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ABSTRACT

Solid bodies roll and tumble through space. In’

computer animation, so do cameras. The rotations of
these objects are best described using a four coordinate
system, quaternions, as is shown in this paper. Of all
quaternions, those on the unit sphere are most suitable
for animation, but the question of how to comstruct
curves on spheres has not been much explored. This
paper gives one answer by presenting a new kind of
spline curve, created on a sphere, suitable for smoothly
in-betweening (i.e. interpolating) sequences of arbitrary
rotations. Both theory and experiment show that the
motion generated is smooth and natural, without quirks
found in earlier methods.
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1. Introduction

Computer animation of three dimensional objects
imitates the key frame techniques of traditional
animation, using key positions in space instead of key
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drawings. Physics says that the general position of a
rigid body can be given by combining a translation with
a  rotation. Computer animators key such
transformations to control both simulated cameras and
objects to be rendered. In following such an approach,
one is naturally led to ask: What is the best
representation for general rotations, and how does one
in-between them? Surprisingly little has been published
on these topics, and the answers are not trivial.

This paper suggests that the common solution, using
three Euler’s angles interpolated independently, is not
ideal. The more recent (1843) notation of quaternions
is proposed instead, along with interpolation on the
quaternion unit sphere. Although quaternions are less
familiar, conversion to quaternions and generation of
in-between frames can be completely automatic, no
matter how key frames were originally specified, so
users don’t need to know—or care—about inner details.
The same cannot be said for Euler’s angles, which are
more difficult to use.

Spherical interpolation itself can be used for purposes
besides animating rotations. For example, the set of all
possible directions in space forms a sphere, the so-called
Gaussian sphere, on which one might want to control
the positions of infinitely distant light sources.
Modelling features on a globe is another possible
application.

It is simple to use and to program the method proposed
here. It is more difficult to follow its development.
This stems from two causes: 1) rotations in space are
more confusing than one might think, and 2)
interpolating on a sphere is trickier than interpolating
in, say, a plane. Readers well acquainted with splines
and their use in computer animation should have little
difficulty, although even they may stumble a bit over
quaternions.

2. Describing rotations

2.1 Rigid motion

Imagine hurling a brick towards a plate glass window.
As the brick flies closer and closer, a nearby physicist

t Author’s current address: 1700 Santa Cruz Ave., Menlo Park,
CA 94025
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might observe that, while it does not change shape or
size, it can tumble freely. Leonhard Euler proved two
centuries ago that, however the brick tumbles, each
position can be achieved by a single rotation from a
reference position. [Euler,1752] (Goldstein] The same is
true for any rigid body. (Shattering glass is obviously
not a single rigid body.)

While translations are well animated by using vectors,
rotation animation can be improved by using the
progenitor of vectors, quaternions. Quaternions were
discovered by Sir William Rowan Hamilton in October
of 1843. The moment is well recorded, for he
considered them his most important contribution, the
inspired answer to a fifteen-year search for a successor
to complex numbers. [Hamilton] By an odd quirk of
mathematics, only systems of two, four, or eight
components will multiply as Hamilton desired; triples
had been his stumbling block.

Soon after quaternions were introduced, Arthur Cayley
published a way to describe rotations using the new
multiplication. [Cayley] The notation in his paper so
closely anticipates matrix notation, which he devised
several years later, that it may be taken as a formula
for converting a quaternion to a rotation matrix. It
turas out that the four values making up a quaternion
describe rotation in a natural way: three of them give
the coordinates for the axis of rotation, while the
fourth is determined by the angle rotated through.
[Courant & Hilbert|

Since.. computer graphics leans heavily on vector
operations, it is perhaps easiest to explain quaternions
and rotation matrices in terms of these, reversing
history. However quaternions can stand on their own
as an elegant algebra of space. [Herstein] [Pickert]
[MacLane]

2.2 Rotation matrices

That a tumbling brick does not change size, shape, nor

"handedness” is mathematically expressed as the
preservation of dot products and cross products, since

these measure lengths, angles, and handedness. And
since the determinant of a 3X3 matrix can be computed
as the dot product of one column with the cross
product of the other two, determinants are also
preserved. Symbolically: :

Rot(x,)Rot(2) = 1,1,
Rot(z;)XRot(2,) = Rot(z;Xz,)

det(Rot(2;),Rot(xs),Rot(23)) = det(z,29,125)

An immediate consequence is that orientation changes
must be linear operations, since the preserved
operations are; hence they have a matrix
representation, M. Using the matrix form of a dot
product, z} L2, We can say more precisely that
(M ) (M 25) = 2} 2y, from which it follows that

M M=r.
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That is, the change matrix M is orthogonal; its columns
(and rows) are mutually perpendicular unit magnitude
vectors. Because M must also preserve determinants, it
is a special orthogonal matrix, satisfying

det(‘M) = <+1.

It is well known, and anyhow easy to show, that the
special orthogonal matrices form a group, S0O(3), under
multiplication. [MacLane|[Goldstein|[Misner] In this
rotation group, the inverse of M is just M*, the
opposite rotation.

To illustrate, the matrix

1 0 0
M =10 cosf —sin 8
0 sind coséd

effects a rotation through an angle of 4 around the z

axis. After verifying the properties discussed so far,
note that the diagonal entries sum to 1+2cos §. While
it is too lengthy to show here, the diagonal sum
measures the same quantity for matrices generating
rotation around any axis. [MacLane] :

2.3 Quaternions

Quaternions, like rotations, also form a non-
commutative group under their multiplication, and
these two groups are closely related. [Goldstein]
[Pickert|[Misner| In fact, we can substitute quaternion
multiplication for rotation matrix multiplication, and
do less computing as a result. [Taylor]

To perform quaternion arithmetic, group the four
components into a real part—a scalar, and an
imaginary part—a vector. Addition is easy: add scalar
to scalar and vector to vector. But our major interest
is in multiplication. Start with a.simple case: multiply
two quaternions without real parts, or more precisely,
with zero real parts. The result quaternion has a
vector that is the cross product of the two vector parts,
and a scalar that is their dot product, negated:

g = [(—zy°a0), (2, Xa,)] -

It is certainly convenient to ehcompass both vector
products with a single quaternion product. (One early
lover of quaternion algebra called vector algebra a
"hermaphrodite monster”, since it required two kinds of
product, each yielding a different type of resuit.) If one
quaternion has only a scalar part, with its vector
components all zero, multiplication is just real
multiplication and vector scaling. Combining the two
effects gives the general rule [Brady]:

[s1:21] [52020] = [(s152—22y"20),(8 2o +502, +2,X¥215)] .
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Except for the cross product this looks like complex
multiplication, (a,+ib,)(ao+iby) = (aj8o—b1dy) +
i(a,bg+asb,), as Hamilton intended.t

Quaternions multiply with a cross product because
rotations confound axes. To illustrate , place a book in
front of you, face up, with the top farthest away. Use
this orientation as a reference. Now hold the sides and
flip it toward you onto its face, rotating 180 degrees
around a left-to-right axis, y. Then, keeping it face
down, spin it clockwise 180 degrees around an up-down
z axis. Two rotations around two perpendicular axes;
yet the total change in orientation must be, according
to Euler, a single rotation. Indeed, if you hold the ends
of the spine and flip the book 180 degrees around this
third, outward-pointing, z axis, you should restore the
original orientation. As  quaternions, this s
—anticipating developments ahead— [0,(0,1,0)] times
[0,(0,0,1)] equals [0,(1,0,0)}; the cross product is
essential. '

Notice how quaternion operations give a new
orientation, in "quaternion coordinates”, much as
translations give a position, relative to some starting
reference. A central message of this paper is that
quaternion coordinates are best for interpolating
orientations. For comparison, imagine using spherical
coordinates for translations! Quaternions represent
orientation as a single rotation, just as rectangular
coordinates represent position as a single vector.
Translations combine by adding vectors; rotations, by
multiplying quaternions. The separate axes of
translations don’t interact; the axes of rotations must.
Quaternions preserve this interdependence naturally;
Euler’s angle coordinates ignore it.

2.4 Euler’s angles

Why, then, do so many animators use Euler’s angles?
Mostly, I suspect, because quaternions are unfamiliar.
Unlike Euler’s angles, quaternions are not taught early
in standard math and physics curricula. Certainly
there is a plethora of arguments against angle
coordinates.  Euler’s angle coordinates specify
orientation as a series of three independent rotations
about pre-chosen axes. For example, the orientation of
an airplane is sometimes given as "yaw" (or "heading”)
around a vertical axis, followed by "pitch" around a
horizontal axis through the wings, followed by "roll"
around the nose-to-tail line. These three angles must
be used in exactly the order given because rotations do
not commute. The ordering of rotation axes used is a
matter of convention, as is the particular set of axes,
no matter what the order. For instance some physicists
use the body centered axes z-z-z, in contrast to the
aeronautics z-y-z. At least a dozen different
conventions are possible for which series of axes to use.
[Kane][Goldstein] The geometry of orientations in
Euler’s angle coordinates is contorted, and varies with
choice of inmitial coordinate axes. There is mno

t+ Hamilton wrote. a quaternion as s+iv? +jv?+kv?, with 2=
% = k% = ijk = —1.. The multiplication rules given before are
consequences of this elegant formulation.

reasonable way to "multiply” or otherwise combine two
rotations. Even converting between rotation matrices
and angle coordinates is difficult and expensive,
involving arbitrary assumptions and trigonometric
functions. In their defense, it must be said that they
are handy for solving differential equations—which is
how Euler used them. [Euler,1758]

3. In-betweening alternatives
3.1 Straight line in-betweening

It is not immediately obvious how to in-between even
two rotation keys. What orientations should an object
assume on its journey between them? A natural answer
is: take the first key as a reference, and represent the
second by describing the single rotation that takes you
to it, according to Euler’s theorem. The in-between
orientations should be positioned along that rotation.

If we plot quaternions as points-in four-dimensional
space, the straight lines between them give orientations
interpolating the end points in exactly the above sense.
If we plot Euler's angle coordinates instead, the in-
between orientations will try to twist around three
different axes simultaneously. This angle interpolation
treats the three angles of rotation at each key
orientation as a three-dimensional vector whose
components are interpolated independently from key to
key. Paradoxically, we can not rotate simply except

around the special axes chosen for composition. We
may even encounter so-called "gimbal lock", the loss of

one degree of rotational freedom. Gimbal lock results
from trying to ignore the cross product interaction of
rotations, which can align two of the three axes.
Quaternions are safe from gimbal lock, and so have
been used for years to handle spacecraft, where it is
unacceptable. [Kane][Mitchell]

3.2 How quaternions rotate

Straight lines between quaternions, however, ignore
some of the natural geometry of rotation space. If our
interpolated points were evenly spaced along a line, the
animated rotation would speed up in the middle. To
see why, we must look at how a quaternion converts to
a rotation matrix. We rotate a vector by a quaternion
so: multiply it on the right by the quaternion and on
the left by the inverse of the quaternion, treating the
vector as [0,u].

2 =Rot(z) =q¢lug

Though it is not obvious, the result will always be a
vector, with a zero scalar component. Notice how this
guarantees

Rot(_zzl) ROt(ﬂg) = Rot(.ul 12.2)
which implies that dot and cross products are
preserved, embedded in the quaternion product.

The invexv'sve of a quaternion is obtaihed by negating its
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vector part and dividing both parts by the magnitude
squared. For ¢ = [s,z],

- 1
¢ = ——— [s,—1]; Hall?=s"+az.
Hall?

Because all effects of magnitude are divided out, any
scalar multiple of a quaternion gives the same rotation.
(This kind of behavior is not unknown in computer
graphics; any scalar multiple of a point in homogeneous
coordinates gives the same non-homogeneous point.)

If the scalar part has value w, and the vector part
values z, y, and z, the corresponding matrix can be
worked out to be

1—2y2—2.z2 2ry+2wz  2zz—2wy
M= 2zy —2wz 1—222—222  2yz+2wz
ozz+2wy  2yz—2wz 1—2z2—2y?

when the magnitude w2+:z:2+y2+z2 equals 1. The
magnitude restriction implies that, plotted in four-
dimensional space, these gquaternions lie on a sphere of
radius one. Deeper investigation shows that such unit
quaternions carry the amount of rotation in w, as
cos 0/2, while the vector part points along the rotation
axis with magnitude sin /2. The axis of a rotation is
that line in space which remains unmoved; but notice
that's exactly what happens when scalar multiples of
are rotated by [s,z]. Because the cross product drops
out, multiplication commutes, q"1 meets ¢, mutual
annihilation occurs, and the vector emerges unscathed.
Summing the matrix diagonal leads to the formula
stated for w. The sum equals 4w?~1, but must also be
1+2cos 8. A trig identity, cos 20 = 2 cos? §—1, finishes
the demonstation.

3.3 Great arc in-betweening

This sphere of unit quaternions forms a sub-group, S8,
of the quaternion group. Furthermore, the spherical
metric of S is the same as the angular metric of
SO(3). [Misner| From this it follows that we can rotate
without speeding up by interpolating on the sphere.
Simply plot the two given orientations on the sphere
and draw the great circle arc between them. That arec
is the curve where the sphere intersects a plane through
the two points and the origin. We sped up before
because we were cutting across instead of following the
arc; otherwise the paths of rotation are the same.

A formula for spherical linear interpolation from ¢, to
¢y, With parameter u moving from O to 1, can be

obtained two different ways. From the group structure
we find

Slerp(q1,92;%) = q1(a17 " q2)" ;
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while from the 4-D geometry comest

sin (1—u )8
sin 6

sin uf

Slerp(gy,9954) = —
sin

q, + 92,

whf:re 41°q2 = cos §. The first is simpler for analysis,
while the second is more pragtical for applications.

But animations typically have more than two key poses
to connect, and here even our spherical elaboration of
simple linear interpolation shows flaws. While
orientation changes seamlessly, the direction of rotation
changes abruptly. In mathematical terms, we want
higher order continuity. There are lots of ways to

achieve it—off the sphere; unfortunately we've learned
too much. :

3.4 Rotation geometry and topology

No matter what we do in general quaternion space, the
ultimate effect must be interpreted via the sphere; so
we had best work there in spite of the difficulty. It is
important to grasp this point. The metric structure,
hence the intrinsic geometry, of the rotation group
SO(3) is that of a sphere. Over small regions, meaning
in this case small rotation angles, a sphere looks as if it
is flat. But if we go far enough along a "straight line",
we end up back where we started. What could be more
evident about rotations? Their very essence is moving
in circles. Looking back to the book-turning
experiment, the confounding of axes is like traveling on
a sphere: if we go in some direction to a quarter of the
way around the sphere, turn 90 degrees, travel the
same distance, then turn and travel again, we will
arrive back home, coming in at right angles to the
direction we headed out. Even more revealing, we can
leave the north pole in any direction and end up at the
south pole, just as we can rotate 360 degrees around
any axis and end up oriented the same way.

Local geometry does not, however, determine global
topology. Contradictory though it may seem, the
geometry curves like a sphere, but the topology says
north and south poles are the same! In fact, each pair
of opposite points represents the same rotation. The
reader may preserve sanity through two expedients.
One is to see that this, like homogeneous coordinates, is
geometry under perspective projection. The second is
to  restore spherical topology - by including
"entanglements”. Physically, taking an object with
strings attached and rotating it 360 degrees leaves the
strings tangled; yet—most odd—rotating 720 degrees
does not. [Misner|[Gardner]

Accepting the topological oddity is more useful here,
but it leaves a minor inconvenience. Namely, when
converting an orientation in some foreign form, such as
a matrix, to a quaternion form, which quaternion
should we choose? Which side of the sphere? An
answer that works well is this. Construct a string of
quaternions through which to interpolate by choosing

t Glenn Davis suggested this formula.
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each added quaternion on the side closest to the one
before. Then small changes in orientation will yield
small displacements on the sphere.
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Representing a projective piane
3.5 Splines

We are left with the problem of constructing smooth
curves on spheres. About a hundred years after
quaternions appeared, Isaac Schoenberg published a
two part attack on ballistics and actuarial problems,
using what he called splines. [Schoenberg] Named by
analogy to a draftman’s tool, these are interpolating
curves constructed from cubic polynomial pieces, with
second order continuity between pieces. Cubic splines
solve an integral equation which says to minimize the
total "wiggle" of the curve, as measured by the second
derivative. These interpolants are very popular, and
the equation can be augmented with Lagrange
multipliers to constrain the solution curves to lie on a
sphere [Courant & Hilbert]; yet there are problems.
First, the augmented equation is much more difficult
and expensive to solve. Second, the curve must adjust
everywhere if one of the points changes; that is, we
have no local control.

3.6 Bézier curves

While Schoenberg invented splines based on numerical
analysis, Pierre Bézier invented a class of curves, now
called by his name, based on geometrical ideas. In fact,
he showed how to find points on such a curve by
drawing lines and splitting them in regular proportions.
[Bézier] This is exactly what is needed. We already
know how to do the equivalent—draw great arcs and
proportions of arcs—on a sphere. A complete solution
needs only a little more.

4. Spherical Bézier curves
4.1 Joining curves

Bézier curves go through only their first and last
defining points, but we want to interpolate all our
orientations. The trick is to splice together short
Bézier curves in the manner of splines. Their creator
showed an easy way to do this which guarantees first

order continuity, probably enough for us. As the curve
goes through its end points it is tangent to its end
segments. Line up the segments across a join, match
their lengths, and the curves will piece together
smoothly. If the key orientations are placed at joints,
then each short curve moves us from one key to the
next, because each piece passes through its ends.

Now, although the two segments abutting a curve
junction should match each other, one of the segments
can be chosen freely. These choices determine the axis
and speed of rotation as we pass through the keys.
The burden of choice can be passed to the animator of
course, but automation is feasible, and generally
preferable.

4.2 Choosing joint segments

Spherical linear interpolation gives two conflicting arc

segments at a joint, one on each side. Smooth the

difference with an even compromise, aiming for a point

halfway between where the incoming segment would

proceed, and where the outgoing segment must arrive.}
;w-l

2y
in

Irer .

n-2

Constructing a point Tor tangent

Given successive key quaternions -1y Gny Qn41
interpretted as 4-D unit vectors, the computation for a
segment point @, after g, is

a, = Bisect(Double(g,_1,¢,),¢n+1)

where

Double(p,q) = 2(p+q)g — p ;

Bisect(p,q) = WPi?T
11P+q,,

.

Ehe matching point for the segment before ¢, should
e

bn = Double(a,,g,)

t For the numerically knowledgé;ble, this construction

approximates the derivative at points of a sampled function by
averaging the central differences of the sample sequence.

[Dahlquist & Bjork]
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to ensure a smooth join, regardless of how a, is chosen.

bney

nel

. Splicing Bézier segments together
4.3 Evaluating on the sphere

Everything is now in hand to imitate Bézier's curve
technique. Each short curve is defined by four
quaternions, g, @,, b,,;, ¢,.;. Let the parameter u
vary from O to 1 as the curve departs g towards a,
and arrives at g¢,,, tangent to the arc from by
Spherically interpolate by proportion u between ¢, and
Gn, @, 2and by, b,y and g,., to obtain three new
quaternions. Then interpolate between those to get
two more; and finally interpolate again, reducing to a
single point. Abbreviating Slerp(p,q;u) as (p:q),, the
computation looks like this:

9a gpg))
(8 :p (M), =pfY
a, =p{” (@8 :p (V) =p?

(), =pV (P82 ()e=p =0n1s

bppr=p{® (p{V:pf)) =p{?
() =p Y
qn+I=P(S°)

4.4 Tangents revisited

A simple check proves the curve touches ¢, and ¢,,; at
its ends. A rather challenging differentiation shows it is
tangent there to the segments determined by a, and
by+1- However, as with Béziar's original curve, the
magnitude of the tangent is three times that of the
segment itself. That is, we are spinning three times
faster than spherical interpolation along the are.
Fortunately we can correct the speed by merely
truncating the end segments to one third their original
length, so that ¢, is closer to g, and b,,,; closer to

9n+1-
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bpes= ps(®

3,29,

) (1)
?om= Inew :

Qe = P3¢

Calcviating a Bézier curve point recursively

5. Results
5.1 The grand scheme

What have we ended up with? An animator sits at a
workstation and interactively establishes a sequence of
keys for, say, camera orientation. The interpolating
algorithm does not depend on the nature of the
interface the animator sees; all needed information is
contained in the sequence of keys. Probably the
orientations will be represented internally as matrices,
so a conversion step follows. The matrices are "lifted"”
to a sequence of neighboring quaternions, ¢,, on the
unit sphere. Each quaternion within the sequence will
become the endpoint of two spherical Bézier curves.
Between each quaternion pair, ¢, and g,.;, two

additional points, @, and b,,;, are added to control
motion through the joints. At this point, time becomes
a parameter along the composite curve. As the frame
number increments, the parameter enters and leaves
successive curve pieces. Within each piece a local
version of the parameter is adjusted to run from O to 1.
Now the Bézier geometric construction comes into play,
producing an interpolated quatermion, ¢,.,, from g¢,,
Gny bat1y 9nspy 20d the local parameter, u. Finally the
mint-fresh interpolated quaternion is transmuted into a
matrix, to be used in rotating a list of object vectors
for rendering.

5.2 Properties

A look at one special case is revealing. Suppose all the
points to interpolate are spread along a single arc.
This means they represent different amounts of rotation
around a single axis, in which case quaternion
multiplication commutes. Under these special
conditions, the formula for the curve sections reduces to

Intu = qul-u)a af(l-—u)’l brisgl-ll-.")u2 q::-l

When this is compared to the standard Bézier
polynomial, p,(1—4)® + a,3(1—u)?u + b,,,3(1—u)u® +
dn4+1%° , it is apparent that addition and multiplication
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have become multiplication and exponentiation. Of
course, when the points are not on one are,
commutativity fails, so the formula looks much messier.

In the interesting restricted case when the points are
spaced evenly and consecutively around an arc, the
resulting animation behaves exactly as we would hope:
we get smooth, constant speed rotation around the
appropriate axis. Notice that we can choose any axis
for this rotation. This is clearly preferable to
interpolation with Euler’s angles, where the coordinate
axes are special. A more subtle property of all
quaternion interpolation is that the motion Iis
independent of coordinate axes. So, for example, if we
design a move, then rotate the coordinate system
arbitrarily, the geometry of the motion will not change.
Euler interpolants, unfortunately, will do wildly
different things.

5.3 Applicability

Rotations in space are significantly more complicated
than rotations in a plane. It is easy to deal with the
latter, since only one parameter ‘is involved.
Quaternions are out of place in a plane. Joint control
in robotics simulations has its own highly specialized
body of techniques; and though quaternions have shown
up in the literature, they seem less useful in that
context. [Brady][Taylor] However, B.K.P. Horn has
used a tessellation of the quaternion unit sphere to
identify the orientation of an object from its extended
Gaussian image; a good reference is [Brou]. Non-rigid
motion obviously needs to be handled specially. But for
moving a camera eye-point, and for many kinds of
object motion, quaternion interpolation has strong
advantages.

5.4 Comparisons and complaints

Cost advantages are difficult to estimate. Converting a
matrix to a quaternion requires only one square root
and three divides plus some adds, at worst. Converting
back requires 9 multiplies and 15 adds. While the
conversions don't use trigonometric functions, the arc
proportioning does. For comparison, angle
interpolation requires several trigonometric functions as
well as quite a few multiplies and adds to create each
interpolated matrix. My experience is that the Bézier
scheme is comfortably fast enough for design work,
which is the only time speed has mattered. (If, for
some application, more speed is essential, non-spherical
quaternion splines will undoubtedly be faster than
angle interpolation, while still free of axis bias and
gimbal lock.)

These interpolants are not perfect, of course. Like all
interpolants, they can develop kinks between the
interpolated points. There are simple algorithms for
adding new sequence points to ordinary splines without
altering the original curve [Boehm); they do not work
for this interpolant. And if these curves can be shown
to satisfy some variational principal, it will be by
chance. It is useful to do this, because any solution to
an integral equation like that for splines admits
subdivision [Lane et al]; minimum curvature between

end points implies minimum curvature between
intermediate points as well. Along these lines, Gabriel
and Kajiya, motivated by quaternions, have been
developing a technique to find splines on arbitrary

Reimannian manifolds by solving differential equations.
[Gabriel & Kajiya]

6. Questions

Future research could answer some interesting practical
questions. What are these spherical Bézier curves? Is
there some abstract characterization of them? Or is
there some related interpolant that is well-
characterized? In light of the success of the geometric
adaptation approach, it appears reasonable to apply
the idea to B-splines, which also have a known
geometric evaluation technique. [Gordon & Riesenfeld]
How do spherical B-splines behave? Is it possible to
add new points to a sequence for either kind of curve
without disturbing it? How? Can B-splines be made to
interpolate, not just approximate, with a simple
adjustment of control points? Is there a way to
construct a curve parameterized by arc length? This
would be very useful. What is the best way to allow
varying intervals between sequence points in parameter
space? Abandoning the unit sphere, one could work
with the four-dimensional Euclidean space of arbitrary
quaternions. How do standard interpolation methods
applied there behave when mapped back to matrices?
Note that we now have little guidance in picking the
inverse image for a matrix, and that cusp-free R* paths
do not always project to cusp-free S paths.

However these questions are answered, quaternion
spline interpolants already offer a well-behaved
improvement over traditional techniques. They are
simple to use, simple to implement, robust, efficient,
consistent, and flexible. More research would make
them even more so. .
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Appendiz [—Conversions
1.1 Quaternion to mairiz

Using the restriction that w?4z?+y2+z2=1 for a
quaternion ¢ = [w,(z,y,z)], the formula for the
corresponding matrix is

1—2'y2—-2z'2 2zy 42wz 2zz—2wy
M = 2zy—2wz 1—2z22—272 2yz+2wz |
2z24+2wy  2yz—2wzr 1-2z°-2y°

If the quaternion does not have unit magnitude, an
additional 4 multiplies and divides, 3 adds, and a
square root will normalize it. (For the matrix
conversion, the square root can be avoided in favor of
divides if desirable.) Now we can obtain the operation
count for creating the matrix. Most terms of the
entries are a product of two factors, one of which is
doubled. So we proceed as follows. First double z, vy,
and z, and form their products with w, z, y, and =z.
That will take 3 adds and 9 multiplies. Then form the
sum for each of the 9 entries using 1 add each, plus an
extra add for each of the 3 diagonal elements, for a
total of 12 adds. Thus 9 multiplies and 15 adds suffice
to convert a unit quaternion to a matrix.

1.2 Matriz to quaternion

An efficient way to determine quaternion components
w, z, ¥, z from a matrix is to use linear combinations
of the entries M,,,. Notice that the diagonal entries
are formed from the squares of the quaternion
components, while off-diagonal entries are the sum of a
symmetric and a skew-symmetric part. Thus linear
combinations of the diagonal entries will isolate squares
of components; sums and differences of opposite off-
diagonal entries will isolate products among z, y, and 2
and products with w. Using off-diagonals risks dividing
by a component that may be zero, or within € (the
machine precision) of zero. However we can avoid that
pitfall, and easily compute all components as follows.

0¥ = 1/4 (1 + My + My + M)

wi>e?
TRUE FALSE
U-:wz w =0

T =My =My) /4w | 22 m =172 (Mo + M.
y = (M = M) /4w [— 22 Mol

2= (M — My) [ 4w 2 >e?
TRUE FALSE
z -Vt z =0
y=Mp,/[/2z v =1/2(1 = My)
z=My /22
¥ >e?
TRUE FALSE
v =Vy* y =0

z =M,y /2y Lz=1

No more than one square root, three divides, and a few
adds and binary scales are required for any conversion.

I3 Euler angles to quaternion

There are twelve possible axis conventions for Euler
angles. The one used here is roll, pitch, and yaw, as
used in aeronautics. A general rotation is obtained by
first yawing around the z axis by an angle of ¢, then
pitching around the y axis by 6, and finally rolling
around the x axis by 4. Using the way quaternion
components describe a rotation, we first obtain a
quaternion for each simple rotation.

drot = [COS %;(Sin %yoyo)]
[ . 8
Tpiteh = [COS ;:(07513 E’yo)]

dyaw = [cos %,(0,0,Sin -g)]

Multiplying these together in the right order gives the
desired quaternion ¢ = 9yaw Tpiteh 9roil» With components

w = cos 1é,“cos -g-cos x:] + sin isin isin k4

2 2
z = sin -;Qcos %cos % — cos -;Iisin gsin -g
¥y = cos lé’-sin —g-cos % =+ sin -;jicos %sin-éé
z = cos lé’-cos -g—sin -g- — sin %sin —Z-cos -gl

L4 Euler angles to matriz

Combining the results of the previous two conversions
gives .

M=

cos dcos & cos Gsin ¢ —sin 8
sin ¥sin fcos —cos Psin ¢ sin Psin sin d-+cosPeosf cos bsin P 5
cos Psin feos ¢-+sin Ysin @ cos Psin fsin d—sin Yeos § cos feos P

where ¥, 0, and ¢ are the angles of roll, pitch, and yaw,
respectively.

L5 Matriz to Euler angles

While converting a matrix to a unit quaternion only
involves the sign ambiguity of square roots, converting
to Euler angles involves inverse trigonometric functions,
as we can only directly determine the sin’s and cos’s of
the angles. Some convention, such as principle angles,
must be adopted. However interpolation paths will
vary greatly, depending on choice of angles. Setting
that problem aside, here’s a way to extract the sin’s
and cos’s. Looking at the previous equation, sind can
be read off directly as —M,;. Use the trigonometric
identity cos® = +V1—sin’4 to compute cosf to within
a sign, which is the best we can do. Assuming cosd is
not zero, obtain the sin’s and cos’s of the other angles
from
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sin9 = "M13
cosf = V1—sin®l
sinyd = Mgz [ cosd

cos = Maz [ cosd

I

Sin¢ M12/0050

cosp = M, [/ cosf

If cos§ is zero, then we must avoid dividing by zero. It
also becomes impossible to distinguish roll from yaw.
Adopting the convention that the yaw angle ¢ is O
allows

sin ‘l,b = —-M 32
COos ‘¢' = M 22
sing = 0

cosp = 1

From these values a two argument tan™! will give
angles between —7 and +m, or 0 and 2m, or some other
conventional range; take your pick. (For a faster
conversion, just compute, say, sin~! and check the sign
of the cosine term with respect to cosf.) Because of
the uncertainties of square roots, inverse trigonometric
functions, and yaw-roll separation, matrix to Euler
angle conversion is inherently very ill-defined.

L6 Quaternion to Euler angles

Use the most straight-forward approach: convert the
quaternion to a matrix, then the matrix to Euler
angles. Of course it is unnecessary to compute matrix
elements that are never used. This conversion is also
unavoidably ill-defined, as quaternions contain no more
information about angles than matrices do.
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