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Outline

¢ Communication Basics

AM: amplitude modulation

e DSB-SC: double sideband - suppressed carrier
e QAM: quadrature amplitude modulation

e SSB: single sideband
Reference:

o Tretter Chapters 5-8 (being put on e-reserve),

o Haykin, Communication Systems, Third Edition
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Basics

The information we wish to send is in the form of a real signal (for example,
voice). Some properties of real signals:
Fourier Transform:

o) = [~ Gpeay @
Then for real ¢(t), we have g(t) = g;:), and
/ G*(f)e?*™tdf = / G (—f") e 72mItqy (2)
So for real g(t), G*(—f) = G(f), or
GO =G, 6(=f) =0(). (3)

Furthermore, for real, symmetric g(t) = g(—t), the above become

G*(f) =G(f) =G(=f), ©(f)=0, (4)

l.e. G(f) is real and symmetric about f = 0.
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Modulation Theorem

|f
m(t) < M(f), (5)
then
m(t)e’?met SETM(f - fe) (6)
and
m(t)e 2Tt STTM(f + fe), (7)

This is easily shown from the definition of Fourier Transform. Adding the two, we
get

m(t)eos(2m fot) <77 SIM(f — fo) + M(f + 1.)] ®)

So modulating m(t) by the cosine function produces two frequency-shifted
Images of the original baseband signal. This is the basis for DSB-SC.
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Hilbert Transform

Ref. Haykin.
We use the Fourier Transform to separate out signals according to frequency:
G(f). The Hilbert Transform plays a similar role for phase.

§(t) = = /OO o) ——dr = g(t)  ~. ©)

oo t—r Tt

Convolution in time domain = multiplication in frequency domain. We also know
that L —F7T —jsgn(f), so can write above in frequency domain:

G(f) = —jsgn(f) G(f). (10)
Importance of HT:

1. Used to realize phase selectivity (SSB Modulation/Demodulation);

2. Math basis for realizing bandpass signals.
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Hilbert Transform (2)

Example:

g(t) = cos(2mfet) =" G(f) = %

Then using egn(10) above,

GUP) = ~LI(7 — Fe) +8(F + 1) sam(f)

A A

Glf) = 2%.[5(]" L) = 8(F + £o) =T glt) = sin(2nf.t)

So the HT changes cosines into sines. Equivalent to 90° phase shift.

O(f = fe)+o(f + [fo)]-

(11)

(12)

(13)
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Some Properties of Hilbert Transform

A

1. Signals ¢(t) and ¢(t) have the same amplitude spectrum. HT operates on
phase only

2. g(t) = —g(t). Easily shown by noting that two HTs applied in series is
equivalent to 180° degree phase shift, which is equivalent to multiplying by
-1.

3. g(t) and ¢(t) are othogonal: 7 g(t) g(t)dt = 0.
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Analytic Signals — Baseband

Let g(t) be a real baseband signal. Then it will have an amplitude spectrum
symmetric about f=0:

We can form two complex representations of g(t) using Hilbert Transforms:

A

g+ (t) = g(t) +jg(t), (14)

g-(t) = g(t) — jg(t). (15)
g (t) is called the positive pre-envelope of g(t) and ¢g_ () is the negative

pre-envelope. Note that g_(t) = g% (t). We can express g(t) in terms of the +
envelopes:

1

9(t) = 5lg+ () +g-(1)]. (16)

These split the amplitude spectrum G( f) into two components G (f) and G_(f)
which are scaled pieces of the original spectrum having only positive and
negative frequencies, respectively.
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Analytic Signals — Baseband (2)

IG(f)]
1G(O0)
0
2W |
|G-(F)| |G+(f)|
2/G(0)] G0
W 0w
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Analytic Signals — Passband

We do the same for a real passband signal. This has a symmetric amplitude
spectrum with two (typically narrowband) components centered about +f.., the
carrier frequency.

We can write o
g(t) = Re{g(t)e”"/"}. (17)

g(t) is called the complex envelope of g(t). In terms of the pre-envelopes, we can
write
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Analytic Signals — Passband (2)

The complex envelope can be split into two components: the in-phase and
guadrature components:

~

g9(t) = gr(t) + jgq(t). (19)

Substituting (19) back into (17), we can write g(t) in terms of in-phase and
guadrature components (canonical form):

g(t) = g1 (t)cos(2m f.t) — go(t)sin(2r f.t) (20)
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Analytic Signals — Passband (3)

IG(F)|

2VV4> 2VV4>
‘ N — IG(fe) ‘
-fc / O \ fC
2W 2W
fffffffffffffffffffffffffffffffffffff G () o -
2|G(fc)|
-fc \O‘ j/ fc
|G(f)]
*************** Sy
_ 2W .
| |
0

Colorado State University Dept of Electrical and Computer Engineering ECE423 - 12/ 22



Amplitude Modulation

First form of modulation (early radio). Simple, especially receiver (crystal set).
Least efficient at using radiated power and spectrum.

Start with a carrier signal ¢(t) = A.cos(2w f.t). The real radiated signal s(t) given
by:

s(t) = Al + kgm(t)]cos(2m f.t), (21)

where m(t) is the message (baseband audio signal) and k,is a constant called
the amplitude sensitivity of the modulator. To avoid "over-modulation”, a form of
distortion, must have |k, m(t)| < 1V t.

Taking the Fourier Transform of (22), we have:

S(F) = S0 — 1) + 80 + Fl + MG~ f) 4 MU+ L)) (22)

The first bracketed term represents the carrier power (basically wasted) and the
second term the two sideband power components, which is where the useful
Information is.
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Amplitude Modulation (2)

IM(f)]

A8(f+1)]2 1S(f)] A.8(f=f)12
A 0 A
k,A.M(0)/2
fc
-fc 0
2W
-
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Amplitude Modulation (3)

Single-tone example:
Let m(t) = A,,cos(27 f,,t). Then s(t) is given by:

s(t) = Al + pcos(2m fot)cos(2m ft)], (23)
where n = k, A,,is called the modulation factor. Must have |u| < 1.
By taking Fourier Transform (see Haykin), the average signal power is
o Carrier power = 1 A2
o Upper side-frequency power = lower side-frequency power = %MQAE,

=-the sidebands can never get more that 33% of the total radiated power.
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Amplitude Modulation (4)

I
| h le

i

. 4

s
=1 —_——
=1 e

Colorado State University Dept of Electrical and Computer Engineering ECE423 - 16/ 22



Amplitude Modulation — Detection

Simple envelope detectors can be used, based on rectifying or squaring the

signal to eliminate the carrier. From (21),

s2(t) = A2[1 + kom(t)]?[e??™ et 4 emI2m )2 /g, (24)

or

s2(1) = AZ[1 + kam())*[1 + cos(4rm f.t)]/2. (25)

The cosine term can be filtered out with a low pass filter, and the filter output
passed through a square root circuit to recover m(t). Notice that the carrier
produces a DC offset which can be eliminated with capacitive coupling (high

pass filtering).

signal
4& [T

LPF

HPF

DAC

—> K m(?)
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Double Side Band - Suppressed Carrier

A DSB-modulated signal has the following form:

s(t) = c(t)m(t) = Accos(2m fot)m(t). (26)

Every time m(t) crosses 0, s(t) undergoes a phase reversal. The spectrum of a
DSB-SC signal has NO carrier component.

I

L h |
T
|

rh |H
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Demodulating DSB-SC

All suppressed-carrier technigues require more elaboration detection than simple
envelope detection — "coherent” detection. The principle is shown in the figure

below:

LPF

A',cos(2m f 1+ )

Local
Oscillator

v (1)
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Demodulating DSB-SC (2)

From the previous figure:
v(t) = AL cos(2m fot + ¢)s(t) (27)

Substituting for s(t) using eqn(26) and multiplying out, we get
o(t) = 5 AcALfcos(dm et + 6) + cos(6)}m(). (28)
The LPF eliminates the first cosine term in brackets and the output is:
(1) = 5 AcAL cos(@m(). (29)

We need a control loop to maintain ¢ = 0: a PLL.
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Costas Receiver Block Diagram
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Digital Costas Receiver — From Lab7 Notes

O
received = = > DAC —> m()
signal i ! i ! ¢,[n] :
> —
BPF >-jsgn(a>)-;---L>@----l ----------------- )
s[n] S[n] " c,[n] E ;
. Hilbert ! A S ! o]
Transformer E
' e—j¢[n]
o0 ol] p - e
1-z"
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d[n]
Z_l + )€ + a <
$[n]
Phase Discriminator
AO

Voltage Controlled Oscillator (VCO)
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