## **ECE 331: Electronics Principles I Fall 2013**

Lab #3: MOSFETs Characterization

Pre-lab due on Thurs, Oct. 24, before noon
Report due on Tues, Nov. 12 to Fri, Nov. 15, at the beginning of your registered lab sessio

Important: All voltages are given for NMOS devices. Remember to reverse polarities for PMOS devices.

- 1: For both NMOS and PMOS with  $W = 0.54 \mu m$  and  $Lmin = 0.18 \mu m$ :
  - Plot  $i_D$  vs.  $v_{GS}$  for  $v_{DS} = 0.2$  V, 0.8 V and 1.5 V.

(Sweep  $v_{GS}$  from 0 V to 1.8 V with step size of 0.1 V)

Write down the approximate threshold voltage you find from your plot.

Open results browser to find the threshold voltage calculated by Cadence.

With different  $v_{DS}$  what have you found from your plots? Why?

• With W/L=3,  $L = 0.18 \,\mu\text{m}$ , Plot  $i_D$  vs.  $v_{DS}$  for  $v_{GS} = 0.2$  V, 0.5 V, 0.7 V, 0.9 V, 1.1V, (Sweep  $v_{DS}$  from 0 V to 1.8 V with step size of 0.1 V)

Write down the approximate saturation voltage from each plot.

With W/L=3,  $L = 2 \mu m$ , Plot  $i_D$  vs.  $v_{DS}$  for  $v_{GS} = 0.2$  V, 0.5 V, 0.7 V, 0.9 V, 1.1V, and (Sweep  $v_{DS}$  from 0 V to 1.8 V with step size of 0.1 V)

Write down the approximate saturation voltage from each plot.

What have you found from the plots? Draw your conclusions.

• Plot the transconductance  $(g_m)$  as a function of  $v_{GS}$  for  $v_{DS} = 1$  V.

(Sweep  $v_{GS}$  from 0 V to 1.8 V with step size of 0.1 V.)

How linear is the transconductance in the saturation region? Do you prefer  $g_m$  to be large Or small when designing the amplifier using MOS transistors? With the same size and Overdrive voltage, assume no channel length modulation, will you prefer **PMOS** or **NMOS** when you design a high speed high gain amplifier? why?

Comparing NMOS and PMOS, which is difference on consideration of  $g_m$ 

• Plot output impedance ro vs.  $v_{DS}$  for  $v_{DS}$  sweep from 0 V to 1.8 V with 0.1 V step size.

A. For  $v_{GS}$  equal to 0.8V, W/L=3,  $L=0.18~\mu m$ B. For  $v_{GS}$  equal to 0.8V, W/L=3,  $L=2~\mu m$ 

What have you found from your plot? Do you want the output impedance to be larger or smaller? Why? Comparing **NMOS** and **PMOS**, which is your priority when designing Precision current reference? What is the good side of increasing channel length? What is the down side?

2: For both **NMOS** and **PMOS**, with  $W = 3 \mu m$  and  $L = 1 \mu m$ ;

Connect the body terminal of the transistor to a voltage source to make  $|v_{SB}| = 0.2$  0.2V, 0.5 V, 0.8 V respectively:

• For each of the  $|v_{SB}|$ , plot  $i_D$  vs.  $v_{GS}$  for  $v_{DS} = 1$  V.

(Sweep  $v_{GS}$  from 0 V to 1.8 V with step size of 0.1 V.)

What have you found through the plots after adding  $|v_{SB}|$ ?

What is the effect of **increasing**  $|v_{SB}|$ ? Is it good or bad to your circuit normally?