a frequency fGDO.  Our task is to shift this
plot to the left in the final or overall T(s) plot, which is
represented by a long DASHED curve.  This has the effect of
increasing the fC of the loop gain above that of the original GVD.

The overall or final T(s) plot starts at DC with a slope of 20
db/decade.  Around fFP it has a “Q peaking” but maintains its 20
db/decade slope past the unity gain frequency, fXE, due to the
double zero’s in GC all the way until the very high frequency pole
kicks in because the first pole of GC cancels the ESR zero. This
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T(s) plot has an effective 20 db/decade roll off from DC to the
location of the very high frequency pole where the roll off is 40
db/decade from there on.  The difference between the fVDO , where
the uncompensated GVD crosses unity gain, and fXE where the new
T(s) crosses unity gain is the improvement in the frequency
response achieved.  Moreover we go from the original GVD
crossing unity gain with 40 db/decade slope to the new T(s) which
crosses unity gain at 20 db/decade.  We now have a designed in
phase margin, φM, as well as an excess phase condition, φEXCESS. 
Actually the excess phase is the most important as it is the point of
closest approach to 360 ° at any point on the Bode plot.  This is
due to the fact that fXE lies much higher than fFP ,where the L-C
resonance occurs.  In summary, we achieve both improved phase
margin and improved transient response by the use of such a
complex GC network.  In short we have a higher performance
power supply all because of a simple op-amp based feedback
network design.  We showed the flow of the design but not the
detailed calculations involved.  The calculations are iterative and
will be considered below in some examples as well as in HW. 
2. Lag Compensator

Consider an original T with a 20 db/ decade roll off and its
associated and 1/1+T plots. We are satisfied with the stability of
the old T(s).  We are not satisfied with the 1/ (1+T) plot in the low
frequency region, since the mains voltage varies a lot. 
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We add via Gc(s an inverted zero to increase T at low frequency

and thereby meet the 
∆
∆

oV
gV

  specification at mains frequencies on

the PWM dc-dc converter.  Gc∞ is carefully chosen to obtain
desired fc in compensated T/1+T or T plots. 

c c
LG (s) =  G  (1+ W

s
)∞

Choose the inverted zero frequency, fL < fc/10 so that no φ change
occurs at fc.  That is, we alter T and 1/1+T at low f gain but leave
unchanged T’s phase margin at the cross-over frequency.  If the
DC loop gain →  ∞  we find  Verror due to power supply, VG, changes
→  0 .  The desired Gc vs f is plotted below which will address our
modified low frequency T(s) design goals. :

+

-

Z1

Z2
VIN

vc

Op. Amp.
Implementation

For HW # 4, using R’s and C’s ,what is your Z1 and Z2 to get
the desired inverted zero transfer function.

T(compensated) = T(original) Gc(s) and we chose T(original)

= vo

o

T
1+ s / w

 for illustration purposes above.  Note also the absolute

value of Gc∞ effects the desired fc of the new T(s).  The power
supplies transient response specification in turn determines fC. 
Hence by careful choice of fL and Gc∞ could also change fC.
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|T|  =  1 =  T  G
f / f

vo c

o

∞

We have already insured that we will addd no phase from fL at the
old.  If we wish to vary fC in the new T(s) then fc = Tvo Gc∞ fo.  Given
the Tvo as fixed from the converter response GVD we can only
diddle Gc∞ to achieve the desired fc for the new compensated T(s)

c
c

vo o
G  =  f (desired)

T (original T)f (original single pole)∞  is our design

guide

Summary of the LAG design method is:
(1) Choose new fc (desired) of compensated T(s) which sets Gc∞.
(2) Choose fL (inverted zero) << fc. so no phase is contributed
Use algebra-on-graph to get the new compensated 1/1+T Bode
plots.  Our primary goal is to increase the low frequency value of T
to reduce ZOUT and GVG based variations by the factor 1/ (1+T), but
at the same time we can increase fC without jeopardizing closed
loop stability.  Again this is an iterative design process that
requires cut and try “guestimates”, iteration and design
compromises as we will see in the HW.
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LAG GC insures in feedback PWM converters mains voltage
variations and ZOUT are very well regulated since 1/1+T →  0 @ low
f.  What about at higher frequencies of interest??
A common AC mains to output spec is:
∆
∆

o

g

vgV
V

 (@100 / 120Hz) =  G (@100 / 120Hz)
1+ T

This Spec by the power supply user and Gvg from the choice of the
converter topology, specify the required 1/1+T to achieve it.

3. Hybrid PID Compensator( Two Pole/Two Zero)
This GC is used to get the BEST or optimum new T(s) with both
mains variations and dynamic response in mind:

a. Increased fc for better transient response

∆ t =  1
2 fcπ

  We seek as high fC as possible,YET  fC <1/5 fSW

b. Small Output Variations from low f ∆Vg Variations
We achieve both a and b by adding to the original T(s) a Gc(s) to
get a new Teff(s) = Told * Gc(s)
If the original T(s) was stable we do not want to add because of
the additional GC φ lead near the original fc or we may degrade the
stability or original phase margin.  We can also improve it as well.
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c cm

L

p

z

p2
G (s) =  G  

(1+ w
s

)

(1+ w / w 1)
  (1+ w / w )

(1+ s / w )

                                ↓                    ↓
   PI form        PD form

Inverted zero adds to gain of T(s) at low f.  Both poles are required
to feep the new T(s) gain low at the switch frequency, fsw. 
As s →  ∞   ∠Gc →  -90 } φ at frequency extremes
     s →  0   ∠Gc →  -90 } is -90o

For a range of intermediate frequencies we can ADD positive
phase

We can place this positive phase where the old T(s) or GVD will
benefit most.  We also choose in a very conservative fashion fc <
fsw/10 for the new T(s). The zero locations are fL and fz are chosen
below the original cross-over frequency , fc.  Whereas the
frequency location of the two poles fp1 and fp1 are purposefully
placed above the original cross-over frequency , fc.  We must also
be careful that the choice of op-amp is such that the frequency
response of the op-amp exceeds all pole and zero frequency
locations.  Finally we try to choose an op-amp with fMAX  < fsw/10 so
that we do not amplify switch noise.
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B. Design of Proper Feedback PWM Buck
Converter:
fsw = 100 KHz and we keep the T(s) maximum fC well below this
value as described above.  Consider the following BUCK circuit

vc

 transistor
gate driver

vref
5V

pulse-width
modulator
Vm = 4V

Gc(s)

compensator

fs = 100 kHz

error
signal

ve

H(s)

Hv

sensor
gain

C
500uF

R
3

L
50uH

+

-

D1 v(t)
Q1

vg(t)
28V

Highly
Regulated
Vo = 15V

@ 5A

Unregulated
crude 28V
with ripple

1. DC Conditions:
H(s) is achieved via precision temperature and frequency 
compensated resistors and is:

H =  V
V

 =  5
15

 =  1
3

ref

o
Quiescent or dc duty cycle for buck topology is
Vo = DVg  ⇒  D = 0.536 and the DC control voltage is D VM=2.14

2. Open loop AC Conditions:

vd
2

G (s) =  V
D

 1

1+ s L
R

+ s LC
 is found from the BUCK converter

open loop block by shorting out the vg sources and solving for
VOUT/ d.  We then compare to the standard form second order
transfer function and equate terms.
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, 
R
L

 =  w Qo , wo
2 = 1/LC, 

V
D

 =  15
.536

 =  28 or 29dB

Note how the choice of the DC operation duty cycle effects the
converter DC or low frequency level.  This in turn shifts T(s) plots
in the vertical direction.

R

d(s)V/D

d(s)V/R v(s)vg(s)

+

-
C ^

^

^^

L

..
1 : D

iload(s)^

2

vc(s)vref (=0)
1/Vm

Vm = 4V
Gc(s)

compensator

error
signal
ve(s)

H(s)
H(s)v(s)

H = 1/3

d(s)^

^^^

^

T(s)

1KHz = 
LC2p

1 = 
2p
W = f o

o  for: L = 50uH and C = 500uF

For R=3 then Q =  R
w

 =  R C / L
oL

 = 9.5 or 19.5 dB for the “Q

peaking” effect, which we can term the high Q case !
vd

o o

2

G (s)

open loop
 =  29db

1+
s

W Q
+ (

s
w

)

Likewise, with the same poles as GVD, we can determine by
setting d=o

vg

o o

2

G (s)

open loop
 =  D 1

1+ s
w Q

 +  ( s
w

)
= .536 or -6 db for the
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numerator of the expression.
out

o o

2

(s)

open loop
 =  R|| 1

SC
||sL =  sL

1+ s
w Q

+ ( s
w

)

Z

Q is high in all of the above - expect “Q peaking” in Bode plots
3. Closed Loop Conditions

Based on the existing GVD, our design choice for Gc to achieve an
even better T(s) and closed-loop response will be outlined below.

vref(=0)   v(s)Gc(s)

H(s)

iload(s)   load current
     winding

d(s)vc(s)ve(s)

converter power stage

vg(s)
ac line
variation

1/Vm Gvd(s)

Gvg(s)
Zout(s)

^

^

^^ ^^

^

H = 1/3
T(s)

duty cycle
variation

T(s)  =  G (s)  1
V

 G (s)  H(s)  =  

29
12

1+ s
w Q

+ ( s
w

)
c

M
vd

o o

2

Vm = 4 Gvd(s) =
29

1+ s
w Q

 +  ( s
w

)
o o

2
 H(s) = 1/3

Gc(uncompensated) = 1.0 and T(s) uncompensated is just 1/12
Gvd(s)

Still Q is high in GVD: Double pole located @ fo
Gain decays at 40db/decade, which is a possible unstable case
Phase decays 180o over the frequency span of the double pole. 
We need to exactly specify the two frequency locations for the
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phase asymptote plot.  We employ the rule fLOWER =fo/ 10
-1/2Q

o
1/18
f

10
 =  900  Hz is the lower phase breakpoint.  fHIGHER =??

 ← --------100 Hz -------→  fo = 101/18 fo = 1100
|← ------------------------------|-------------------------------→ |

← -------100Hz-------------→
10-1/2Q fo     1000 10+1/2Q fo
low f onset pole location high f final

We judge from the Bode below that the phase margin of
GVD is not sufficient, and we will need compensation to achieve a
new T(s) with better frequency response and more stable phase
margin.  GDO= V/D= 28, QO= R(C/L)1/2 =9.5 absolute=19.5 db

We will find that the issue of “Q peaking” in determining the fC of
T(s) is different from the case of “ Q peaking” in GVD(s). We note
that fC for Gvd(s) only follows the asymptote as Q has peaked
much earlier and receded before T(s) crosses unity gain.  Under
this case of neglecting “Q peaking” we find the uncompensated
T(s) crossover frequency to be set by GDO and fO

do
o 2 vd

do oG  (f
f

)  =  1,  f(G
1

)  =  G  f  =  5.3KHz

What do you expect to occur to fC ,if we decrease the DC
level??  This is what occurs when we form T(uncompensated).
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T(s) uncompensated then basically follows Gvd with a scale factor.

 Gdo = 2.8V or 29db  ↔   It differs by  c

m
s

G
V

 H  ↔ Tuo = 28/12 = 2.33

or 7.4 db.  We have for the uncompensated loop gain the plot
below.  Please note that the DC coefficient Tuo =HV/ D VM =7.4 db
or 2.33 in absolute units, as described above

Determining fc for Tµ from Bode plots above is much harder when
including Q is peaking.  Since Tuo is lower “Q peaking” is not
negligable.  fC is harder to determine, as we need to “guesstimate”
it by a cut and try approach.
First Guess without peaking could be way off

vo
o 2

oT  (f
f

)  =  1,   f(guess)  =  2.33  f  =  15KHz

Indeed f(with Q peaking as seen from the Bode plot with Q
peaking) = 1800 Hz.  Now that we know the uncompensated
cross-over frequency we need to check the uncompensated phase
margin to see if it needs a GC network to tailor it into better shape.
By inspection at fC=1.8 kHz, φM= 5°.  Is this good???
This value is barely positive and way off desired 76o ( for
conservative old man Collins) for a stable closed loop system.
Conclusion: Gc(s) = 1 is not sufficient for this case!  We need to
design a GC specific to the old T(s) to make it better for closed
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loop operation.
4. Choose to design a PID compensator to achieve our
goals on phase margin.  There are other GC as well.

a. Choose fc of T(new) to be way below fsw = 100 KHz.

c
swf  =  f
20

 is an arbitrary choice but well below fsw/10 for a slow old

man.  By the choice of fC = 5 kHz we are limiting the dynamic
response.  We could choose fC as high as fSW/5 =25 kHz

b. We now calculate at 5 kHz the value of

T(uncompensated) = 2.33(f
f

)  =  .09o 2  @ 5KHz

Tu(@5KHz) = .09 or -20.6 db  This means our GC design will have
to take this into account when we design for the target fC. 
⇒  Gc (5 KHz) must be +20.6 db.  Now is the time to step up to the
plate and actually DECIDE the value of the phase margin we want.
 Recall this is a trade off between stability and transient response.

 φm = 52o is a more aggressive choice and also
corresponds to the border between overdamped and
under damped

For φM= 52o we need to insure p

z

f
f

  10≈ , and for a compromise Q

peaking we have Q = 1.0 , which only peaks at 1.16 or 16% over
the DC level we expect in steady state.  This may be too much for
some loads.  The customer decides.  The load could also take a
lot more overload.  If so then we could speed up the dynamic
response as well.  The well worn Q versus phase margin chart is
given on the top of page 16.
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We need to choose one pole and one zero location.
Given  φm = 52° for the PD portion of the PID controller as our goal

zf  =  5  1- sin52
1+ sin52

 =  1.7KHz

pf  =  5  1+ sin52
1- sin52

 =  14.5KHz Which is also low compared to

fsw (100 KHz) and within the gain-bandwidth product of the op-amp
chosen for the task. 

c co
z

p
G (s)  =  G  (1+ s/ w )

(1+ s/ w )
Choose Gco such that overall gain at chosen fc of the
compensated Tc(fc) is unity.  That is don’t change the unity cross-
over gain by this portion of the GC network.

Tc(s) = Gc(s) * Tu(s)
             ↓                    ↓
 want +20.6db    added -20.6 db
    @5 KHz      @5 KHz

fc
Gco=?

fz?0 db

20 db/dec 20.6
@

mid-
point

fc
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fo
1 kHz

fp
14.5 kHz

fz
1.7 kHz

fc
5 kHz

14.5

20.6

Gc(@fc) = 20.6 db
        or 10.7

0 db

Gco = 3.7 or 11db

The zero adds some gain so we have to account for this as well
and realize the difference must come from GCO.  Use the 20 db/
decade rule to determine the inverted zero gain from fZ to fP

c z pf  =  f f c c co
c

z
co

p

z
G (f = f )  =  G  f

f
 =  G  

f
f

Gco = 3.7 or 11.3 db
Considering Gc(s) alone and asking for unity gain @ fc

Gzo

fpfz fc

Gco  fp/fz = 1
Gco =  fz/fp does it

However with Tc = Tu Gc. Tu is reduced from fo to fcThe value of
GCO value becomes:

co
vo

o

c

2
z

p

c

o

2

vo

z

p
G  =  1

T  (f
f

)
 f

f
 =  ( f

f
)  1

T
f
f

Gco = 3.7 or 11.3 db
In summary: 52o of phase margin is provided to the new T(s)

over the frequency range p
z

f
10

 <  f <  10 f
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The PD compensated T(s) is then:

c
vo co z

p
o o

2
T (s)  =  T  G  (1+ s/ w )

(1+ s/ w )  1+ s
w Q

 +  ( s
w

)






Tvo Gco = 8.6 absolute or 18.7 db.  Q remains 9.5 db in the “Q
peaking” effects in the Bode plot.  Tc(s) Bode plot is then
as shown below.  Note at once the target phase margin is hit.

φm is 52o much improved and the fC target for the compensated
T(s) we chose is met.  For HW #4 repeat the problem to
here with at target fC=15 kHz.
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Use algebra-on-graph to get T/1+T from T(compensated)

For f < 1 KHz the 1/(1+T) factor reduces both Zo and 
∆
∆

oV
gV

   }by

18.6 db or 8.6.  This is another improvement due to PD
compensation.  Let’s quantify the improvement.  Gvg (open loop) =
D( the DC duty cycle). Therefore
∆
∆

∆ ∆o

g
g o

V
V

 ~  0.536   V  1V gives V  =  .536 V⇒

Which is clearly unacceptable when the mains, Vg clearly varies
a lot more than that on occasion.  The 1/(1+T) factor makes

Gvg(closed loop) =  
D

1+ T
 =  .536

8.7
 =  .062   ⇒ ∆Vo = 62 mV

    ⇒   ∆Vg  1V
Let’s futher improve this low f behavior even further by adding
to Gc an inverted zero at fL.  This is the PI portion of the full GC

A Newer and more improved Gc(s) would look like:

c cm
z

p

LG (s)  =  G  1+ s/ w
1+ s/ w

 1 +  w
s













Note the inverted zero

↓ ↓
PD Added PI portion to GC
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To the old P.D. compensation we simply added a PI section. 
Choose the same Gco = 3.7absolute⇒  11.3 db  f > fL the loop gain
is unchanged but for f < fL the loop gain is increased.  Arbitrarily
choose the location of the inverted zero fL = fc/10 so it doesn’t
contribute any phase to φM at fc which we are now happy with.

Gc Gc Bode T and 1/1+T, Q = 1 db for 52o

We add inverted zero to PD without changing DC gain or fC.
Gco(100Hz) is improved by an inverted zero located at 500Hz.  Gc
increases at 100 Hz by the ratio( from the 20 db/decade slope) of 
500/100 = 5 in absolute terms.  This is 5x lower ZOUT and GVG
variations than PD compensation alone!  Let’s look at details.
Again use algebra-on-graph to get the variation versus frequency
from the product of [Gvg] and 1/ (1+T) for PID compensation:
 Gvg (open loop)                 &                 1/1+T
                ↓                     |                    ↓
 

D

1 +  s
Q w

 +  ( s
w

)
o o

2
       |         above fc = 1 

Q effect ↑ at fo                    |      Q effect ↓ at fo

Poles and Q of Gvg ←  cancel →  Zeros and Q of 1/1+T
⇒  Q effects are all gone in Gvg (closed loop)x 1/(1+T)



21

We also see at what frequencies where the benefits of the 1/(1+T)
factor are not so large.


