CHAPTER “—. H

ELEMENTS OF
DIGITAL FILTER DESIGN

-11-1 INTRODUCTION

A filter is a network or system that operates on an input signal in a specified
way to produce a desired output. The signals may be continuous-time entities
and may be stated in time or frequency terms. On the other hand, the signals
may be discrete time and may also be stated in time or frequency terms. Because
digital filter design draws heavily upon the methods of continuous-frequency
filter design, we will first review the basic features of the latter.

Depending upon the service to which the filter is to be applied, the design
process may vary considerably. The simplest type of filters might be referred to
as “brute force.” This would include the simple shunt C or series L, RC, or LC
type filters used for filtering the ac ripple produced when a rectifier is used to
corvert ac into dc. Here the requizement is to permit the dc to pass unimpeded
but 1o attenuate t+2 ac ripple component. Hence such filters are essentially low-
pass devices with cuicii at 0 Hz, Actually. these filters are not very frequency selec-
tive, but multiple sections can be used in cascade if improved ac attenuation is
desired. In addition to such passive filters, one may use an electronic regulator, a
device that not only serves to maintain the output voltage constant but also greatly
reduces the ripple. From this point of view, the electronic regulator may be consi-
dered an active filter.

Perhaps more typical are filters that are frequency-selective assemblies de-
signed to pass signals of certain frequencies and block signals of other frequen-
sies. There are many classes of analog domain (continuous) filters categorized
iccording to their behavior in the frequency domain and specified in terms of
heir magnitude or phase characteristics. Based on their magnitude or transfer
esponse. filters are classified as low-pass. high-pass, bandpass, or bandstop. In
he ideal cases these response characteristics are as shown in Figure 11.1 (see also
-hapter 3). However, these ideal characteristics are not physically realizable,
ind a number of different approaches 1o filter design have been developed over
he years 1o achieve acceptable approximations to the ideal responses. This has
¢d to the formulation of constant-X filter design, m-derived filter design. and
ariants of these approaches. These filter designs, which are usually called clas-

ical filter design, have resulted in very acceptable filters.

Figure 11.1

Ideal frequency response
characteristics of analog
filters: (a} Low-Pass. (b}
High-Pass. (c) Bandpass.
(d) Bandstop.
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In modern filter design, which stems from the 1930s, the design problem'is
approached in a different manner. Essentially, the modern technique is first to
find an analytic approximation to the specified filter characteristics as a transfer
function, and then to develop a network that realizes this desired transfer func-
tion. For the filters shown in Figure 11.1 certain well-developed procedures
exist, and these lead to such functions as Butterworth, Chebyshev, and elliptic.
The use of these functions has the advantage that the formulas for them are well
established and design tables are available. The second step in the design is the
realization of the transfer function by passive or active networks. An extensive
literature has been developed on active networks for use in such filter design
problems.

An important feature of modern filter design is that the problems of approx-
imation and of realization are solved separately to achieve optimum results. For
our purposes we are mainly interested in the approximation problem. We will study
the means for converting from the s-plane, in:which the H(s) approximation exists,
to the =-plane and to a corresponding H(z). H(z) can then be realized by discrete
systems either by transformation to difference equation form, which can then be
adapted for computer calculations. or by direct hardware implementation. That s,
the resulting difference equation can be considered to denote a digital filter approxi-
mation to the analog filter.

We will develop this approach to digital filter design. However, it is impor-
tant to know that greater flexibility in filter specifications can be obtained using
optimization techniques than by using classical analog-to-digital conversion. A
number of different techniques have been developed, but we will not pursue
them here.
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From a practical point of view, the implementation of the filter on a general-
purpose digital computer places accuracy constraints on the realization of the
transfer function because the registers can only contain a finite number of binary
bits at any one instant. Therefore, the filter coefficients, which can be defined
with infinite precision over the real number field, can be represented only by a
finite number of binary digits in 2 hardware register. As a result filter coefficients
as +2" as the arithmetic performed within a digital filter are subject to approx-
imation errors and uncertainty. These limitations can cause the frequency re-
sponse of the filter to differ measurably from that of the design model. This is
true because the filter that is specified is very sensitive to the polynomial coeffi-
cients of H(s). These sources of error within a digital filter are referred to as
roundoff noise and require attention in practical implementation practices.

11-2 THE BUTTERWORTH FILTER

+ We will examine the use of the Butterworth function to approximate the low-pass
- filter shown in Figure 11.1a. The features of this function are illustrated graph-
ically in Figure 11.2. Note that attention in this case is being given only to the
amplitude function.
The amplitude response of the nth-order normalized Butterworth filter is
given by

1
|H,{(jo) = n=1,23,... Ly
[H(jw)]
Ideal response

I In\ 4

Figure 11.2
=2 Butterworth amplitudz

response.

w
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As shown in Figure 11.2, the response is monotonically decreasing, having iz
maximum value |H,(joll., =1 at @ = 0. Further, the cutoff point at the nox-
malized @, = 1 is

|H,(j1)| = w = 0.707|H ( 70 max
for all orders. Because the functions all approach the value H,(j0) = 1 smoothis,
this function is called maximally flat. It is observed that the approximation 1o
the square wave improves as » increases.

To obtain the transfer function form of the Butterworth function, we maks
use of the fact that H,(jow) = H,(s)|;=, and rewrite (1 1.1} in squared form

1 1
Y H () H(—s5) = (T N TS =7 CR
7

Let us write the denominator polynomial in the form

D(s)D(—=s) =1 + (—s?)" 1y
The roots of this function are obtained from

14+ (=s%"=0
Therefore

(=1ys" = —1 =20 p_ 15 o (11.4)
from which .

§27 = fk= iy jxn
The kth root is

e 2 q, + jow, = el +n=1in/2n = jg(2k=Di2n 115

From this we write

n
5 l<k<2n (11.6)
It is clear from (11.5) that the roots of S, are on a unit circle and are spaced nn
radians apart. Moreover. no Sk can occur on the jo-axis since (2k — 1) cannot
be an even integer. We thus see that there are n Jeft half plane roots and n right
half plane roots. The left half plane roots are associated with H{(s) since o, is
negative for these. These results are shown in Figure 11.3 for the case n = 4:

S = —sin @T:.W +jcos| (2k — 1)

5, = od5/8 Sy = i 7n/8 §5 = eJ9%/8 5, = ell1n8
so that
D(s) = (s — 5,)(s = 53)(5 — 53)(5 — 5,)

=1+26131s + 3.41425% + 2613153 4 ¢

1
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Ficure 11.3

Location of the zeros of
the function (11.5), shown
forn = 4.

If we write D(s) of the normalized Butterworth function of order n in the general
form

Dis)=14+a;5+a,8%+ =~ +a,_;s"" '+ (17

then the coefficients can be computed in the manner shown above. Note that
a, and a, are always unity because the no es are all on the unit circle. Table 11.1
gives the functions for n to &

Table 11.2 gives the Butterworth polynomials [of (11.7)] in factored form.

EXAMPLE 11.1
Find the transfer function of a Butterworth filter that has an attenuation of at
least 10 dB at twice the cutoff frequency w, = 2.5 x 10% rad/s.

]
o

Solution:  We initially find the normalized Butterworth filter. At W, =

2 x 1 {w, = 1, normalized)
o
1422
The dB attenuation is given by
—10 log, o|H,(j2)]* = 101og,o(1 + 2%") >
from which antilog, I <1 + 2** Hence we find that
10 or 2*>9

The order of the filter must then be n = (In, 9)/2 = 1.584; hence a second-order

Butterworth filter will satisfy this requirement. The corresponding transfer func-

tion of the normalized filter is (see Table 11.2
1

24+ 141425 + 1

|H,(2)) = (11.8)

142>

H(s) = 11.9)
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Table 11.1  Coefficients of Butterworth Polynomials

n a, a, as a, as ag a,
2 1.4142

3 2.0000 2.0000

4 2.6131 34142 2.6131

5 3.2361 5.2361 5.2361 3.2361

6 | 3.8637 7.4641 9.1416 7.4641 3.8637

7 4.4940 10.0978 14.5918 14.5918 10.0978 4.4940

8 5.1528 13.1371 21.8462 25.6884 21.8462 13.1371 5.1258

Table 11.2  Factors of Butterworth Polynomials

n Factored Polynomial

s+ 1

ST+ 141425 + 1

s+ Ds*+s4+1

(s* + 0.7654s + 1)(s* + 1.8478s + 1)

{s + 1){s* + 0.6180s + 1)(s* + 1.6180s + 1)

(s + 0.5176s + 1)(s? + 1.4142s + 1)(s* + 1.9319s + 1)

(s + 1)(s? + 0.4450s + 1)(s® + 1.2470s + 1)(s* + 1.8019s = 1)

{s® +0.3902s + 1)(s* + 1. s + 1){(s? + 1.6639s + I)(s* + 1.9616s + 1)
(s + 1)(s* + 034735 + 1)(s* + 5 + 1)(s* + 1.5321s + 1)(s" + 1.8794s + 1)

D 00 <2 O\ LA B ) D e

The amplitude and phase of this filter are shown in Figure 11.4. For a cutoff
frequency w, = 2.5 x 103, the transfer function is
s 1

mﬂmllﬂ 1 11.10
(s) "\w.) 1.6 x1077s? +5.6569 x 10~ %s + 1 ur10)

The denominator polynomial has conjugate complex roots with negative real
parts. If we split the function D(s) of (11.10) into two polynomials including.
respectively, the even and odd powers of s

D(s) = e(s) + ofs) = (1.6 x 107752 + 1) + (5.6569 x 10~%s) (11.11)
their roots are purely imaginary (zero included) and, additionally, alternate
—~2.5 x 10%,0, 2.5 x 10°. Polynomials that possess these properties are known as
Hurwitz polynomials.

Observe also that (11.10) is of the general form

k _k
a,s" +a, ;5" P+ 4a, D)

H(s) = (L12)
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It can be shown that a transfer function of this form can be realized with passive
elements if and only if D(s) is a Hurwitz polynomial.

Suppose that we wish to find a two-port network of the terminated form
shown in Figure 11.5a appropriate to (11.10). Since D{s} is of second order, the
lossless 2-port network shown in Figure 11.5b appears to be an appropriate form.
The transfer func ~n of this circuit is

Vols) HE) = 1
Visy T CLS +(C+L)s+2
This form differs from (11.10) by the factor 2 in the denominator. If we multiply

the numerator and denominator of (1 1.10) by 2, we obtain an equivalent trans-
fer function

H(s) 1

(1L.13)

2 T32x1077¢ 11314 x 10 s + 2 Lty
By comparing these two equations, we obtain the equations
CL=32x10""
C+L=11314x10"3 .
These can be solved to yield C = 5.7 x 10™¢ F;L=56x10"*H. |
EXAMPLE 11.2

A Butterworth filter must have an attenuation of at least 20 dB at twice the cut-
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off frequency of 3 kHz. Find the transfer function of the appropriate low-pass
filter.

Solution: ~ First determine the normalized Butterworth filter. This requires that
at twice the cutoff frequency

1
1+2%

[H,(j2)P = (11.15)

The dB attenuation is then given by
—10log; o|H,(j2)]* = 10 log,o(1 + 22 > 20
From this antilog,, 2 < 1 + 22" or -
1+2%>10% =100

and the order of the filter must be n = 3.3. Hence a fourth-order Butterworth
will satisfy this requirement. The transfer function of the normalized flter is

1
= 11.16
B = =enn e ¥ 26131 1 5 (1116)

The amplitude and phase characteristics of this filter are shown in Figure 11.6.
With a cutoff frequency of 3 kHz, the denormalizing factor is

o, = 21 x 3000 = 18,849.54

Hence the desired transfer function is
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Hs)=H[>
Sﬂ
= ! 11.17
T 1+ 13863 x 107*s + 9.609 x 10-952 (L.17)
+ 39017 x 1071353 + 7.9213 x 10~ 18s*
B

11-3 THE CHEBYSHEV LOW-PASS FILTER

Az examination of Figure 11.2 shows that the Butterworth low-pass amplitude
response is very good in the region of small w and also in the region of large w
but is not very good in the neighborhood of the cutoff frequency (w = 1). The
CLebyshev low-pass filter possesses sharper cutoff response, but it does possess
arrplitude variations within the passband. The features of the Chebyshev
response are shown in Figure 11.7 for n even (= 4) and n odd (= 5). Several
gezeral features are contained in these figures; the oscillations in the passband
ha-e equal amplitudes for a given value of € the curves for n even always start
frem the trough of the ripple whereas the curves for n odd always start from
the peak: and at the normalized cutoff frequency of 1, all curves pass through
the same point, shown in the figures as 1/(1 + €3),
The amplitude response of the Chebyshev low-pass filter is defined by

1

e n=1223 ... (11.18)
VI+ e Ciw) .

H,(jo)] =

—
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Figure 11.7 [H w2 [H(jw)|2
General shape of Cheby- 4 4
shev approximations, (a)
n even (= 4). (b) n odd

(= 3.

@ (®)

Table 11.3  Chebyshev Polynomials

f
i
'
i

n Colw)

0 1

1 w

2 20— 1

3 40’ - 3

4 | 8w*—8w?+1

5 16w° — 200% + 5

6 | 32w® —48w* + 1802 — §

7 640" — 1120° + 560° — 7w

8 1288 — 2568 + 160w* — 320 + |

9| 2560° — 57607 + 43205 — 1200 + 9¢y
10 512010 — 1280¢y8 + 1120w® ~ 4000w* + 5007 — 1

(émammmmmnommssrmmms&ma ﬁkevmmEmogcwmw@no@uosm& given by
the equation .

Clw)

I

cos(n cos ™! ) forjw] <1 (a)
=cosh(ncosh™ @)  for|w|>1 () (1L.19)

as already discussed in Section 1-6. The Chebyshev polynomials of orders up to
5 are shown in Figure 11.8 for the range |w| < 1. The analytic form of the
Chebsshev’ polynomials from orders 0 to 10 are tabulated in Table 11.3. Fig-
ure 11.3 shows the Chebyshev polynomials C,(e) of (11.19) for w > 0.

By taking into consideration (11.19) and the recurrence relationship [see
(1.563]

Coesl@) = 20C (@) = C,_y(@)  n=1,2

3 -y e



The nth-order Chebyshev polynomial has the following properties:

a.

b.
c

d.

Foranyn  0x<|Cfw)|<1 for0< o] < 1
[Cw)) >1  for o] > 1

Cu(w) is monotonically increasing for @ > 1 for all »

Ci() is an odd polynomial, if n is odd

C,(w) is an even polynomial, if n is even

IC0)] =0 for n odd

[C0) =1  forn = even

The curves shown in Figure 11.8 together with (11.18) show that |H (jo)|
attains its maximum value of | at the zeros of Ca(w) and for w| < 1 attains its
minimum value of 1/\/1 + €2 at the points where C (w) attains its maximum

Crle)

12k
11~

=6 n=3
10~ n n=4
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&
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6L n=2
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ki
n=1]
21
n=4 n=6
1
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0.2 0.6 1 1.2 14 L6 1.8 20
0.8
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n=2 n=3
Figure 11.8

Chebyshev peh=somials
Culw) for w > .
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values of 1. Thus the ripples in the passband 0 < ¢ <1 have a peak-te-peak

amplitude of
r=1 !
V1+e?

The ripple in decibels is given by
~ 1

Tap = \...No log; o Tre
/

= =10 log, (1 + €?)

,,oﬁ.mam of the passband o > 1 [Hy( Jjo)| is monotonically decreasing.

(11.20)

(11.21)

“~Tofind the pole locations of H,(s) where s = Je, we consider the deaomi-

nator of the function
1

H(5)H (~s) =
1+ MNQW -
J

More specifically, the poles of interest occur when C,(s/f) = +

15 J
COS| ncos - = 4=

J €

We proceed by defining

s
cos™! 7 =0 - jf

Combine this with (] 1.23) from which

cos nx cosh nf + j sin na sinh nf = +L

€
Real and imaginary parts must be equal on the two sides, and so
cos nx cosh nf =0 (a)
{
. 1
sin ne sinh nf = + < (b
From (11:26a) it is found, since cosh nf 3 0, that

answc:mw k=1,2,3,.... 2n

(11.22)

~1/€? or when

(11.23

(11.24)

(11.25)

(11.26)

(1.2

From the second equation (11.26b) together with (11.27), B is found 1o be,

because sin ng = +1,

1 1
B = +-sinh~1[-=
n €

(11.28)
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Equazon (11.24) can be used to give the poles

S =j cos(x — jB)

. 1, . _,/1
sinh| —sinh~*{ =
n €

= —sin| (2k ~ 1)

¥l=

, 1 1
+ jcos D»t:wﬁ: cosh MmErl -

(11.29)

Tzese points are located on an ellipse in the s-plane. as illustrated in Fig-

ure 11.7 for n = 4. To prove that the locus is an ellipse, let

Table 11.4  Cocfficients of the Polynomial in (11.32
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§ = Gy +\~.8r va AMM.WQW
so thz:
. LI R A
o= —sin| (2k — 1) =— | sinh| ~ sinh~'{ ~ ®)
2n n €
7 1 1
e = cos| (2% — 1) = | cosh| = sinh~* 2 ©
2n n €
It foliews from (11.30b) and (11.30¢) that
[ T1 - ot 1 - o=t 3D
yEnh} = sinh ™4 - cosh] - sinh ™! -
! n € n €

This is the equation of .. - ~"nse shown in Figure 11.9. Equation 11.30c shows
that =2 imaginary parts are the same as if the zeros had been uniformly spaced

Jw

>oles ¢ 2th order

Jutterworth filter ™~}

H J1.073

sink Wﬂn sin/ ﬁWz

cosh L sina =1Ly

L,

wre 11.9

cation of zeros of
wtion (11.23) on the
ane shean forn = 4

n ag ay a, as ag as ag a,
r=05dB (= 03493

1| 2863

21 L31 1.2456

3] o 1.5349™] 1.2529

4 | 0379 1.0255 | 1.7169 1.1974

51 0179 0.7525 1.3096 1.9374 1.1725

6 | 0.008 0.4324 1.1719 1.5898 21718 1.1592

7] 004 0.2821 0.7557 1.6479 1.8694 2.4127 1.1512

8 | 0.02% 0.1525 0.5736 1.1486 | 2.1840 2.1492 2.6567 1.1461
r=1.0dB w_ 0.5088)

1 1.9632

2 1 L1633 1.0977

31 04933 1.2384 0.9883

4 | 027% 0.7426 1.4539 0.9528

5] 0.123% 0.5805 0.9744 1.6888 0.9368

6 | 0.069 0.3071 0.9393 1.2021 1.9308 0.9283

7 ] 0.030 0.2137 0.5486 1.3575 1.4288 2.1761 0.9231

8 | 0.0172 0.1073 0.4478 0.3468 1.8369 1.6552 24230 | 09198

on a circle of radius cosh[(1/n) sinh™!(1/€)]. Therefore, the graphical con-
struction indicated can be used to locate the roots.

We can use the same reasoning as in Section 11-2 to show that the desired
response can be obtained by limiting consideration to the zeros on the left half
plane. The transfer function is thus

K
o+ a;s+a,st+-c4a,_ s

H(s) = 11.32)
For a specified dB ripple, € can be found from (11.21), and the poles of an
nth-order Chebyshev filter can then be found from (11.30). The constant K must
be selected to meet the specified dc gain level. Table 11.4 gives the coefficients
in the denominator of (11.32) for two values of r.

EXAMPLE 113
Repeat Example 11.2 using a Chebyshev filter with a 1 dB ripple in the pass-
band.



CHAPTER 11

Table 11.5 Factors of the Polynomial in (11.32)

Facrored Polynomial

n r =0.3dB € = (.3493

s+ 2.8628

5% 4+ 1.4256s + 1.5162

(s* + 0.6265)(s* + 0.6263s + 1.1424)

(s* + 0.3507s + 1.0635)(s* + 0.8467s + 0.3564)

(s + 0.3623)(s* + 0.2239s + 1.0358)(s? + 0.5862s + 0.4768)

(s* + 0.1553s + 1.0230)(s* + 0.4243s + 0.5900)(s? 4 0.5796s + 0.1570)

(= N R A

n r=1dB € = 0.5088

s+ 1.9652

s? 4+ 1.0978s + 1.1025

{s + 0.4942)(s? + 0.4941s + 0.9942) =

(s? + 0.27915 + 0.9865)(s* + 0.6737s + 0.2794)

(s + 0.2895)(s + 0.1789s + 0.9883)(s2 + 0.4684s + 0.4293)

(s* + 0.12445 + 0.9907)(s® + 0.3398s + 0.5577)(s* + 0.4641s + 0.1247)

[ RV e B

Solution: By (11.21) for the 1 dB ripple

€2 =10%1% — 1 = 0.2589

from which
€ = 0.5088
The attenuation can be found from (11.18), beginning with
1
H,(jo)? = ————
el = e

The dB attenuation for high frequencies is given by [€*CZ{w) » 1]
—10log, o[H,(jw)]* = 10 log,o €* + 10 log, ,C¥(w) > 20
Therefore
log,o € + logo[cosh(n cosh™* 2)] > 1
so that
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log;o[cosh(ncosh™ 2)] = 1 —log;o € = 1 — (—.2935) = 1.2935
cosh[(n cosh™! 2)] > 19.65
ncosh™!2 > 3.670

\Y

from which we have

3.670

Hence the conditions of the problem can be met with a third-order Chebyshev
filter, and the normalized transfer function is

0.4913

. Hys) -

11
04913 + 1.2384s + 0.98835% 4 53 (11.33)
~ -
With the denormalizing factor specified by
. = 2n x 3000 = 18,849.54
the desired transfer function is
s
Hs) = H, [ (1.34)
)

B 0.4913
T 04913 + 6.5699 x 10~ s + 2.7816 x 10~ °s? + 1.4931 x 10~ 153

We could also proceed in the following manner. Using the data € = 0.5088
and n = 3, we obtain

J
w&sdl 1 HEHo.ﬁmo
3 € 3
Therefore,
. 1. ' 1
- -1 V= 3
sinh umEr 55088 0.4942
h ! inh ™! 1 = 11154
costy 38 05088/ |~

and by (11.30b) and (11.30c) we obtain the following poles
5, =0y +jo, = —0.2471 + j0.9660
Sy =0, + jo, = —0.4942
53 = 03 + jo; = —0.2471 — j0.9660
When these pole positions are substituted into the transfer function expression

0.4913
(s = s)(s — 52)(s — 53)

H,(s) = (11.35)
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(a)

‘igure 11.10
Hustrating Example 11.3,
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0.5 1.5 2

{b)

Gn.nnw::m:m form for H,(s) is precisely that given by (11.33). Figure 11.10a
indicates graphically the location of the three poles, and Figure 11.10b shows
a plot of the normalized third-order Chebyshev filter of (11.33).

, 1
H(jo)* =
e = 0.2589(40° — 300

(11.36)
B

11-4  ELLIPTIC FILTERS

We have found that the Butterworth approximation possesses a monotonic char-
acteristic in both the passband and the stopband, while the Chebyshey approxi-
mation has a magnitude response that varies between equal maximum and equal
minimum values in the passband and decreases monotonically in the stopband.
Moreover, because of the willingness to accept a ripple in the passband, the
Chebyshev filter possesses sharper cutoff characteristics in the stopband.

Another type of approximation is characterized by a magnitude response
that is equiripple in both the passband and the stopband, as shown in Fig-
ure 1111, This approximation is given by the amplitude function

1
./.\..m + mw‘x%ﬁev

[H(jw)| =

(11.37)

where R (w) is a Chebyshev rational function. The roots of the rational func-
tron @, are related to the Jacobi elliptic sine functions and the resulting filter
15 called the elliptic filter,
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Figure 11.11
Magnitude-squared response
of ar elliptic filter.

w

We will not undertake a discussion of the elliptic function filter, but note
that the response curve is an improvement over the Chebyshev and Butterworth
filters,

11-5 PHASE CHARACTERISTICS

Our prior discussion has focused on the amplitude response of low-pass filters.
These results show that in most respects the Chebyshev filter is superior to the
Butterworth and in some cases the elliptic filter is superior to both. However, in
these discussions, we have totally ignored the phase characteristics, which be-
come progressively worse (less linear) as the amplitude response is improved.
Often the phase characteristic is an important factor, since a linear phase re-
sponse is necessary if one wishes to transmit a pulse through a network without
distortion (although a time delay will ensue).

Instead of beginning with considerations of the amplitude function, it is
possible to consider obtaining a realizable approximation to an ideal constant
delay function e . One method for obtaining a realizable approximation leads
to an H(s) specified in terms of Bessel polynomials. Pursuing this matter is be-
yond our present concerns.

11-6  LOW-PASS TO HIGH-PASS TRANSFORMATION

By an appropriate frequency transformation, the H,(s) for a normalized low-
pass filter can be used to obtain H,(s) for a normalized high-pass filter. If we
use p to denote the low-pass case and s to denote the high-pass case, then
H(s) can be obtained from H(p) through the frequency transformation

Wop
N

p= (11.38)
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where w,, is a constant chosen to meet the specifications of the high-pass filter.
Evidently p = jO maps into s = +jeo, and p = *jl mapsinto s = F w,,. For
a Butterworth or Chebyshev filter, w,, is chosen as the passband cutoff fre-
quency and will correspond to the cutoff frequency of 1 rad’s associated with
these low-pass filters. For the elliptic filter, the normalized frequency @, is the
geometric mean of the two edge frequencies shown in Figure 11.11.

11-7 LOW-PASS TO BANDPASS TRANSFORMATION

In parallel with the discussion in Section 11-6, H(s) for a normalized low-pass
filter can be used-to obtain the H(s) for a normalized bandpass filter when
a proper low-pass to bandpass transformation is effected. The required trans-
formation is

N

Wyp s Wy v

-+

nnm Wop s

(11.39)
where w,, and B are coustants to be chosen to satisfy certain frequency speci-
fications of the bandpass filter. Suppose that we let s = Je be the point that
corresponds to p = j1, the cutoff point of the low-pass filter. Under this con-
dition. {11.39) yields the two values corresponding to the cutoff values of the
bandpass filter. These are. from solving (11.39) in the standard quadratic form,

B B\?
2 2

+wkh ()
(11.40)

+ /5 +wl O

The negative sign that appears in (11.40a) is ignored. Taking account of this
negative value, we find from (11.40) that

B B\?
2

B=qw,—w, (11.41)
which specifies the bandwidth of the filter. Also we find
oy == /(W04 (11.42)

which shows that w,, is the geometric mean of w, and w,, the two cutoff
frequencies.

It is important to realize that frequency transformations do not necessarily
preserve the stability of filters. Unstable filters can be stabilized, but a better
approach is to seek frequency transformations that will preserve the stability in
the first place. We will not pursue this matter.
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11-8 DIGITAL FILTERS

We have already noted that any device or process that will transform an input
sequence of numbers into an output sequence of numbers might be called a
digital filter. If we consider the digital filter to be a computational algorithm
for carrying out this transformation process according to some prescribed rule,
this rule is either a difference equation (as discussed in Chapter 8) or the con-
volution summation (discussed in Chapter 9). Digital filter design is concerned
with the selection of the coefficients of the difference equation or with the unit
sample response h(k) used in the convolution summation.

As already noted, digital filter design often stems from analog filters of the
Jow-pass and high-pass class by the use of a transformation that yields an
equivalent z-plane expression for a given analog description in the s-plane or
in the time domain. In essence this means that we establish a roughly equivalent
sampled form for the given analog function. We will discuss the impulse in-
variant response method and also the use of a bilinear transformation for ef-
fecting this analog-digital transformation.

We discussed in Section 8-2 that the difference equation description of a
discrete time system (filter) was of two types—FIR and ITR. The general form
of the difference equation for the IIR system, given by (8.4), relates the present
output value with immediate past values of the output and the present and past
values of the input. This involves a recursive process using these present and
past values to update the output. Similarly, if the output depends only upon
the present and past values of the input, the system is nonrecursive or finite
duration impulse response (FIR). More precisely, however, FIR and IIR describe
digital filters relative to the length of their unit sample response sequence; it is
wowmmZn. to implement an FIR digital filter in a recursive fashion, and an IIR
digital filter can be implemented in a nonrecursive fashion.

11-9 THE IMPULSE INVARIANT RESPONSE METHOD

Suppose that the system function of an analog filter that has certain desired
properties is specified by
" \A..

Hi) =Y

. — 11.43
i=1 AM + va ANV A v

Assume that all poles are distinct, with the impulse response function being
hity= £ Y{H(s)} = Y Ae™™ ()
i=1

If h(kT) is the corresponding sampled version of (), then we can write

HE) =3 h(kT)"
k=0

v et a0 a4 3



Therefore,

s

H(z) =

- -skT _ 2 k=i
W W e
k i=1 i=1 k=0

[

which is, using the well-known formula of geometric serjes,

G T 4; .
HO) = 3t (1L.44)

A comparison of (] 1.43) and (11.44) shows that a continuous-time filter specified

by the system function H(s) transforms. via impulse invariant techniques, by
setting

S+s=1—e siTy~1 (11.45)

58. a digital filter specified by H(z). As already noted, some degree of approxi-
mation exists in this transformation because the digital filter is necessarily band-
limited whereas H(s), being a rational function of s, is not band-limited.

Let us examine how well the frequency response of the digital filter cor-

responds to the original analog filter frequency response. We use the fact that
[see (4.37)]

8 MH . o\
;nMJo m@t:dﬂw‘.aanaw:cm Ghu..nﬂm

The Laplace transform is

i

Fi) =0Ty =2| 3 fwoe—-nT)

n= -

H 8 8 bu.»._._G H R
n.ﬂ.,“Mé _.o évm:.gu w:Mé%i:ehv (11.46)
where w, is the radian sampling frequency. Also, the Z-transform of f (nT) 1s
Z{f(nT)} = F(2)
But we know that = = ¢°T from Section 9-1 I, and thus
1 .
Fz)=F, hﬂﬂ:‘: z=¢e% In:z=ju, (1147

where w, is the frequency in the discrete domain. We apply these results to
(11.44) to write

]

>

m \Av
Hiz) = - = H, MHWFN

245 )5t - nT)

n= -0

It

m&mwﬁ.v&.m OF DIGITAL FILTER DESIGN - 881

1 = iw, . , .
= 2 jka 11.48
Han..s H, T Jke, { )

From this equation it follows that in the base band

euAC <=
—_— S e, s
5 = m.!N

k=0

the frequency response characteristic of the digital filter H(z) will differ from
that of the analog filter H(s), the difference being the amount “added™ or “folded
in” from the additional terms of the form

H; MN.W.,FN — jka,

which make up the summation in (11.48). As the discussion of the sampling
theorem in Chapter 7 demonstrates, no folding error exists if

- Sh
|59 2 [HGo) =0 o] > 22
e

and in this case the frequency response of the digital filter is identical with that

of the continuous filter, when
| 1 1 Ly
Jeay o - e
Hle ) = H{s) = = H, {5
If H(s) includes a repeated root, then, in addition to terms such as those

in (11.43), we would have such terms as (see Table 6.1)
A A

W)= ¥ =

) G+sy| =1

The sampled version of this is

o < n (11.49)

ol emHy(y) (11.50)

A —1,-s5kT
Ty s k=0
hT) == KTV e = (11.51)
0 k<0
The corresponding Z-transform is
A e .
mﬁnv _ wal» M Neklwﬁmlbu.hluv» AHnthv
Q. - :. k=0

In accordance with our discussion above, we can follow the following steps
in carrying out a digital filter design:
L. A set of filter specifications are given.
2. Create an analog transfer tunction H(s) that meets the specifications of
Step 1.
3. Determine the impulse response of the analog filter by means of the La-
place inversion technique, h(r) = £~ HH(s)}.



4. Sample h(1) at T second intervals, thus creating a sequence {h(kT)}

S. Deduce H(=) of the resulting digital filter by taking the Z-transform of
the discrete function h(kT), Hiz) = Y2 o h(kT)z 7,

EXAMPLE 114

Determine the digital equivalent of the first-order Butterworth filter. The cut-
off frequency is 20,27 Hz.

Solution:
the designated filter

1
S+ 1

H(s) =

The system transfer function is given by

i3\ - H N _ 1 _ 20
@, 2= 20 s +1 s+ 20
T T2n) 20
The impulse response of this filter is given by
s 20
r = -1 - - -1 = N - 201
=2 muo & 390 Oe t>0
The Z-transform of the discrete function h(kT) is [see (9.3) and (1 1.44)]
@ X MO
mh "NO -20kT !x“NO lwcﬂNl._. knu
A v WMON z »MOAN v m'mincﬂNln

To proceed, for the specific sampling time 7 = 0.005 s we deduce the ab-
solute value of the anzlog transfer function

20 \G.M

20

i)

tis convenient to plot this function VEIsus wy, where w = w,/T. The equivalent
xpression becomes

1
/1 + (10w,)?

v

[H(jew )| =

his is shown plotted as the lower curve in Figure 11,12,
The equivalent expression for the discrete function is [see (11.44))

20
1 — 09048 7%

ote, however, that H(e’®) = 210,084 i the value of H(e/*¢) for ;=0 (or

[H(e79| =

The normalized analog transfer function is found in Table 112 for .

Figure 11.12
Comparison between the
analog and its corres-
ponding digital filter for
two different sampling
times.
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!

1

0.8

0.6 ‘\_N..RNZ

z=e/%, T=0.055

[H ()]

z=efes, T=0.005s

_N&CEQ:
— 7
! I ! ] e m— > wg=wl
20° 40° 60° 80° » 160°  120° 140° 160° 180° (rad)
4 2z k4 dr x S5x 2z k4 8z x
9 9 3 9 2 9 3 9 9

== 1). We thus consider the normalized function
[H ()] 20 1 .
210.084 ~ 210.084 [(1 = 0.9048 cos w,)?* + (0.9048 sin w;)]'?

which is also plotted in Figure 11.12 (lower curve).
For the case when T = 05 ¢

20
I — 0.3679¢ o«

H(e*) =

The value of H(e/%) = 31.641 at @g =0, and the normalized relation becomes
HEe9) 20 | 1
31641 31641 [(1 — 0.3679 cos wy® + (03679 5in PRRIRE

This relation is plotted in Figure 11.12 (upper curve) together with EQS& =
LV1 + of since @ = ¢,/0.05.

Figure 11.12 clearly shows the effect of sampling times T The upper curves
start to separate at about w, = 30°, which is equal to 30/57.2958 = 0.5236
radians; hence at T = 005 s the error begins to be pronounced at a frequency
roughly equal to f = w,/2zT = 0.5236,(2n x .05) = 1.666 Hz. Furthermore, the
error for the lower curveg begins at about 90° or 1.57] radians; hence for T = .005 s
the error starts at the frequency f= L571/2n x .003) = 50 Hz, which is above
the cutoff frequency. Thus an aliasing error is present in one case but not in the
other. This indicates that good accuracy is achieved with our digital filter if we
choose the sampling time T « 0.55 5.

Had we continued the plots of the above curves from wy = 180° =7 to
@y = 27 the curves of H(z) would have repeated themselves, being symmetric
about @, = 7, However, the curves for EQS: would have continued to de-
Crease, as expected from the form of H{jw). ]
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EXAMPLE 11.5
Determine the digital equivalent of a Butterworth third-order low-pass filter,
and find T if the sampling frequency is 15 times the cutoff frequency.

Solution:  The normalized system function of this filter is deduced from Table
1.1 or Table 11.2. It is

1 1 A, A, A,

= o == = + -+
I4+2542%+5° s+ 1)s7+5+1) S+8; S+s;, S+s,

H,(s)
where

1
si=l s5,=2(1-j/3) mu.hmﬁ +j3)

Evaluating the constants 4 in this expression, we find that

[ SR

R . p)

- As; =A% = =
~3+i/3 T3 -3
The impulse response of this system is given by

NNANV = \AMNI~ .+. \Aumlnu~ -+ ;Alemﬂ

I

\Aw ln"

Further, to find the sampling time w, = 27/T = 15 - . = 15, from which the
ampling time is T = 0.419. The sampled impulse response function is

EO.AMWE _ .Apm.oo..ﬁw» - \Awwlo‘ﬁwuu».*. \umwvo.ﬁw&»

“he Z-transform of this function 18

z z z
H() = T_oais t A, T _-noars me o 0.419s;
_ z L fd=z+0929)
1—0638 " 215162 1 0.658
_ 0.066-71 + 0.0497272
1= 2174:7 T 1 165622 04333
realization of this filter is shown in Figure 11.13. ]

In general. a digital filter designed using the invariant impulse method results
a transfer function in the form of the ratio of two polynomials. The differ-
Ce equation written from this sytem function is a recursive expression and the
ter so realized is an infinite impulse response (IIR) filter. But note that the
variant impulse response method is equivalent to analog filtering of an impulse-
mpled input signal. We have already discussed the fact that for a sampled signal
approximate the continuous signal, the sampling rate (Nyquist rate) must be
least twice the highest frequency component contained in the signal. However,

Figure 11.13

Digital filter realization
of a third-order Butter-
worth low-pass filter.
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x(k)

&

0.066

-1

~ L0497

a practical analog filter H(s) is never strictly band-limited. Therefore, an aliasing
error will occur when this design method is used. As a practical matter, if the
sampling frequency is 5 or more times the cutoff frequency of the low-pass analog
filter. the aliasing effect on the frequ-ncy response is extremely small.

If H(z) is used to obtain the appropriate h(k), and if this is used in a convo-
lution summation expansion, tke result will be a finite-duration impulse response
(FIR) filter, if h(k) is truncated to N terms. The FIR filter obtained this way
suffers from the fact that a large number of samples will be required to approxi-
mate h(k). This same limitation exists if h(k) is to approximate the h{1) of an
analog filter directly. The disadvantage of this procedure is that the computation
time required to generate an output sample is longer than with a recursive filter.

Another problem with an FIR realization developed this way results from
the abrupt truncation of the uzit response function, which introduces the prob-
lem of the Gibbs phenomenon. In such cases one may use a window function to
alleviate the problem by smoothing the sampled data in the neighborhood of the
truncation region. An advantage of the FIR approach is that any errors in the
computations are not recycled into subsequent calculations.

EXAMPLE 116
Find the digital filter equivalent of the RC network in Figure 11.14 where the
3 dB cutoff frequency is 1,5 of the sampling frequency.

Solution: By a simple determination, the transfer function is
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ST Ture 11.14
4,/// ,
v; NN

W///// .///./

+, O

survey.

N

i ey

We then write H(s) in the form
0.4n

By the invariant mBnEmm.Bnan, the digital equivalent H(z) is (for numerical

convenience it was multiplied by T)

] T x 0.4n
a@» ﬂ SM%

= H() = =
X(z) @ 1 — e 04%-1 7 1 _(0.285-"1

The equivalent difference equation is then found from
(1 —0.285271Y(z) = 1.2566X(z2)
from which we can write

k) = 1.2566x(k) + 0.285y(k — 1)

The RC network under

EXAMPLE 11.7

The normalized transfer function (11.33) of the third-order Cheb
Example 11.3 is

_ 0.4913
T 04913 + 1.2384s + 0.988352 4 59

Determine the following:

Hys)

a. The corresponding impulse-invariant digital filter.

yshev filter of

(11.33)
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b. The amplitude characteristics of the digital filter.
¢. The impulse response h(r) of H (1.

d. The unit sample response h(kT') of the digital filter for T = 1.
Solution: 2, Begin with the Chebyshev function in factored form

0.4913
(s +0.2471 — j0.9660)(s + 0.2471 + j0.9660)(s + 0.4942)

This is written in partial fraction form

\r + \MN
s +0.2471 — j0.9660 s + 0.2471 + j0.9660

H,fs) =

P
s+ 0.4942
(1159)

Hyfs) =

where

B 0.4913
" 2j x 0.9660(0.2471 + j0.9660)
0.4913
—2j x 0.9660(0.2471 — j0.9660)
0.4913
(0.2471 + j0.9660)(0.2471 — j0.9660)

Now set s +5,=1—¢7%Tz71 jp A.:.mé, which gives the impulse invariant
digital filter representation,

A, A,

= ; -7+ = ~70.5660T.,—1
— e 0-2371T+j0.9660T ;—1 T [ /=0.24717 -0.56607,

Ay

\AN“

= (.4942

kw"

Hz) =5

43

| — g~ 045427 _~1

+ (11.55)

b. The corresponding frequency response is obtained by substituting z =
exp(jw,) = exp(jwT) in (11.55). The resulting expression is

\m» \A.N

1 — Nlo,qupﬁ+ao.womoﬂ - JjwT + 1 NIO.N&Q»%I;.,O@@@O%&!;.SH

H(eT) = -

e

A;
1 — ¢ 0493IT ;= juT

+ (11.56)

This expression is plotted in Figure 11.15 for T = 1.
¢. Apply the inverse Laplace transform to (11.54) to find the impulse re-
sponse. This is given by
b:v"\Aumxo.wbqug.o‘mmmo.+\Aamlo,mbq:miuo.wmmg+\uwmio.&ekuu
— N:o.?«q: x h\rm\,o.mmoe + A%ﬁmg‘o,ommod*u_ + O.AO#MN!O.A@ANN

=e %77 5 0.51 cos(0.9661 — 165.65%) + 0494227049421 (11.57)
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Figure 11.13

The frequency response of
the Chebyshev filter under
Teview.

Figure 11.16
The impulse responses
h(t) and MAT), T = 1.
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|H(eiwy]
i

ot

SR S,

h(z), w?i

e
3

0.20r
0.16 -

0.12

0.031-

0.0+~

—0.04

-0.08

i

-~0.12+

Figure 11.16 shows the impulse response corresponding to (11.57). B
B R B

11-10 THE BILINEAR TRANSFORMATION

)

To crcumvent the “folding™ problem of the impulse invariant response trans-
formation noted in the previous section, a transformation from the s-plane to
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the p-plane can be employed that will map the entire s-plane into a horizontal
strip in the p-plane bounded by the lines p = —joy/2 and p = +jw,/2. More-
over, since H(z) is also periodic in « (with period w,), this transformation
may also cause H(s) to be mapped identically into each of the other horizontal
strips bounded by the lines p = j(n — Yo, and p = j(n + Hw,, where n is an
integer (see Figure 11.17). A transform having the requisite properties is the
bilinear transformation, which is defined by

2 rT
= £ 11.58
s== tanh 3 (11.58)
Using the identity
tanh x = mull.m..la
e +e
we have
2 T2 _ - pTi2
SET TR
Upon substituting the quantity z = e*7 in this expression, we have
2/(z—1
= | — 11.59)
s T\z+1 ® (
and
1+ Ts/2
Z = e
1 —Ts/2 ®

In terms of the z-plane, this-algebraic transformation uniquely maps the left
half of the s-plane into the interior of the unit-circle in the z-plane, as shown
in Figure 11.17. Because no folding occurs. no folding errors will arise. How-
ever, a shortcoming of this transformation is that the frequency response is
nonlinear (that is, warped) in the digital domain.

If we insert = = exp(jw,) into (11.39a), we obtain a relationship between the
frequency @ of the analog filter and w, of the digital filter. We find that

A (el — 1) _ 2efPe(gfoe _ gmieal2)

S=E= 0+ ju= - = T S —
O T T 11) T TeRereient 4 g ion)

2 w,
=j = tan -2

11.60
T 3 (11.60)
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Figure 11.17

(a) A step in finding the
inverse-Z transform. {b)
Mapping of the s-plane
onto the z-plane.

gure 11.18

raphic illustration of @
d wy in bilinear trans-
rmation.
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From this equation, by separatel

a

[

g R -

2

@

@

SIS

tan — ®

y equating real and imaginary parts, we obtain

(1L.61)

Observe that the relationship between the two frequencies @ and w, is a non-

linear one. This is the warping effect. Figure 11.18

a shows the warping relation-

ship graphically. It is evident from the plot that the sampling time T changes

wl

(a)
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the oT axis by stretching or compressing it. Figure 11.18b below clearly shows
the warping effect. Note that the shapes are similar, but the higher frequency

bands are reduced disproportionately.

EXAMPLE 11.8

Determine the characteristics of a digital filter if the corresponding analog filter

has the transfer function

H
His) = ¢ (11.62)
S8
N
« w
F 8
- Q..l
T=3
4 6=
M.I
- 4
w .
4 2k
- H\l
H(ju) — : . “d
a0 80 120 180°
H{eld)
wa

Figure 11.18 (continued)
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Solution: By use of (11.59) we obtain

H
H(z) = mﬁm:mnwﬁlt\ﬁn*r: =5, Ho
Tz+1 51
—H,T z+1 . (11.63)

R=sT):—Q2+s,T)

To illustrate the variation graphically, we set H, = 0.8, s;=08 and T=1.
Figures 11.19a and 11.19b give the frequency response of the analog filter
and the digital filter, respectively. The two transfer functions are given by

0.8

(a)
Vo +(0.8)? *

Jlcos w, + 1)7 + sin? o,
V1.2 cos w, — 2.8)7 + (1.2 sin o)

H(s)| =

(b) (11.64)

|H()| =038

The figures show the corresponding frequencies of the two filters, including the
cutoff value of the digital filter. The nonlinear relation between the two curves
1s clearly evident. B

EXAMPLE 11.9
We wish to design a digital Butterworth filter that will meet the following
conditions:

a. The 3 dB cutoff point w, is to occur at 0.4z rad/s.

b. T = 50 ps.

¢. At 2w, the attenuation is to be 15 dB.

Solution:  First we find the analog equivalent criteria for the requisite digital
filter. Thus we have, using (11.61)

2 ey 2 0.4z
@e = mlan =% = g tan 3 =29.1 x 10° rad/s
2 2 2 2 x 047
olis a5 = msso%n 5 75=s tan 7 = 1230 x 107 rad)s

Now using (11.1) with w = w/w,, we obtain

1
123.1 x 10%\?"
29.0 x 10°

=15

~10log|H(j123.1 x 103> = —10log
1+

Figure 11.19

Frequency response of a
first-order analog filter
and its corresponding
digital filter.
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from which

123.1 x 103"
29.1 x 103

From this we find that
n> 118

1+ > 31.62

hence the minimal order ~f the Burterworth filter to meet the specifications is
n = 2. The normalized form of the filter 15, from Table 11.1,

1
5?4 141425 + 1

The analog filter satisfying the specifications is

H, (s} =

He)=H, (S )=H, ()= !

"129.1 x 103 s ..+ . +1
?f x10°)°

29.1 x 10°

N (29.1 x 10%)?
524411532 x 10% + (29.1 x 1092

H(s)

Introduce (11.59) into this equation, which leads to
H(z)= H(s)[s= 2= 174 1)

B 29.1% x 106
2V E=-1) YT
nd s+ 41,1532 x 103 [ = 29.1% x 106
T) G+ T)+1 X
2117+ 4234271 42117272
10232 —3.766z "1 + 2.002:"2
This is the final digital Butterworth design. B

EXAMPLE 11.10

Determine the characteristics of a digital Butterworth filter to meet the speci-
fications of Example 11.2. The sampling frequency is 10 times the cutoff
frequency.

Solution:  We find that we must choose a filter with n = 4 to meet the con-
ditions of the problem. The normalized function is then known to be

1
st 4 2613157 + 3414257 + 261315 = 1

which can also be written

Hi(s)

1
(s* + 0.7654s + 1)(s® + 1.8478s + 1)

H(s) =

\
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Now apply the bilinear z-transformation-for the normalized function

2i(z=-10) z—1
Sl L R
TlET ) T+ 1
so that
HE) = H
T -1} z—1
42| 2 +0.76544 +1
z4+1 z+1
1
N TESNE =y
AN 4184784 21 | 4 g
o+ 1 o+ 1

Expand this expression to find

e = 0.5946(z + 1)* -
)= =2 +0.99432 + 0.7434)(z* + 1.3621= + 0.4736)

t11-11 PREWARPING

Because of frequency warping, as discussed earlier, the bilinear z-transformation
is most useful in obtaining filter approximations for continuous filters whose
magnitude characteristics can be divided along the frequency scale into suc-

- cessive stop and passbands, where the Joss or gain is essentially constant in the

band. Compensation can be mada for the effect of warping by prewarping the
continuous filter design in such a way that upon applying the bilinear trans-
formation, the critical frequencies will be shifted bac: to the desired values.

To examine the prewarping process in general terms (see Example 11.9)
suppose that the system function H(s) is expressed in partial-fraction form,
with a typical term being H,/(s — p,). By applying the bilinear z-transformation
{11.59) to such a term, we obtain

H, . H,Tz+1) (1163)

s=p1 @Q-=pT)z=2-p,T
A partial-fraction expansion of the right-hand expression gives
4H,T

H,T 4 — piT?

Hyz) = ‘ 11.66

i) N!Pﬂ+ 2+ pT ( )

T 2-p,T

This shows that the bilinear z-transformation results in the pole in the z-plane
being at 2 + p, T)/(2 — p, T) rather than at e”'7, as in the impulse invariant
response method. To prewarp the function, we wish to apply a transformation
that moves the pole location of the digital filter to e”', the pole of the original
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filter. The transformation sequence is the following: first the transfer function is
modified by moving the pole [see (1 1.58)]

B NF = (11.67)
$Th mllﬁmnn@.(

T 2

and then applying the bilinear z-transformation to this modified transfer func-
tion. This leads, using (11.59), to

s+ 1
qmp == BT+ D T (11.68)
s—ptanh 2 201y e 22T

By simple arithmetic manipulation it can be shown that the transfer function
becomes
_H T+ z 41

Hy(z) = ) T (11.69)

We will consider applying the bilinear z-transformation to the digitization
of the Butterworth low-pass filter. The magnitude-squared characteristic of these
filters is written [see (11.2)]

H(9H(~s) = :

= (11.70)

L+ (-1r( =

where o, is the cutofT frequency. From (11.61) replace @, by its prewarped value

= 2 tap @D 171
W, = T 2 A . v
Then the magnitude squared characteristic of the filter is
e
)
H{s) x H(—35) = p o (a) (11.72)
I+(=D 2 tan o.T
T 2
which becomes, by (11.59),
HE) = H o)
=/ z7—1 2n
W T+l
I+ (=1) o7
tan ——

5

<~

To find the system function H(z) from this, we write the expression
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tan2n[ 2T
N 2
HEP = —— — (a1.73)
tan®" | —— ) 4 (— 17| 22—
an 2 =D I+ 1]
or
2 nwl 2
tan?" mwl. [z+ 17
S —ry
ﬂm.bua .w ﬁu + Huwa -+ Almvaﬁn — Huwa

The denominator polynomial in this expression can be expanded to the form

o, T 2n 2n
tan?t| <= —~ 1) |] 22 e NN:I» il NN:IN
an 5 +(-1) +p ] -+ 3
21\ anes A 2n .
+u|w|- Hog )+ +mu=..“-+~ (11.74)
where
o, T
t 2nf e ) -1y
5 A N I el _nn=D--—k+1)
h T k)~ X T (n— kYK
tan? (2} 4 1y g (n ik
2
A calculation shows that the 21 roots of (11.74) are givea by
0. T 0. T
1 — tan? mmgi +j2 tan Mw!, sin 8,
= = - i=1,2...., 11.75
44 .NNA/ ) Enux i=1 2n { )
1 —2tan | cos §; + tan®
2 2
where
0 — (i~ Dr/n n odd
Yl2i- D2 neven
The squared gain factor is then
tan?" T
, 2 S
[HO]? = — o x-A: vv. Y — (11.76)
tan2n .w + (=1 L PiNE— P> =~ Daa

“~

Now, if p = re/ is a root of the denominator polynomial, then so are re™#,

(1/r)e’® and (1/r)e 7. Hence |H(z)]* will have n poles inside and n poles outside

the unit circle (r = 1). If Pis- .., p, denote the poles inside the unit circle, then
biz+ 1)

H({) = 11.7
= = @ {7
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where b is selected so that H (1) = 1; therefore

M.’ ﬂH.‘au...H!a
@HA P1) ma. ( Pn) ®)

The remaining poles, p,_,, ..., P2y associated with |H(z)[? are outside the unit
circle. By selecting H(-) according to (11.77) for bounded input signal, the our-
put signal goes to zero for n — oc; this establishes the bounded-input, bounded-
output (bibo) stability property, a matter to be considered in Section 12-17.

EXAMPLE 11.11

Determine the characteristics of a digital Butterworth filter that has 20 dB atten-
uation at a frequency of 2.6 times its cutoff frequency. The sampling frequency
1s 10 times the cutoff frequency. Assume that prewarping has been employed.

Solution: The product

1 2
o, T= 21 x 3000 =_=_
30000 1 5
From (11.72) we write
“:ANMGN.:M - . 1 :
1+ (=1p el an( 2\
ST 1) BT
_ 1
tan®” @l
T+ (=17 2
tan® | L
10

From the requirement that the attenuation is 20 dB down {=0.01) when
T = 2675, we have

1
tan*" 0.26x
tan"" 0.17

[HET)? = =10.01]?

1+

from which
10* <1 4 (3.28)*

From this we find that n > 4. Also, from (11.75) we find the four roots contained
within the unit circle to be: )

Hm. NN == O.@@O}ﬂ H,\O.twu
T3, 7 = 05243 £ j0.1458
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Thus the Butterworth function is. from (1177,

bz + 1)*
=% — 1.3208z + 0.6325)(=2 — 1.0486: + 0.2972)

HZ) =

where & is the value specified by (11.77b). |

11-12 FINITE IMPULSE RESPONSE (FIR) FILTERS

The design considerations in the previous two sections were based largely on the
impulse response of analog filters. and these led to transer functions of the IR
(recursive filter) type. We now wish to present two methods for designing FIR
filters (nonrecursive), whose present output is computed by using only the
present and past inputs, but none of its previous outputs. Because no feedback
is present, this type of filter is stable. Furthermore, such filters are associated
with linear phase characteristics, and so phase distortion in the output may be
eliminated.

Two related methods will be discussed: (a) Fourier series method, and (b)
the DFT method. Our discussion will be confined to a low-pass filter. Trans-
formations for other types are discussed below. Refer to Fig. 11.20.

In the Fourier series method. the specified H{w) is expanded into a Fourier
eXpansion, assuming zero axis svmmetry, thereby including only cosine terms.
The procedure now continues as follows:

L. Truncate the series expansion to N terms and evaluate the coefficients,

2. Write the cosine terms in the expansion in exponential form and then
write the exponential terms as functions of = through the transformation
z = exp(jnf). This yields an expression for H (2).

3. Muliply the expression for H (2) by z7¥ to yield H(z). the system func-
tion for the FIR filter. Recall that z™¥ is Just a phase factor which will
not alter the amplitude expression for H(z).

Hiersy
Cutoff frequency w,
|
1 . Figure 11.20
“ Ideal low-pass filter
! characteristics.
i
i
i
: I .
= X 3z 2 ¥
0 37 7T 3F T
@ w, 3 .
O 7T T T s
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In the DFT method, we sample the frequency response function at distances
1/NT. This provides a sequence {H(nQ)} which will be the DFT of an impulse
sequence {h(kT)}. From the results obtained in Chapter 10, we write (10.4)

N-1 N-1 .
H(nQ) = »M.o h(kT)e #2=knd) = ~Mc h(kT)e ™ m¥*T

o, 2n 2n
b”‘m"l" 8”

k=0,1,...,N~1 N-NT s =7

N-1
%ﬁduh Y H(@nQ)e"™T
n=0

n=0,1,...,N—1
N

(11.79)

The steps required to design the appropriate discrete filter are: .
1. From the given amplitude frequency characteristics, obtain the desired
sampled values H(nQ) for a specified N.

2. Incorporate into (11.79) the values found in Step 1, and find the sequence
{h(kT)}.

3. Use the values {h(kT)} in the Z-transform relationship given in (9.3) to
find H(z).

4. Plot |[H(e’*T)| versus w to obtain the amplitude characteristics.

EXAMPLE 11.12
Find the nonrecursive filter corresponding to the ideal filter shown in Figure
11.21a for N =16.

Solution: From .mmEm 11.21a the sampled values of H(e/*7) are:
{1,1,05,0,0,0,0,0,0,0,0,0,0,0,0.5, 1}

Observe that we have used the average value of the function at the point of dis-
continuity. Next apply (11.79) to obtain

hOT) = Wma +1 x IR0 4 05 x @20 4§ x @PFH0 4

- O % m.ﬁwg;\go + O.m X N.E.xiwvo + “— x N\.mmg\wvo

ES

=0.25

St
N

h(1T)

IMIC L 1eIIRBIL L (5072 L () 4o 4 (.5 1RO
16"

+ Hn.,:m.n mZv

]

1
Mmc +0.524 ”:.o.wmu + 0.354 +j0.354 + - - + 0.354 — j0.354

+0.924 - j0.383) = 0.222
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H(e«T)
3

Figure 11.21
The frequency response of
the FIR filter under review.

0 = T “d
4
,o X X Iz 27
T T aT T "% W
_ i1 i 1 ! ] ! 1 )] )] i i i 1 i !
0 2 4 6 8 10 12 14 g
(a)
| H ()|
1
i _‘E
x 2x d

(®)
1 : .
BQRT) = o2 (14 17192 1 05020992 1 0 4 - 1 Sl 02

+ 1e/13t=%12)
=0.151
From Step 3, we obtain
H'(z) = 015127 + 0.2222' 4+ 0.25z° + 0.222z7% 4+ 0.151z72

The positive power on = indicates a time advance, which in turn requires thst
the filter must have input data for t < 0. To obtain a causal filter, we multipiv
H'(z) by z™2, which yields, for the desired filter,

H(z)=0.151 + 022271 + 0.25:72 + 0222273 4+ 0.151=*

The amplitude characteristics [H(e/“7)| are plotted in Figure 11.21b.



The time shift does not alter the amplitude characteristics of the filter but
only its phase, which here is linear; this feature is often desired. B

11-13  USE OF WINDOW FUNCTIONS FOR FIR FILTERS

In this section we will develop the Fourier series method of filter design. Also,
we will discuss the use of window functions to produce a smoother response
function than would be possible without the use of an appropriate window.

We know that any periodic function can be expanded into a Fourier series.
Thus H(e’*T), which is periodic. can be written in the form

X

H(e°T) = TM Mk T T (11.80)
where

h(kT) nmwlh % weJ H{eoT)ekeT fe (11.81)
If we set z = e/ [see (11.47)]. then (11.80) becomes

H(z) = Ms RET):7% (11.82)
In practice, however, we use a mn‘wo number of samples, and we therefore set

h(kT) =0 molﬂvm..gllH and k< |2MH (11.83)
For a finite number of samples. (11.82) becomes

H'(z) = h(0) + QMM\N [A(—kT)z* + hkT)z7¥] (11.84)

To create a causal filter, we multiply H'(z) by z~W~ 172, which then gives as a
final configuration the expression

H(z)=z""=D2pg) (11.85)

The truncation of the infinite series specified in (1 1.80) which implies the use
of a rectangular window results in a modified FIR filter that closely resembles
the exact one. The truncation operation creates Gibbs phenomenon overshoots
at the points of discontinuities of H(e/*T) with the ripples existing in the neigh-
borhood of the discontinuities. Here, as in several other points of our study,
weighting sequences (windows) are used to modify the truncated function in order
to decrease the overshoot. Thus the modified truncated sequence of the Fourler
coefficients will be specified by

WT)w(kT) 0<k< N -1

Pl T) = 0 otherwise

(11.86)

where
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wkT) 0<k<N-—1

11.8
0 otherwise (11.87)

wikT) =

.To design an FIR filter using the DFT approach, the following steps are
required:

L. From the given amplitude characteristics. obtain the desired sampled
values H(nQ) for a specified N.

2. Incorporate in (11.81) the values found in Step 1 and find the sequence
{hkT)).

3. Apply an appropriate window function to the finitz sequence found in
Step 2.

4. Use (11.84) to obtain H'(z).

3. Multiply H'(z) by z~&-172,

6. Plot |H(e/*")| versus w to obtain the amplitude characteristic of the
resulting flter.

EXAMPLE 11.12

Apply the Hamming window [see (10.72)] to the impulse response sequence h(kT)
that corresponds to the desired frequency characteristics of the filter shown in
Figure 11.20. Choose the values: 0 < k<4=N—~1and T = 1.

Solution:  From (11.81) we obtain

T T 1 nk
Y = | Kol Joy = — sin —
HkT) 5 ‘.:eﬁ.m dow sin
1 1 2=n 1
= — ] — — k) = — sinlc :T
— sin ﬂu X = = sin( kT)

where o is the cutoff frequency of the filter and o, = 2= T is the sampling
frequency. If we set T = 1, a given condition, the impulse sequence is

; 11 1
‘.P\m:(vw = .HM, M.n..u Ow ..l.wl.u.ln.u 0

For the Hamming window in a form that is symmetric around the origin, we

must write (10.72) in the form
k
Wan(k) = 0.54 + 0.46 cos wm

where the constant K is equal to the number of terms to be included in the range
on each side of A{OT). Thus we find, (where k = 4)

om0 =1 wyn(1) = 0865 wy(2) = 0.541
wen(3) = 0215 wy(4) = 0.081

The resulting windowed sequence is



604 Figure 11.22
(a) Unsmoothed amplitude
versus frequency charac-

CHAPTER 11 teristic of the filter under
o consideration. (b)
[H(e“e)! Smoothed (windowed)
t amplitude versus frequency
1.0 characteristic with the

Hamming window.

0.92

7 27 ¢
(@
[H ()]

Iy

1
L I @
T 27 d
(b)

; . 1 0.865 0.215
?x.Qf.x. = ,MEE:VSAEW. = M,I.MIJ 0, I!wﬂ.. 0

This sequence is used in (11.84) to obtain

1 0.863 , 0215
H(@@) ==+ ST 4 0x TPy o x T
= n I
0.86 215
+ MNH+oxNNlENu+oxNu
i 3n

Since our largest positive exponent is 3, we multiply H'(z) by z™3 to find
H(Z)=:z73H'()
0.215 0865 1

I»N P
=— A 4
3n + prd 2 n In

A plot of |H(e?*T)| with T = 1 is given in Figure 11.22 for both the unmodified
and the windowed cases. It is apparent from the plots that the effect of the

wimAave tamde ta comanih thia wlaclan —
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[H(e/eT)]
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O e em.Wm
— MO baer
2 -20k-
=
& _3g o Passband—s
= Figure 11.23
o -]
m 40k (a) Approximation to ideal
Z low-pass filter, exhibiting
R Y Gibbs phenomenon. (b)
The low-pass filter designed
- 60 - with the use of a window
function,
[H(esoT)
i [2)
0 s - “ @
. i
-10 ! i !
—— Passband T‘.D‘mummmoa wwnn M Stopband
—-20 b i |
i
_ I
-30 { _
]
i
-40 - ! |
-50 - ~
-60
I.QO o
80

)

The data contained in Figure 11.22 are often presented by plotting the mag-
nitude function |H(e’*T)| on a dB scale. Figure 11.23a shows such a plot for a
low-pass filter with N = 11 and N = 21. We see that the points for |H(e/*T)| = 0
are placed in sharp perspective since the magnitude function becomes —cc at
these points. Figure 11.23b shows by comparison the effect obtainable using an
appropriate window for the filter (with N = 11) shown in Figure 11.23a. The

PR P SO U S k]
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clearly evident. As shown here. the transition bandwidth is approximately 5/N.
The three most commonly used window functions for modifyving nonrecur-
sive digital filters are:

1. Hamming window

Whm = 0.54 + 0.46 cos(iz K) (11.88)
2. Blackman window
= 0.42 4+ 0.5 cos(k= KY + 0.08 cos(2kr/K) (11.89)
3. Hann window
wy = 0.5 + 0.5 cos(kn. KO (11.50)

The constant K is equal to the zumber of terms to be included in the expansion
for K{OT).

11-14 THE DFT AS A FILTER

The discrete Fourier transform /\DFT) can be used in digital filter design. This
requires that the discrete signal to be filtered is transformed to the frequency
domain via an FFT algorithm. and the frequency samples of the signal are then
multiplied by the desired frequency response characteristic of the filter. The
filtered frequency samples are tken transformed to the time domain through an
inverse FFT procedure. Since the filtering operation is accomplished in the
frequency domain, there is no rzad for determining the coefficients of the DFT.
We first assume that the desire¢ frequency response is specified at discrete fre-
quency points, and the filter coesficients are found from the discrete frequency
samples through the inverse DFT. Suppose therefore that
27n

H(n) & H{ = | = HuQ)

= 2,... -
NT n=012...,N—1

denotes the samples of the frauency response at equally spaced frequency
points. The unit sample responsz sequence is

1 Nzt N
A Y JAnkn N
(k) ~ aMo H(n)e
] M=t ’
..»m — M HnQe™T L =0,1,...,N—1 (11.91)
The transfer function H(z) is thea
N-1 N-1 N-1
=3 hk)z"F= ¥ A M H(n)g/3mkniN | - =k
k=0 k=0 n=0
- N-1
M Y (PN (11.92)

no
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But the summation

N-—1
M muunu»..ZNln — H -+ mkwai\.zwla e
k=0

NQ.ANH:X?.I 1)N_~(N~1)

H _ Amu.ma:\.z.n.lwvz H — N&.uﬂ:ﬂl.{

: T EmN 1 Tl et
1—27% = -1
IR EETT N S NI Z )
and (11.92) becomes
1Azt 1N
Hio) = M Hn) — P (11.93)

This shows that the transfer function can be found, given the samples of the
frequency response of the FIR filter. This equation has N poles and N zeros.
The N zeros are located at the principal roots of 1. There are N — 1 poles located
at z = 0. and there is one pole located at z = exp{ j2zn/N]. This pole will cancel

_the zero for the value n = N. Thus the resulting sequence has N — 1 poles, all

located at = = O and N — 1 zeros located on the unit circle. This means, of course,
that H(z) is given as the ratio of two polynomials. Therefore the FIR filter that
is realized from this transfer function is a recursive one.

EXAMPLE 11.13
Show that each term in the summation of (11.93) specifies a EE‘ Choose N = 3,
and consider the function for n = 8.

Solution: We examine the specific function

1—-2z7% N—1

H,(2) = [ — giZmnif 1 = iz — PEEET
For T =1,
JoNT _ 1 J2aNf e g
oty _ |8 |_|_e |
[H(eT)| = |o7oT = | | ey |
_m?zbh — T INSIS s sin NS /7,
= [T TN g T ] T .
sinmy e+ —
A

We observe that H ,(z) includes N — 1 poles at z == 0 and N zeros on the
unit circle. However, one of the poles and one of the zeros cancel each other.
The situations for the zero-poles constellation and the response function are
Mustrated in Figure 11.24, B

The frequency response of this filter is obtained from (11.93) by setting
= expljoT]. We then have



608 Figure 11.24
The DFT filter function.
(a) Poie-zero configurauon.

o R (b) Frequency response
|H (el25//f); characteristics.
n I
i
x ]
denominator
\ numerator
a
0 1 2 3 4 5 6 7 8 Js
(a) ®)
) | N-1 1 — g-iNoT
T
H(eT) = 5 \Ma H(n) e
1 ¥=1 1 — g~ IN@T=2z¥)
=N Mo H(n) 1 ¢ FeT-2znm)
This can be expanded to
2nn
of ==
N-1 o= IN(@T = 22n/8y2 SIR N )
H(e/T) = — > H@) ~HGT = 3anN) 2 5
N =0 4 oT nn
. N
sin
2
. {NoT
Net sin 3
= ¢ T NTDOTZ 5 H(p)e~jenN (11.94)
a=0 2nn
oT =4
N sin 3

As we know from DFT properties, for the unit sample response sequence
h(k) of the FIR filter to be a real valued quantity, the frequency samples H(n)
must satisfy the symmetry property; that is, the real part must be an even
function and the imaginary part must be an odd function. Therefore the fre-
quency samples must be so selected that H(N — n) = H(n). This requires that the
amplitudes and phase be selected so that

AN — n) = A(n) (N — n) = 2mz — O(n)

for n=1,2,...,N—-1 (11.95)

where m is an integer. Therefore we must have

ELEMENTS OF DIGITAL FILTER DESIGN 609

H(0) = real or 6(0) = mn (a)

m‘@nhmwo mWHwSa

(11.96)
2 2 2 ®

11-15  FREQUENCY TRANSFORMATION OF IIR FILTERS

In parallel with the availability of special transformations for analog filters for
converting low-pass to high-pass, we can find special transformations for digital
filters. These will permit transformation of a low-pass filter to another low-pass

filter, a high-pass filter, a bandpass filter, or a bandstop digital filter. We con-
sider these transformations:

1. Low-Pass to Low-Pass Transformation. This transformation is

-1 Z -
It - — (11.97)
1 —az
where
. @y —
sin| | —% &
2

x= P

. o o

sin L 3 s

Wg = cutoff frequency of the given filter

Wy = cutoff frequency of the desired filter

EXAMPLE 11.14

Design a low-pass filter with wye = 0.5 if the given filter is that specified in
Example 11.9,

Solution: We first determine the value of

sin 047 — 0.5z
2 <
= sin 047 + 057\ ] —0.138
2
Next we combine (11.97) with the results of Example 11.9. We find
=71+ 0158 71+ 0158 P
2117 + 4234 117
HE) = H7+423 I+0.158:71 +21 I +0.158:71
o 271+ 0.158 =TT+ 0158 P
10.232 — 3.766 .002
| TvomssT | T 292 e
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2.839 + 5.683z7 + 2.839z72
3.963 + 9.682:7*

2. Low-Pass to High-Pass Transformation.

4
1, x (11.98)
14

P

where

Wge + Wye
2

Wge ~ Dye
2

-

cos

Cos

3. Low-Pass to Bandpass Transformation.

=2 2af nl.*.m%H
1 f+1 f+1
S ES U

F+1° B+1

(11.99)

F R |

where

Em: + 8\5
2

FA

(o0

2= v T
Wy, — Wy

2

Cos

?
Wy — O tan Wy,
2 2

B = cot

I

o}, = desired upper cutoff frequency

i

w), = desired lower cutoff frequency

4. Low-Pass to Bandstop Transformation.

2 1 -
S S A
. 1+8 1+8

© I8 23 741

I+ 145

NIN

(11.100)

where

REFERENCES
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D — D\ Dac
= tan| ———r j 1an —
b 2 2

wy, = desired upper cutoff frequency
wy, = desired lower cuteff frequency

11-16 RECURSIVE VERSUS NONRECURSIVE DESIGNS:
GENERAL REMARKS

A comparison of the impor:ant features of different filter designs is helpful. In

 recursive filters the poles of the transfer function can be placed anywhere within

the unit circle. As a result, high selectivity can be achieved using low-order trans-
fer functions. With nonrecursive filters, on the other hand, the poles are fixed at
the origin and high selectivity can be achieved only by using a relatively high
order for the transfer function. For the same filter specifications, the order of
the nonrecursive filter might be as much as 5 to 10 times that of the recursive
structure, with the consequent need for more electronic parts, Often, however,
a recursive filter might neoi meet the specifications, and in such cases the
nonrecursive filter can be used by the designer.

An important advantagz of the nonrecursive filter is that it can be imple-
mented using the FFT metkod, in the manner discussed in Section 11-14.

Hardware filter implementation requires that storage of input and output
data and also arithmetic operations are implemented by using finite word-length
registers (for example, 8, 12. or 16 bits). As a result, certain errors will occur;
these are categorized as follows:

1. Quantization errors due to arithmetic operations such as rounding off
and truncation. .

2. Quantization errors due to representing the input signal by a set of dis-
crete values.

3. Quantization errors when the filter coeficients are represented by a finite
number of bits.

It is left to the filter desigrer to decide on the various trade-offs between cost
and precision in trying to reach a specified goal.
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PROBLEMS

maximally flat

11-2.1 A low-pass filter is to be designed to have a nominal cutoff of SkHz It is to be
to have 3 poles.

{Butterworth) and is to be down 1 dB at the edge of the passband. The response function is
a. Locate the poles in the s-plane.
b. What is the rate of attenuation remote from cutoff?
11-2.2 Derive the transfer function for a third-order Butterworth low-pass filter and locate its poles.
11-2.3 The squared normalized amplitude of a Butterworth flter is [H.w)? = 1AL + w®). Find the normalized trans- -
fer function H,{jw). .
11-2.4 Show that the high frequency roll-off of an nth-order Butterworth filter is 20n dB/decade. Also, show that the &
first (2 — 1) derivatives of an nth-order Butterworth filter are zero at @ = 0. :

.|
11-3.1 Repeat Problem 11-2.1 for a Chebyshev filter. ;

11-3.2 Find the value of n for a Butterworth and a Chebyshev filter that will satisfy the conditions specified fn %4 11-10.2 Locate the points 5 =

Figure P11-3.2.
|H (]

1 e
0.95 %

0.05

Figure P11-3.2

11-3.3 A Chebyshev low-pass filter is designed to have a passband ripple <2dB with a cutoff freq o)
1000 rad/s. The attenuation is to be at least 50 dB at 5000 rad s. Specify €, n, and H(jw). ’

11-3.4 Compare the attenuation at high frequencies of Butterworth and Chebyshev low-pass filters of the same B
when the 3 dB cutoff frequencies are the same for both filters. Sketch the results on a graph of dB

11-3.5 The characteristics to be met by a low-pass filter are:

0to 4 kHz
amplitude to be down &0 dB at 6 kHz

passband:
attenuation:

- & 11-10.1 Design a Butterworth low-pass filter, given the following data: half-power point at @y

11-12.1 The low-pass filter of Example 1111 is
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Determine the value of n for:

2. Butterworth.

b. Chebyshev with 1/2 dB ripple in tke passband.

¢ Chebyshev with 1 dB ripple in the passband,

cutoff points at frequencies 300 and 600 kHz
to be down 3 dB at the edge of the

11-7.1 A bandpass filter is to have nominal
flat shape (Butterworth) and is
3 poles. i
a. Locate the poles of the response furction.
b. What is the ultimate rate of attenuation on each side of the band?

11-9.1 Suppose that two RC sections, as discussed in Example 11.6, are cascaded, with a buffer amplifier between

the sections to avoid loading. Find the digital filter equivalent to this combination. How does it relate to the results of
Example 11.67

It is to have a maximally
band. The response function s to have

{1 — 2=

z—a
The nominal cutoff is 1 kHz with a gain at @ = 2w, that is less than 0.35. The sampling frequency is 10 .
Specify the H(e**7) of this filter.

11-9.3 Repeat Example 11.4 with T = 0.1 s and T = 0025 5.

11-9.4 Find the second-order Butterworth digital filter with cutoff frequency f; = 100 Hz and sampling rate of
1250 Hz.

11-9.2 Design a low-pass digital filter consisting of a cascade of identical sections, each of which has H(z) =

2507, sampling
period T'= .0005 s, @, = 5007, gain < 02, Refer to Figure 11,2, )
Ls=14ju/2s=1 —jo 2,5 =10, and s =
onto the z-plane. Assume that T = 0.1,

oc on the s-plane when mapped by a
bilinear transformation

| 11-10.3 Show that warping also affects the phase curves.
11-11.1 Determine analytically the frequency response of the nonrecursive filter
a6l 11-11.2 Show that if p

specified by H(z) = 329, 27~
= re’ is a root of the polvnomial in 2 given in (11.67), then re™, (1/r)e”, and (1/r}e” * also
are roots.

11-11.3 Consider the Butterworth low-pass filter
resulting function has the squared gain

1

given by (11.73). Show that by rotating the poles and ze:os, the

?&AN?J—N

2
where w, = (n/T) — @y, and where H(—1) = 1. Thisis a high-pass filter.

modified by the use of 2 Hann window. Find the resulting fre-
quency response.
1-12.2 Refer to Figure P11-12.2.
3. Determine a nonrecursive filter that will
the Fourier series design method,
b. Using the Hamming window function, determine a nonrecursive filter that will approximate the given frequency
response using 10 terms from the Fourier series,
¢ Plot the frequency response of the filters developed in a. and b. Comment on the results,

approximate the frequency response shown using 10 terms from
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1-14.1 Determine the frequency response of a DFT filter that has a linear phase characteristic, with the constant
delay equal to (N — 1),2 units of the sampling interval.

W .14.2 Show that a nonrecursive transfer function obtained by the DFT method can be realized by means of a set
! of parallel second-order recursive sections in cascade with an elementary Nth-order nonrecursive section.
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