

ECE 423 Real-Time DSP Laboratory 2 Page 1

ECE423

Real-Time DSP Laboratory 2:

Signals and Systems on the TMS320C6711

Name1

Name2

Date

ECE 423 Real-Time DSP Laboratory 2 Page 2

Introduction

 The purpose of this lab is to explore the effects of a Low Pass filter (Anti-Aliasing

Filter) following the onboard codec when sampling and reconstructing a square wave in a

straight wire manner. The straight wire (A/D feed to D/A) code will then be modified to

implement a simple difference equation and the characteristics of the filter created will be

explored. Then the lab will utilize the PCM 3003 daughter card and the generation of

phase offset sinusoids and how to display them on an oscilloscope using the XY mode.

Whereas the onboard mono codec is capable of a 8kHz sampling rate, the PCM3003 is a

stereo codec set to sample at 24 kHz but capable of sampling up to 72 kHz. A program to

add N sinusoids will be examined to show the effects of interference. Then a program to

show the subtle beating effects of adding two sinusoids just slightly off in frequency from

one another will be written and examined.

Part 1: straight wire.c

 This first section of the lab focuses on the C program straight wire.c

which was downloaded from the ECE423 class website and imported into CCS. The code

in straight wire.c is shown in figure 1 below with all lines of code numbered.

straight wire.c
01. // This project uses support files generated by Rulph Chassaing

02. // Comm routines included in C6xdskinit.c

03.

04. interrupt void c_int11() // interrupt service routine

05. {

06. output_sample(input_sample()); // Take the input from the codec and feed it back out

07. return; //return from interrupt

08. }

09.

10. void main() // Main body of code

11. {

12. comm_intr(); // initialize DSK, codec, McBSP for interrupts

13. while(1); // wait for an interrupt to occur (Infinite loop)

14. }

Figure 1 Line numbered code for straight wire.c

This program sets up the DSK, codec and McBSP for interrupts and then waits for the 8

kHz interrupts. As the interrupts are occurring at an 8 kHz rate, samples are taken from

the A/D converter and then sent immediately to the D/A converter to simulate a digital

straight wire.

Assignment 1:

Sampling at 8KHz has its limitations. The sampling theorem states that the sampling

frequency for a give signal must be at least 2 times higher than any frequency of interest

in the signal. If the sampling frequency becomes any less than 2x the signal frequency,

ECE 423 Real-Time DSP Laboratory 2 Page 3

then aliasing occurs. Therefore, the highest frequency at which a signal can be

successfully sampled is fs/2 and is dubbed the Nyquist Frequency.

Using straight wire.c to sample a square wave and changing the frequency f0 from

300Hz to 1.3 kHz, results in a square wave changing into a sine wave on the oscilloscope.

This behavior can be explained from both a frequency-based and a time-based

perspective.

The Fourier series expansion of a square wave is a series of odd harmonic sine

waves with diminishing amplitude versus frequency as shown in Equation 1. Figure 2

shows the fourier series of a 500Hz square wave. The Square wave looks mostly square

due to the addition of three higher frequency harmonics. Figure 3 shows the FFT of a

1KHz sine wave sampled at fs=8KHz. The DSK’s codec has a low-pass filter at ~3.6KHz,

so the only part of the FFT that will make it through to the oscilloscope is the 1 and 3

kHz information from the sine wave. The square wave edges are more rounded because

the filter has stopped most of the higher ordered harmonics.

If

1)1()(2)(−

 −−=
L

x
H

L

x
Hxf

 the Fourier series is

)sin(
14

,...5,3,1 L

xn

nn

π
π ∑

∞

=
 (1)

Figure 2 FFT of 500 Hz square wave sampled at 8KHz. Only four sine waves from the square wave’s

fourier series are passed by the LPF. The fifth at 4500 Hz is filtered out, slightly reducing the sharp

edges of the square wave.

ECE 423 Real-Time DSP Laboratory 2 Page 4

Figure 3 FFT of 1.0 KHz square wave sampled at 8KHz. Only two sine waves from the square wave’s

fourier series are passed by the LPF. The square waves edges are more rounded.

Figure 4 FFT of 1.3 KHz square wave sampled at 8KHz. Only a single sine wave from the square

wave’s fourier series is passed by the LPF.

Figure 4 shows the FFT of a 1.3KHz square wave. Only the 1.3 kHz sine wave of the

square wave fourier series makes it through the Low Pass filter. The third harmonic

frequency of the square wave fourier series has moved beyond the cutoff of the LPF and

now only a pure sine wave due to the fundamental frequency is shown on the

oscilloscope.

Assignment 2a:

 For assignment 2 part a, the code from straight_wire.c was modified to add the

variable vgain to allow the adjustment for unity gain. Note on line 6 that the variable is of

data type float so that non-integer values can be used. The other modification is in line 11

where the vgain variable is multiplied times the cur_sample variable and then the entire

sample value is cast to data type short before being outputted to the codec.

straight_wire.c modified to add unity gain variable
1. // This project uses support files generated by Rulph Chassaing

2. // Comm routines included in C6xdskinit.c

3. // Modified by

4.

5. short cur_sample; // variable to store current sample

6. float vgain=1.0; // variable to allow adjustment for unity gain

7.

8. interrupt void c_int11() // interrupt service routine

9. {

10. cur_sample=input_sample(); //retrieve current sample

11. output_sample((short)(vgain*cur_sample)); // scale sample by gain and output

12. return; //return from interrupt

13. }

ECE 423 Real-Time DSP Laboratory 2 Page 5

14.

15. void main() // Main Loop

16. {

17. comm_intr(); // initialize DSK, codec, McBSP for interrupts

18. while(1); // wait for an interrupt to occur (Infinite Loop)

19. }

Figure 5 Line-numbered code for straight_wire.c with modifications on lines 6 and 11 to add a unity

gain adjustment variable.

Using a 1KHz, 500mVpp sine wave from the function generator, with the variable vgain

set to 1.0, the amplitude observed on the scope was 953mVpp. To find the unity gain

factor that we need to ensure that what we see on the scope is the same 500mVpp that we

input with the function generator, we use

525.0
953

500
==

mV

mV
vgain (2)

Setting vgain to this value of 0.525 served to make the output on the scope have an

amplitude of 518mVpp, which is close to 500mVpp (within the scope measurement

error).

Assignment 2b:

 When the variable gain multiplier (vgain) was set to a value of 2, the output

waveform on the oscilloscope was clipped when the function generator output reached

740mVpp. Multiplying 740mV by 2 corresponds roughly to the 1.65Vp maximum of the

DSK codec.

Assignment 2c:

 Figure 6 (below) shows the modifications made to straight_wire.c in order to

make each sample output be the difference of the current sample and the previous

sample. This code takes each input sample of the incoming waveform from the function

generator and rather than outputting that sample directly, the code subtracts off the

previous sample from the current sample before it is outputted. Lines 5 and 6 of the code

show the declaration of short variables for the current and previous samples. On line 10,

as soon as the interrupt is called the input sample is stored as the cur_sample. Line 11

outputs the current sample minus the previous sample. Line 12 saves off the current

sample into the previous sample variable so that the next time the interrupt is called, the

previous sample will be the current sample from this interrupt. The only time this value

(prev_sample) is unknown is the very first time the interrupt is called. At this time, the

prev_sample variable will be some trash value and the only reason this might be bad is if

the user cares about a glitch on the first outputted sample. The rest of the code is

identical to the original straight_wire.c program.

straight_wire.c modified for difference filter
1. // This project uses support files generated by Rulph Chassaing

2. // Comm routines included in C6xdskinit.c

ECE 423 Real-Time DSP Laboratory 2 Page 6

3. // Modified by

4.

5. short cur_sample; // variable to store current sample

6. short prev_sample; // variable to store previous sample

7.

8. interrupt void c_int11() // interrupt service routine

9. {

10. cur_sample=input_sample(); //retrieve current sample

11. output_sample(cur_sample-prev_sample); // Output current sample minus previous sample

12. prev_sample=cur_sample; // save off the current sample as the next previous sample

13. return; //return from interrupt

14. }

15.

16. void main() // Main Loop

17. {

18. comm_intr(); // initialize DSK, codec, McBSP for interrupts

19. while(1); // wait for an interrupt to occur (Infinite Loop)

20. }

Figure 6 Line-numbered code for straight_wire.c modified to create a difference filter.

Amplitude (mVpp) vs. Frequency for straight_wire.c

Modified to Create Difference Filter

400

600

800

1000

1200

1400

1600

1800

2000

0.5 1 1.5 2 2.5 3 3.5

Frequency of Sinusoid (KHz)

A
m
p
li
tu
d
e
 o
f
D
S
K
 O
u
tp
u
t
(m
V
p
p
)

Figure 7a: Experimental Bode plot using sine wave. The plot shows that subtracting the previous

sample from the current sample creates a high-pass characteristic.

When the Amplitude versus Frequency data is plotted from part 2C as shown in Figure 7a, it shows the

amplitude of the sine wave goes up with frequency. This shows the difference equation implemented in

Figure 6 reacts as a High Pass filter to a frequency of 3.4 kHz. It begins to show a dip above this frequency

which could be attributed to the LPF following the codec.

ECE 423 Real-Time DSP Laboratory 2 Page 7

Figure 8b: Matlab calculated Bode plot.

Figure 7b plots the magnitude response for the FIR filter 11)(−−= zzH . The FIR filter

behaves as a High Pass filter up to the 3.6 kHz cutoff frequency of the LPF following the

codec.

Assignment 3:

 The code of figure 8 is the program rp_100Hz.c which was downloaded from the

class website. The program generates a rotating phasor that is rotating at a rate of 100Hz

by sending the real and imaginary parts of the phasor to the left and right output channels

respectively.

rp_100Hz.c

1. // This project uses support files generated by Rulph Chassaing

2. // Comm routines included in C6xdskinit_pcm.c

3.

4. #include <math.h> // Include math library

5. #define PI 3.14159265359 // define the constant PI

6. typedef struct {float real,imag;} COMPLEX; // define complex number exp_value

7. short sample_period=240; // sinusoid period in samples

8. short ctr; // loop counter

9. float angle; // angle for cosine function

10. COMPLEX phasor; // define phasor as a complex variable type

11. float Fs = 24000.0; // irrelevant since jumper in 3-4

12.

ECE 423 Real-Time DSP Laboratory 2 Page 8

13. interrupt void c_int11() // interrupt service routine

14. {

15. angle = 2.0*PI*ctr/sample_period; // calculate the angle

16. phasor.real=20000*cos(angle); // real part = cos(w nts)

17. phasor.imag=20000*sin(angle); // imag part = sin(w nts)

18. output_left_right_sample((short)phasor.real, (short)phasor.imag); // output each sine value

19. if (ctr < sample_period-1) ++ctr; // increment counter (0 through 239)

20. else ctr = 0; // reset counter if necessary

21. return; // return from interrupt

22. }

23.

24. void main() // Main body of code

25. {

26. ctr=0; // initialize counter

27. comm_intr(); // initialize DSK, codec, McBSP, interrupts

28. while(1); // wait for an interrupt to occur (Infinite loop)

29. }

Figure 9 The line-numbered code for the rp_100Hz.c

In the case of rp_100Hz.c, the frequency and amplitude of both the real and imaginary

parts of the phasor are the same, so when this program was loaded onto the DSK and the

output of channel 1 was scoped vs. the output of channel 2, a perfect circle was observed

on the scope.

 Figure 9 (below) shows the code for modified to produce Lissajous figures. The

main changes center on making the amplitude and angle of the real and imaginary part of

the phasors independent. Thus there are now two sample periods (sample_period1 and

sample_period2), two counter variables (ctr1 and ctr2), two angle variables (angle1 and

angle2), two phase variables (phase1 and phase2), and finally, two amplitude variables

(Amplitude1 and Amplitude2).

rp_100Hz.c – Modified to produce Lissajous figure

1. // This project uses support files generated by Rulph Chassaing

2. //Comm routines included in C6xdskinit_pcm.c

3.

4. #include <math.h> // Include math library

5. #define PI 3.14159265359 // define the constant PI

6. typedef struct {float real,imag;} COMPLEX; // define complex number exp_value

7. short sample_period1=240;

8. short sample_period2=240; // sinusoid period in 10. samples

9. short ctr1;

10. short ctr2; // loop counter

11. float angle1; // angle for cosine function

12. float angle2; // angle for cosine function

13. COMPLEX phasor; // Define variable phasor as type COMPLEX

14. float Fs = 24000.0; // irrelevant since jumper in 3-4

15. float Amplitude1 = 1.0; //amplitude for sinusoid1

16. float Amplitude2 = 2.0; //amplitude for sinusoid2

17. float phase1 = 30; //phase offset for sinusoid 1

18. float phase2 = 45; //phase offset for sinusoid 2

19.

20. interrupt void c_int11() // interrupt service routine

21. {

22. angle1 = 2.0*PI*ctr1/sample_period1+phase1; //Compute the angle for sinusoid1

ECE 423 Real-Time DSP Laboratory 2 Page 9

23. angle2 = 2.0*PI*ctr2/sample_period2+phase2; //Compute the angle for sinusoid2

24. phasor.real=Amplitude1*10000*cos(angle1); // real part = cos(w nts)

25. phasor.imag=Amplitude2*10000*cos(angle2); // imag part = sin(w nts)

26. output_left_right_sample((short)phasor.real, (short)phasor.imag); // output each sine value

27. if (ctr1 < sample_period1-1) ++ctr1; // increment counter (0 through 239)

28. else ctr1 = 0;

29.

30. if (ctr2 < sample_period2-1) ++ctr2; // increment counter (0 through 239)

31. else ctr2 = 0; // reset counter if necessary

32. return; // return from interrupt

33. }

34. void main() // Main loop

35. {

36. ctr1=0; // initialize counter

37. ctr2=0; // initialize counter

38. comm_intr(); // initialize DSK, codec, McBSP

39. while(1); // wait for an interrupt to occur

40. }

Figure 10 Line numbered code for rp_100Hz.c modified to produce Lissajous figures.

The discrete-time equation that we are plotting with this program is

)2cos()2cos(222111 φπωφπω +++ ss tjAtA (3)

Using lissajous.m in matlab and values of A1=2, A2=1, f1=0, and f2=45deg, we produced

the following figure 10 on the oscilloscope.

Figure 10 –Lissajous Figure

With our modifications in figure 9 we were able to produce a Lissajous figure on the

scope that was the same as that of figure 10. Initially it looked wrong, but we found that

we had the left and right channels swapped. Once we got them connected correctly to the

scope, the correct figure was observed. By changing the phases and amplitudes of the two

sinusoids, the width and rotation of the Lissajous figure could be varied. Also, we found

ECE 423 Real-Time DSP Laboratory 2 Page 10

that changing the relative frequencies of the two sinusoids would created some really

interesting figures (like figure eights and things of that nature).

Assignment 4:

 Figure 11 below shows the line numbered code for interference.c.

interference.c

1. // This project uses support files generated by Rulph Chassaing

2. // Comm routines included in C6xdskinit_pcm.c

3.

4. #include <math.h>

5. #define PI 3.14159265359 // define the constant PI

6. short sample_period=12; // sinusoid period in samples

7. short ctr; // loop counter

8. short phase[2]; // theta in degrees (holds two values)

9. short out_value; // value sent to codec

10. float angle; // angle for cosine function

11. float wnts; // omega * n * ts - used for current angle

12. float Fs = 24000.0; // irrelevant since jumper in 3-4

13.

14. interrupt void c_int11() // interrupt service routine

15. {

16. int i; // used in for loop

17.

18. // create interference pattern

19. // use amplitude 30000/N to prevent overflow in codec, where N=2

20. wnts = 2.0*PI*ctr/sample_period; // current angle (w/out phase)

21. out_value=0;

22. for (i=0; i<2; i++)

23. {

24. angle = wnts + phase[i]*PI/180; // current angle (with phase)

25. out_value += (30000/2)*cos(angle); // cos(w nts + theta_k) k in {1,2}

26. }

27.

28. output_left_sample(out_value); // output each sine value

29. if (ctr < sample_period-1) ++ctr; // increment counter (0 through 47)

30. else ctr = 0; // reset counter

31. return; // return from interrupt

32. }

33.

34. void main()

35. {

36. phase[0]=0; // theta 1

37. phase[1]=45; // theta 2

38. ctr=0; // initialize counter

39. comm_intr(); // initialize DSK, codec, McBSP

40. while(1); // wait for an interrupt to occur

41. }

Figure 11 Line numbered code for interference.c

Line # 8 of the code shows the declaration of an array of two values of data type short.

These values will be phase[0], the phase of the first cosine wave and phase[1], the phase

of the second cosine wave. Line # 16 of the code declares an integer variable called i

ECE 423 Real-Time DSP Laboratory 2 Page 11

that is used as the index variable used in the for loop inside the interrupt (starting at line

22). Line # 20 creates the argument for the cosine function without the phase. This

argument follows the structure

periodsample

ctr
wnts

_
2π= (4)

where the variable ctr is initialized to zero at the beginning of the program run (line 38),

and then is incremented by one every time the interrupt is called. Once the ctr variable

reaches the sample_period which, in this case, is set to 12 (line 6), it is reset to zero (lines

29 – 32). So, the angle without the phase shift (wnts) starts at zero then increments by π/6

until it reaches 2π where it resets back to zero and starts the incrementing over again in a

cyclical manner. In line # 21, every time the interrupt is called, the output sample value is

initialized to zero before the next loading of the output sample value. Lines 22 through 26

form a for loop in which the two interfering cosines are created. The first time through

the loop, the cosine angle is set on line 24 to

180
*]0[0

π
phasewntsangle += (5)

The π/180 term is just to convert the phase from degrees to radians. Then on line 25 the

out_value for the sample out is set to

)cos(*
2

30000
0angle (6)

where the angle is given by line 24. The next time through the loop, the angle changes to

180
*]1[1

π
phasewntsangle += (7)

and on line 25, the out_value becomes

)cos(*
2

30000
)cos(*

2

30000
10 angleangle + (8)

The third time through, nothing happens because the loop index is now 2 and the Boolean

i<2 in line 22 makes the loop drop out. Finally, lines 36 and 37 initialize the two phase

values (phase[0] and phase[1] to 0 degrees and 45 degrees respectively at the beginning

of the program. This way the two phases will be known when running the program

without setting these variables in the watch window.

 The discrete –time equation for the interference pattern that is being created by

interference.c is as follows:

])1[
1806

cos(*
2

30000
])0[

1806
cos(*

2

30000
phase

N
phase

N ππππ
+++ (9)

ECE 423 Real-Time DSP Laboratory 2 Page 12

 The program interference.c was run on the DSK and the output observed and

compared to the output graphs of the matlab program interference_pattern.m. The

magnitude graph (lower left) of the matlab program showed that for a phase difference of

45 degrees (π/4), the amplitude of the interference wave should be 1.8475/2=0.92. So, the

amplitude should be at 92% of the maximum when the phase difference is 45 degrees.

Using the DSK output and the scope, when the two phases (phase[0] and phase[1]) are

both set to zero, the resulting wave has peak-peak amplitude of 2.18V. When the phases

are then set to 0 and 45, the amplitude changes to 2.016V. Since 2.016/2.18=0.92 or 92%

this shows good agreement between the matlab magnitude plot and the output observed

on the scope. The table of figure XX below shows a comparison of the matlab magnitude

and phase values vs. those observed on the scope through the DSK.

Phase[0] Phase[1] Normalized Matlab Magnitude Normalized DSK Magnitude

0 0 1 1

0 45 0.9237 0.9248

0 90 0.7071 0.7064

0 180 0 0 (flatline)

26 263 0.4771 0.4872

The table above shows good agreement between the matlab magnitudes vs. phase

difference of the two cosines, but what about the resulting phase of the interference

pattern. It is hard to see phase on the scope without a trigger source, thus the phase will

just be discussed intuitively. The phase of the resulting interference pattern is just the

average of the two original cosine phases.

2

21
int

θθ
θ

+
=erference (10)

This observation was confirmed by looking at the bottom right graph of the matlab output

of interference_pattern.m.

Assignment 5:

 The task at hand for this assignment was to modify the program interference.c

such that it will implement the following equation:

))1(cos(...)2cos()1cos()cos(θωθωθωω −+++++++ NtAtAtAtA (11)

Figure 12 (below) shows the code from interference.c modified per the above equation.

1. // This project uses support files generated by Rulph Chassaing

2. // Comm routines included in C6xdskinit_pcm.c

3.

4. #include <math.h>

5. #define PI 3.14159265359 // define the constant PI

6. short sample_period=12; // sinusoid period in samples

ECE 423 Real-Time DSP Laboratory 2 Page 13

7. short ctr; // loop counter

8. short phase = 45; // theta in degrees (holds two values)

9. float out_value; // value sent to codec

10. float angle; // angle for cosine function

11. float wnts; // omega * n * ts - used for current angle

12. float Fs = 24000.0; // irrelevant since jumper in 3-4

13. short N = 3; // index for arbitrary number of cosines

14. short Amp = 5000; // amplitude of each cosine

15.

16. interrupt void c_int11() // interrupt service routine

17. {

18. int i; // used in for loop

19. // create interference pattern

20. // use amplitude 30000/N to prevent overflow in codec, where N=2

21. wnts = 2.0*PI*ctr/sample_period; // current angle (w/out phase)

22. out_value=0;

23. for (i=0; i<N; i++)

24. {

25. angle = wnts + i*phase*PI/180; // current angle (with phase)

26. out_value += Amp*cos(angle); // cos(w nts + theta_k) k in {1,2}

27. }

28.

29. //output interference pattern

30. output_left_sample((short)out_value); // output each sine value

31. if (ctr < sample_period-1) ++ctr; // increment counter (0 through 47)

32. else ctr = 0; // reset counter

33. return; // return from interrupt

34. }

35.

36. void main()

37. {

38. ctr=0; // initialize counter

39. comm_intr(); // initialize DSK, codec, McBSP

40. while(1); // wait for an interrupt to occur

41. }

Figure 12 Line numbered code for interference.c modified to implement Equation (11)

The modifications to the interference.c program to create the sum of N cosine waves with

amplitude A and N even spaced phases are as follows. The array variables phase[0] and

phase[1] were removed and a single phase variable was created (line 8). A new variable

N was declared and used in line 23 to build the sum of the N cosines. Additionally, in line

25, the angle was adjusted to use the loop index i for calculating the phase of the

sinusoid. Lastly, a new amplitude variable Amp was declared in line 14 and was

programmed at a value low enough to avoid overdriving the codec.

 When observing the DSK output of this program with N=6, the amplitude on the

scope vs. phase (θ) corresponded to the magnitude vs. θ plot of figure 11 in the lab 2

notes. Specifically, when θ was set to 60 degrees, the scope flat-lined and this

corresponded to the first magnitude null in the figure 11 plot. And, when Q was set to 87

degrees a relative, local maximum was observed on the scope. This corresponded to the

first peak in the figure 11 plot.

ECE 423 Real-Time DSP Laboratory 2 Page 14

Assignment 6:

The program below defines two ‘beat’ frequencies f1 and f2 which will be summed

together. Every time a interrupt is generated, two independent angles and offsets are

calculated for the two sinusoids of different frequencies. These sinusoids are then

summed together and outputted to the codec.

 When the codec’s output is observed on the oscilloscope, an amplitude pulsating

sine wave is observed. The rate of the pulsation increases as the difference between the

two frequencies f1 and f2 is increased. When listening to earphones plugged into the

output, the result is akin to the throbbing sound heard from a passing dual engine

airplane.

beat.c
1. // This project uses support files generated by Rulph Chassaing

2. // Comm routines included in C6xdskinit_pcm.c

3.

4. #include <math.h>

5. #define PI 3.14159265359 // define the constant PI

6. float f1=200; // freq of 1st sinusoid for beat pattern

7. float f2=205; // freq of 2nd sinusoid for beat pattern

8. float out_value; // value sent to codec

9. float angle1; // angle for 1st sinusoid

10. float angle2; // angle for 2nd sinusoid

11. float offset1=0; // offset for 1st sinusoid

12. float offset2=0; // offset for 2nd sinusoid

13. float Fs = 24000.0; // irrelevant since jumper in 3-4

14. short Amp = 15000; // amplitude of each sinusoid

15.

16. interrupt void c_int11() // interrupt service routine

17. {

18. offset1 = 2.0*PI*f1/Fs; //setup the 1st sinusoid angle

19. angle1=angle1+offset1;

20.

21. offset2 = 2.0*PI*f2/Fs; //setup the 2nd sinusoid angle

22. angle2=angle2+offset2;

23.

24. out_value = Amp*cos(angle1)+Amp*cos(angle2); //sum the 2 sinusoids of frequencies f1 and f2

25.

ECE 423 Real-Time DSP Laboratory 2 Page 15

26. // output interference pattern

27. output_left_sample((short)out_value); // output each sine value

28. if (angle1 > 2*PI) // reset angle1 if > 2*PI

29. angle1 -= 2*PI; // angle = angle1 - 2*PI

30. if (angle2 > 2*PI) // reset angle2 if > 2*PI

31. angle2 -= 2*PI; // angle = angle2 - 2*PI

32. return; // return from interrupt

33. }

34.

35. void main()

36. {

37. comm_intr(); // initialize DSK, codec, McBSP

38. while(1); // wait for an interrupt to occur

39. }

Figure 13 Line numbered code for beat.c

Conclusion

Assignment 1 demonstrates how a low pass filter following a codec can cut out

the higher frequency components of a signal. This is most apparent when sampling a

square wave and only the fundamental fourier series frequency of the square wave is

passed resulting in a pure sine wave output.

Assignment 2a shows how the straight wire.c code can be modified with a

software gain value such that unity gain is achieved from input to output of the codec.

When the gain was adjusted to a value of 2 for assignment 2b, the output would begin

clipping with an input of one half the maximum output value. This shows that proper gain

levels through each level must be properly maintained through each gain stage.

Assignment 2c shows that implementing a simple difference equation of the current

sample minus the previous sample will create a high pass filter. If one imagines the input

moving infinitely slowly, then the difference will be zero, if one imagines the input and

output moving rapidly (HighFrequency) between samples, then the difference (IE output)

will be large.

 Assignment 3 shows that when the real and imaginary components of a rotating

phasor are displayed on a oscilloscope in XY mode, a circle will be generated.

 Assignment 4 shows that a Lissajous figure (ellipse) could be generated by

modifying the rotating phasor code in assignment 3 to include different amplitude and

phases for the real and imaginary components of the rotating phasor.

 Assignment 5 demonstrates that constructive interference could be obtained with

the addition of six sinusoids of a given frequency and phase offset. This effect is similar

to the gain increase of a phase array antenna using quarter wave elements and proper

spacing or time delay for the phase addition.

 Assignment 6 shows that the addition of two frequencies will produce the original

two frequencies plus the sum and difference of the original frequencies. This effect is

similar to a mixer circuit used in a heterodyne circuit. The difference frequency produces

the beating effect. The frequency of the beating decreases as the two frequencies

approach each other. This effect is used to tune a guitar string to a pitch fork by adjusting

the tension of the guitar string while minimizing the audio beating sound between the

pitch fork and guitar string.

