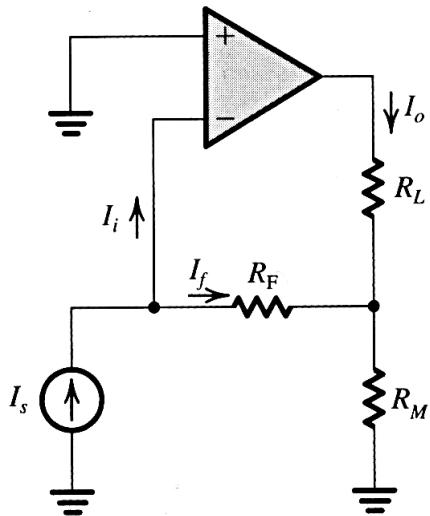
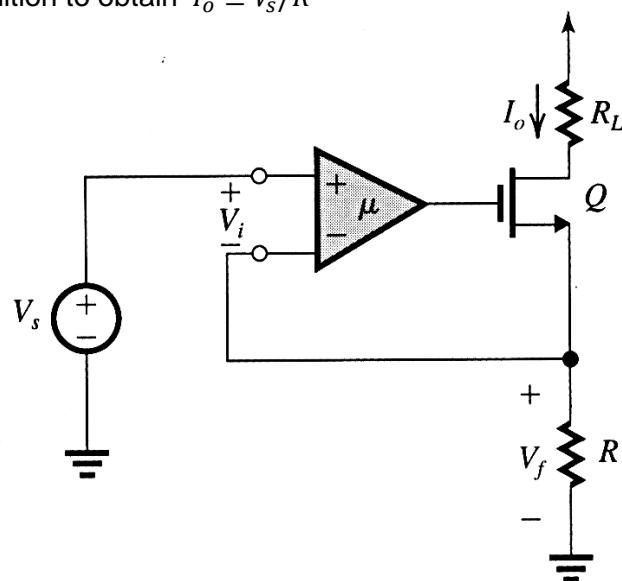


COLORADO STATE UNIVERSITY
ECE 332: ELECTRONIC PRINCIPLES II


HOMEWORK 11

1. A negative-feedback amplifier has a close loop gain $A_f = 100$ and an open-loop gain $A = 10^4$. What is the feed-back factor f ? If a manufacturing error results in a reduction of A to 10^3 , what closed-loop gain results? What is the percentage change in A_f corresponding to this factor of 10 reduction in A ?
2. Consider the op amp circuit shown in the figure, where op amp has infinite input resistance and zero output resistance but finite open-loop gain A .
 - a) Verify the feedback factor $f = R_2/(R_1 + R_2)$
 - b) If $R_1 = 10k\Omega$, find R_2 that results in the closed-loop gain $A_f = 10V/V$ for the following three cases: (i) $A = 1000V/V$; (ii) $A = 100V/V$; (iii) $A = 12V/V$.
 - c) For each of the three cases in (b), find the percentage change in A_f that results when A decreases by 20%. Comment on the result.
3. The noninverting buffer op amp configuration shown in the figure below (the bottom diagram) is a direct implementation of the feed-back loop of the feedback diagram (the top diagram). Assuming that the op amp has infinite input resistance and zero output resistance, what is the feedback factor f ? If $A = 10^3$, what is the closed-loop voltage gain? What is the amount of feedback (in dB) (the amount of feedback is defined as $1+T$)? For $V_s = 1V$, find V_o and V_i . If A decreases by 10%, what is the corresponding percentage decrease in A_f ?

4. The feedback current amplifier in the figure utilizes an op amp with an input differential resistance R_{id} , an open-loop gain μ , and an output resistance r_o . The output current I_o that is delivered to the load resistance R_L is sensed by the feedback network composed of the two resistances R_M and R_F , and a fraction I_f is fed back to the amplifier input node.


Assume the loop gain is large, find expressions for, $f \equiv I_f / I_o$, and $A_f \equiv I_o / I_s$, assuming that the feedback causes the voltage at the input node to be near ground (i.e. it is a virtual ground). For $R_M = 100\Omega$, and $R_F = 10k\Omega$, find f and A_f .

5. Figure below shows a feedback transconductance amplifier utilizing an op amp with open-loop gain μ , very large input resistance, and a very small output resistance, and an NMOS transistor Q . The amplifier delivers its output current to R_L . The feedback network, composed of resistor R , senses the equal current in the source terminal of Q and delivers a proportional voltage V_f to the negative input terminal of the op amp. Assume R is much smaller than the output impedance of Q .

a) Show that the feedback is negative.
 b) Open the feedback loop by breaking the connection of R to the negative input terminal.

Find an expression for $A \equiv I_o / V_i$.
 c) Find an expression for $f \equiv V_f / I_o$.
 d) Find an expression for $A_f \equiv I_o / V_s$.
 e) What is the condition to obtain $I_o \cong V_s / R$

