Lecture 2 - Number Representations, Fundamental DSP Concepts

James Barnes (James.Barnes@colostate.edu)

Spring 2014
Number Representations

- DSK Hardware
- C6713 DSP Chip
- A C Program to Generate a Sine Wave
- The DSP Idea - Sampling, Digital Processing, and Reconstruction
- Intro to C Language
- Data Types
- Fixed Point “Hazards”: Overflow

Representing Analog Signals with Numbers

Fundamental DSP Concepts - Sampling and Reconstruction

Quantization
FIGURE 1.1. TMS320C6713-based DSK board: (a) board; (b) diagram. (Courtesy of Texas Instruments)
/* This project uses support files generated by Rulph Chassaing
 Comm routines included in C6xdskinit.c */
#include "dsk6713_aic23.h" // needed to access codec functions
#include <math.h> // needed for sin(*) function
#define PI 3.14159265359 // define the constant PI
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; // sampling frequency of codec
float f0=1000; // generated sinusoid frequency
float fs_float=8000; // needed for calculating offset
float angle=0; // sin() argument in radians
float offset; // sin() argument change per sample period
short amp=20; // sine amplitude scaling factor
short sine_value; // value sent to codec

interrupt void c_int11() // interrupt service routine
{
 offset=2*PI*f0/fs_float; // set offset value
 angle = angle + offset; // previous angle plus offset
 if (angle > 2*PI) // reset angle if > 2*PI
 angle = 2*PI;
 sine_value=(short)1000*amp*sin(angle); // calculate current output sample
 output_left_sample(sine_value); // output each sine value
 return; // return from interrupt
}

void main()
{
 comm_intr(); // init DSK, codec, SP0 for interrupts
 while(1); // wait for an interrupt to occur
}
The DSP Idea - Sampling, Digital Processing, and Reconstruction

Analog System

\[x(t) \overset{\text{filter}}{\rightarrow} y(t) \]

\[H(s), h(t) \]

DSP System

\[x(t) \overset{\text{ADC}}{\rightarrow} x[n] \overset{\text{DSP processor}}{\rightarrow} y[n] \overset{\text{DAC}}{\rightarrow} y(t) \]

\[H(z), h[n] \]
Intro to C Language Data Types

Ref: (Tretter, on E-reserve)

- **short** - 16b signed (default) or unsigned (unsigned short). Most useful for the DSK because we have a 16b ADC/DAC (codec)
- **int, uint, uint32** - 32b integer (signed or unsigned).
- **float and double** - 32b and 64b IEEE floating point signed number type.
 - float gives 6-8 decimal places of precision, double 15-17 dec places.
- **Integers** *(short, int)* used in fixed-point arithmetic.
 - 2’s complement representation for signed numbers
 - There is no explicit radix point in the number representation – user must keep track. Commonly, the radix point is imagined to lie to the left of the MSB for unsigned integer, to the right of the sign bit for signed.
 - Arithmetic operations (+, X) can move the radix point.
Overflow behavior is different for unsigned and signed numbers. Consider 4 bit unsigned and signed numbers (not a standard C data type):

- Can't do subtraction with both operands unsigned.
- For addition, wraparound occurs when carryout occurs. Strictly speaking, not "overflow" but gives unexpected results when carryout not considered.

Test for overflow (works for both signed and unsigned numbers):

- a and b are positive and the sum $(a + b)$ is negative, or
- a and b are negative and the sum $(a + b)$ is positive.
Representing Analog Signals with Numbers

- Phasor Representation of Sine Function
- Implications of Phasor Representation

Fundamental DSP Concepts - Sampling and Reconstruction

Quantization

Representing Analog Signals with Numbers
Phasor Representation of Sine Function

- **Continuous Time Function**: \(y(t) = A_o \sin(\theta(t)) = A_o \sin(2\pi f_0 t + \phi) \)
- **Discrete Time Sequence**: \(y[n] = A_o \sin(\theta[n]) = A_o \sin(2\pi \frac{f_0}{F_s} n + \phi) \)
Implications of Phasor Representation

- f_0/F_s is often defined as the discrete-time frequency. This is the fraction of the circle per sample point. It is a unit-less fraction of the sampling frequency.

 - Nyquist Criteria limits f_s/F_s to the range -0.5 to 0.5; frequencies outside this range are aliased into the range [-0.5,0.5]

- What about a non-integer divisor f_0/F_s, i.e. 1/4.5?

- What about finite precision in computing $2\pi f_0/F_s n$?
Fundamental DSP Concepts - Sampling and Reconstruction

Number Representations

Representing Analog Signals with Numbers

Fundamental DSP Concepts - Sampling and Reconstruction

- The DSP Idea - Sampling, Digital Processing, and Reconstruction
- The Sampling Problem
- Sampling as Multiplication with the Comb ("Shah") Function
- Properties of the Continuous-time Delta Function
- Sampled Signal Frequency Domain Representation
- Sampled Signal Frequency Spectrum
- Reconstruction Filter Requirements
- Shannon-Whitaker Theorem

Quantization
The sampling problem can be stated: "Under what conditions will \(\hat{x}(t) = x(t) \)". The Shannon-Whitaker Theorem will tell us that.

- We can ignore the Quantizer Q because it can be modeled as a white noise source which can have minimal impact with a sufficient number of bits (later). Without the Quantizer, can drop the DAC.
- Note that \(x_s(t) \) is a continuous time signal but only defined at times \(nT_s \) (we don’t know what the value of \(x(t) \) is between sample times. In this analysis, assume \(x_s(t) \) is zero between sampling points, as would be the case in a physical circuit with a weak pulldown resistor to ground.
Model sampling as multiplication with the Comb or "Shah" function

\[x_s(t) = x(t) \sum_{n=\infty}^{\infty} \delta(t - nT_s) \], where \(\delta(t) \) is the Dirac delta function.

Note that \(x_s(t) \) is still a continuous function, but all the information is contained within a set of discrete time points.
Properties of the Continuous-time Delta Function

- $\delta(\tau) = 0$ for $\tau \neq 0$, undefined at $\tau = 0$
- $\int_{-\epsilon}^{\epsilon} \delta(\tau) d\tau = 1$ for $\epsilon > 0$
- "Infinite height, zero width, unit area”
- Not really a true function. Actually defined as a distribution.
- Also called the "sifting function" : \[\int_{-\infty}^{\infty} x(t) \delta(t - T_0) dt = x(T_0) \]
Comparing the frequency domain representation of $x_s(t)$ with $x(t)$ will tell us what reconstruction filter needed so that $\hat{x}(t) = x(t)$.

Convolution Theorem: $x_s(t) = x(t)s(t) \iff X_s(f) = X(f) \otimes S(f)$, where \otimes is the convolution operator.

To perform the convolution, we need the Fourier Transform $S(f)$ of the Shah Function. It can be shown that

$$S(f) = F_s \sum_{n=-\infty}^{\infty} \delta(f + nF_s).$$ \hspace{1cm} (1)

See http://www.engr.colostate.edu/ECE423/docs/ftrans_sample_fn.pdf.
\[X_s(f) = X(f) \otimes S(f) \]
\[= \int_{-\infty}^{\infty} X(f)S(f + f')df' \]
\[= F_s \int_{-\infty}^{\infty} X(f) \sum_{n=-\infty}^{\infty} \delta(f + nF_s + f')df' \]
\[= F_s \sum_{n=-\infty}^{\infty} X(f + nF_s) \]

Therefore, sampling produces an infinite number of replicas (“images”) of the unsampled spectrum, spaced \(F_s \) apart. The original spectrum is periodically-extended.
Reconstruction Filter Requirements

- If the images can be filtered out, the original spectrum can be recovered and therefore the original signal through inverse Fourier Transform. This is the job of the reconstruction filter.
- The ideal reconstruction filter is a brick wall filter of width \([-F_s/2, F_s/2]\) and height \(\frac{1}{F_s}\), with unit area.
- The output \(\hat{X}(f)\) of the sampled signal AFTER reconstruction filter is:

\[
\hat{X}(f) = \begin{cases}
\frac{1}{F_s} X_s(f) & |F| \leq F_s/2 \\
0 & |F| > F_s/2
\end{cases}
\]

(3)
Shannon-Whitaker Theorem

Get $\hat{x}(t)$ by inverse transform of $\hat{X}(f)$, taking into account the effect of the reconstruction filter:

$$\hat{x}(t) = 1/F_s \int_{-F_s/2}^{F_s/2} X_s(f) e^{j2\pi ft} df$$

But $X_s(f)$ is periodic in frequency with period F_s, and therefore can be expanded as a Fourier Series:

$$X_s(f) = F_s \sum_{n=-\infty}^{\infty} c_n e^{-j2\pi nf/F_s}$$

where $c_n = x[n] = x(nT_s)$. From this we get

$$\hat{x}(t) = \int_{-F_s/2}^{F_s/2} \left[\sum_{n=-\infty}^{\infty} x(nT_s) e^{-j2\pi nf/F_s} \right] e^{j2\pi ft} df$$

$$= \sum_{n=-\infty}^{\infty} x(nT_s) \frac{\sin(\pi F_s(t - n/F_s))}{\pi F_s(t - n/F_s)}$$

(4)
Quantization
Quantization: Irreversible Information Loss

- Divide voltage range V_R into 2^M levels. $M = \#$ of bits.
- Least Significant Bit (LSB) $\Delta = V_R / 2^M$
- For DSK, $\Delta = 3.3 / 65536 = 50 \mu V$