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● Communication Basics

● AM: amplitude modulation

● DSB-SC: double sideband - suppressed carrier

● QAM: quadrature amplitude modulation

● SSB: single sideband

Reference:

● Tretter Chapters 5-8 (being put on e-reserve),

● Haykin, Communication Systems, Third Edition



Basics

Colorado State University Dept of Electrical and Computer Engineering ECE423 – 3 / 22

The information we wish to send is in the form of a real signal (for example,
voice). Some properties of real signals:
Fourier Transform:

g(t) =

∫
∞

−∞

G(f) e−j2πftdf. (1)

Then for real g(t), we have g(t) = g∗(t), and

g∗(t) =

∫
∞

−∞

G∗(f) ej2πftdf =

∫
∞

−∞

G∗(−f ′) e−j2πf ′tdf ′. (2)

So for real g(t), G∗(−f) = G(f), or

|G(f)| = |G(−f)|, Θ(−f) = Θ(f). (3)

Furthermore, for real, symmetric g(t) = g(−t), the above become

G∗(f) = G(f) = G(−f), Θ(f) = 0, (4)

i.e. G(f) is real and symmetric about f = 0.



Modulation Theorem
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If

m(t) ↔FT M(f), (5)

then
m(t)ej2πfct ↔FT M(f − fc) (6)

and
m(t)e−j2πfct ↔FT M(f + fc). (7)

This is easily shown from the definition of Fourier Transform. Adding the two, we
get

m(t)cos(2πfct) ↔
FT 1

2
[M(f − fc) + M(f + fc)]. (8)

So modulating m(t) by the cosine function produces two frequency-shifted
images of the original baseband signal. This is the basis for DSB-SC.



Hilbert Transform
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Ref: Haykin.
We use the Fourier Transform to separate out signals according to frequency:
G(f). The Hilbert Transform plays a similar role for phase.

ĝ(t) =
1

π

∫
∞

−∞

g(t)
1

t − τ
dτ = g(t) ∗

1

πt
. (9)

Convolution in time domain ≡ multiplication in frequency domain. We also know
that 1

πt
↔FT −jsgn(f), so can write above in frequency domain:

ˆG(f) = −jsgn(f) G(f). (10)

Importance of HT:

1. Used to realize phase selectivity (SSB Modulation/Demodulation);

2. Math basis for realizing bandpass signals.



Hilbert Transform (2)
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Example:

g(t) = cos(2πfct) ↔
FT G(f) =

1

2
[δ(f − fc) + δ(f + fc)]. (11)

Then using eqn(10) above,

ˆG(f) = −
j

2
[δ(f − fc) + δ(f + fc)] sgn(f) (12)

ˆG(f) =
1

2j
[δ(f − fc) − δ(f + fc) ↔

FT ˆg(t) = sin(2πfct) (13)

So the HT changes cosines into sines. Equivalent to 90◦ phase shift.



Some Properties of Hilbert Transform
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1. Signals g(t) and ˆg(t) have the same amplitude spectrum. HT operates on
phase only

2.
ˆ̂

g(t) = −g(t). Easily shown by noting that two HTs applied in series is
equivalent to 180◦ degree phase shift, which is equivalent to multiplying by
-1.

3. g(t) and ˆg(t) are othogonal:
∫
∞

−∞
g(t) ˆg(t)dt = 0.



Analytic Signals – Baseband
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Let g(t) be a real baseband signal. Then it will have an amplitude spectrum
symmetric about f=0:

We can form two complex representations of g(t) using Hilbert Transforms:

g+(t) = g(t) + j ˆg(t), (14)

g−(t) = g(t) − j ˆg(t), (15)

g+(t) is called the positive pre-envelope of g(t) and g−(t) is the negative
pre-envelope. Note that g−(t) = g∗+(t). We can express g(t) in terms of the ±
envelopes:

g(t) =
1

2
[g+(t) + g−(t)]. (16)

These split the amplitude spectrum G(f) into two components G+(f) and G−(f)
which are scaled pieces of the original spectrum having only positive and
negative frequencies, respectively.



Analytic Signals – Baseband (2)
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Analytic Signals – Passband
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We do the same for a real passband signal. This has a symmetric amplitude
spectrum with two (typically narrowband) components centered about ±fc, the
carrier frequency.

We can write
g(t) = Re{ ˜g(t)ej2πfct}. (17)

˜g(t) is called the complex envelope of g(t). In terms of the pre-envelopes, we can
write

g+(t) = ˜g(t)ej2πfct, g−(t) = ( ˜g(t))∗e−2πfct, g(t) =
1

2
[g+(t) + g−(t)]. (18)



Analytic Signals – Passband (2)
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The complex envelope can be split into two components: the in-phase and
quadrature components:

˜g(t) = gI(t) + jgQ(t). (19)

Substituting (19) back into (17), we can write g(t) in terms of in-phase and
quadrature components (canonical form):

g(t) = gI(t)cos(2πfct) − gQ(t)sin(2πfct) (20)



Analytic Signals – Passband (3)
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Amplitude Modulation
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First form of modulation (early radio). Simple, especially receiver (crystal set).
Least efficient at using radiated power and spectrum.

Start with a carrier signal c(t) = Accos(2πfct). The real radiated signal s(t) given
by:

s(t) = Ac[1 + kam(t)]cos(2πfct), (21)

where m(t) is the message (baseband audio signal) and kais a constant called
the amplitude sensitivity of the modulator. To avoid ”over-modulation”, a form of
distortion, must have |kam(t)| < 1 ∀ t.
Taking the Fourier Transform of (22), we have:

S(f) =
Ac

2
[δ(f − fc) + δ(f + fc)] +

kaAc

2
[M(f − fc) + M(f + fc)]. (22)

The first bracketed term represents the carrier power (basically wasted) and the
second term the two sideband power components, which is where the useful
information is.



Amplitude Modulation (2)
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Amplitude Modulation (3)

Colorado State University Dept of Electrical and Computer Engineering ECE423 – 15 / 22

Single-tone example:

Let m(t) = Amcos(2πfmt). Then s(t) is given by:

s(t) = Ac[1 + µcos(2πfct)cos(2πfct)], (23)

where µ = kaAmis called the modulation factor. Must have |µ| < 1.

By taking Fourier Transform (see Haykin), the average signal power is

● Carrier power = 1

2
A2

c

● Upper side-frequency power = lower side-frequency power = 1

8
µ2A2

c ,

⇒the sidebands can never get more that 33% of the total radiated power.



Amplitude Modulation (4)
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Amplitude Modulation – Detection
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Simple envelope detectors can be used, based on rectifying or squaring the
signal to eliminate the carrier. From (21),

s2(t) = A2
c [1 + kam(t)]2[ej2πfct + e−j2πfct]2/4, (24)

or
s2(t) = A2

c [1 + kam(t)]2[1 + cos(4πfct)]/2. (25)

The cosine term can be filtered out with a low pass filter, and the filter output
passed through a square root circuit to recover m(t). Notice that the carrier
produces a DC offset which can be eliminated with capacitive coupling (high
pass filtering).

[·]
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LPF ][ HPF

received 

signal 

K m(t)DAC

nts



Double Side Band - Suppressed Carrier
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A DSB-modulated signal has the following form:

s(t) = c(t)m(t) = Accos(2πfct)m(t). (26)

Every time m(t) crosses 0, s(t) undergoes a phase reversal. The spectrum of a
DSB-SC signal has NO carrier component.



Demodulating DSB-SC
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All suppressed-carrier techniques require more elaboration detection than simple
envelope detection – ”coherent” detection. The principle is shown in the figure
below:



Demodulating DSB-SC (2)
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From the previous figure:

v(t) = A′

c cos(2πfct + φ)s(t) (27)

Substituting for s(t) using eqn(26) and multiplying out, we get

v(t) =
1

2
AcA

′

c[cos(4πfct + φ) + cos(φ)]m(t). (28)

The LPF eliminates the first cosine term in brackets and the output is:

vo(t) =
1

2
AcA

′

c cos(φ)m(t). (29)

We need a control loop to maintain φ = 0: a PLL.



Costas Receiver Block Diagram
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Digital Costas Receiver – From Lab7 Notes
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