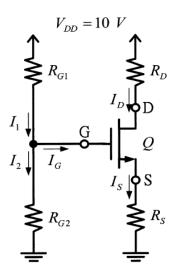
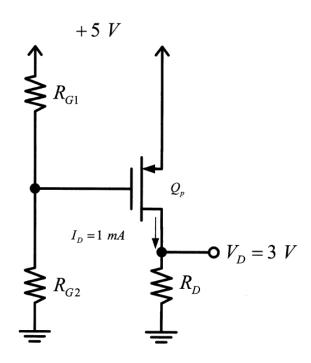

ECE 331: Electronics Principles I Fall 2014

Lab #3: MOSFETs Characterization


Pre-lab due on Thursday, Oct. 16, before noon

Pre-lab


- A. Draw both the large and small signal models for NMOS transistors. Sketch I_D vs V_{DS} characteristics for several values of V_{GS} and graphically illustrate the Channel Length Modulation effect.
- B. List the difference between NMOS and PMOS transistors. Draw a schematic of each one, Labeling all relevant voltages and currents. What is an advantage of using a PMOS? What is a drawback? (Hint: Consider the response time)
- C. For an NMOS transistor with threshold voltage Vt = 0.62 V, Kn' = 0.167mA/V², here Kn' is defined to be equal to $\mu_n C_{ox}$, If Vover-drive is 0.25 V, W = 0.55 μ m and L = 0.18 μ m, answering the questions listed below:
 - 1. What is the actual channel length for Vds equal to 0.5 V, 1V and 1.5V separately? Assume $\lambda = 0.1 \text{ V}^{-1}$ for this process. What is the output impedance r_o at Vds = 1 V?
 - 2. Assume $\lambda = 0$, find g_m at $I_D = 1$ mA.
- D. For the circuit below, given Vt = 1 V, Kn'(W/L) = 2 mA/V² and $\lambda = 0$, Find R to make $I_D = 1$ mA and how much V_D is.

E. For the circuit below, given Vt = 1 V, Kn'(W/L) = 0.5 mA/V² and λ = 0, R_{G1} = 5 M Ω , R_{G2} = 5 M Ω , R_{D} = 6 K Ω AND R_{S} = 6 K Ω , Find voltages at the each terminal (V $_{G}$, V $_{S}$, V $_{D}$) and current at each node (I $_{G}$, I $_{S}$, I $_{1}$, I $_{2}$).

F. Design the circuit below to make Qp working in saturation region and $I_D=1$ mA, $V_D=3$ V, given Vt=-1 V, Kp'(W/L)=2 mA/V 2 and $\lambda=0$, Find $R_{D_s}R_{G1_s}R_{G2}$

