

Bootstrapping a Trustworthy and Seamless Digital Engineering Appliance

James S. Wheaton Advisor: Dr. Daniel Herber

Problem: Digital Engineering Ecosystems are hindered by

a reverse salient*

Reverse Salience As Technological Performance Gap: an Empirical Study of the Personal Computertechnology System". Journal of Technology Management & Innovation

XKCD #2347: Dependency

SYSTEMIC

VULNERABILITIES:

DEPENDENCY ICEBERG:

Source: generated from CVE Project open JSON dataset using R and ggplot2, : https://github.com/cveproject/cvelist

Research Question:

How can we achieve safe and reliable Digital Engineering?

Source: Wheeler, D. A. (2009). "Fully countering trusting trust through

Results:

Seamless Digital Engineering (SDE) is a digital engineering tooling paradigm that quarantees model coherence and integrity by affording an elegant human-computer interface for systems modeling that is end-to-end formally verified down thru the computer hardware.1

Conclusions:

END-TO-END[†]

FORMAL SYSTEM

VERIFICATION

- Clean-slate design is necessary to overcome the DE reverse salient, and a high-assurance information appliance² applies the greatest leverage against the current paradigm.
- We identified 4 primary system Quality Attributes of a Seamless Digital Engineering appliance: 1) Seamless, 2) Trustworthy, 3) Elegant³, and 4) Convivial⁴.
- Full-source bootstrap and end-to-end mechanized formal verification are required to satisfy
- Seamless and Trustworthy high-assurance Quality Attribute thresholds. Activity-Based Computing⁵ & language-oriented programming⁶ with built-in MBSE affordances
- help satisfy Seamless, Elegant & Convivial Quality Attributes.
- Wheaton, J. S., & Herber, D. R. (2024). Seamless digital engineering: a grand challenge driven by needs. In AIAA SCITECH 2024 Forum. Raskin, J. (2000). The humane interface: new directions for designing interactive systems, Addison-Wesley Professional.
- Watson, M. D. (2017). "Engineering elegant systems; design at the system level". Penn State University Graduate Seminar. M17-6300 Voinea C (2018) "Designing for conviviality" Technology in Society 52 Technology and the Good Society 5 Bardram, J. E., Jeuris, S., & Houben, S. (2015), Activity-based computing; computational management of activities reflecting human intention
- † See: Moore, J. S. (2003). "A grand challenge proposal for formal Ai Magazine, 36(2), 63-72. diverse double-compiling". PhD thesis. George Mason University methods: A verified stack", Lecture Notes in Computer Science. Springer. ⁶ M. Felleisen et al. (2018). "A programmable programming language". Communications of the ACM 61.3.