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� James S. Wheaton

• B.S. Mechanical Engineering, Purdue University
(2011)

• Former software engineer and consultant in
ecommerce, big data, and blockchain

• Started Systems Engineering Ph.D. @ CSU in 2017,
part-time remote

• Completing coursework Spring 2023 in the
72-credit-hour Ph.D. degree program

• Computer hobbyist since age 5
• Likes to study programming languages of all kinds
• Builds all software from source with hardened

toolchains, whereever possible
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� Digital Engineering Is an Integration Challenge
Digital Engineering currently relies on interoperability as the primary mechanism
for constructing the Authoritative Source of Truth, e.g. with APIs and format
interchange standards1.
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Figure: Depiction of NASA JPL OpenCAE Environment (Adapted from Delp 2019)

1 Bajaj, Friedenthal, and Seidewitz 2022
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� We Build Our Computer Systems Like Cities

Figure: xkcd: Dependency (Munroe 2020)

Figure: The Error Avalanche (Adapted from
Claxton, Cavoli, and C. Johnson 2005)
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� Cybersecurity is a “Mess” or Wicked Problem
US CISA Director has recently highlighted a “normalization of deviance” in the
computing industry and called on vendors to provide systems that are secure-by-
default and secure-by-design.1 The situation is untenable:
• Pervasive use of memory-unsafe languages, including in OS, compilers,

security-critical components and theorem provers2

• Common Vulnerabilities and Exposures are on the rise
• CPU microarchitecture side-channel vulnerabilities are unpatchable3

• Internet architecture vulnerabilities & protocol ossification4

• Trusting Trust attack remains ignored after 50 years5

• Cyber-infrastructure is inherently insecure 6

1 Easterly 2023 2 Chisnall 2018; Du, Wu, and Mao 2023; Winterer, Zhang, and Su 2020;
Bringolf, Winterer, and Su 2022 3 Porras and Lindell 1995; Lipp et al. 2020; Kocher et al.
2020; Schwarz, Weiser, Gruss, et al. 2017; Van Bulck et al. 2018; Weisse et al. 2018; Schwarz,
Weiser, and Gruss 2019; Skarlatos et al. 2019; Murdock et al. 2020; Schaik, Minkin, et al.
2021; Schaik, Kwong, et al. 2020; Borrello et al. 2022 4 Ammar 2018; Papastergiou et al. 2016
5 Karger and Schell 2002; Thompson 1984; Wheeler 2009 6 Massacci, Jaeger, and Peisert
2021; Smith and Mulrain 2018; Dawson et al. 2021; Algarni 2021; Hobbs 2021
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� Digital Engineering Has a Reverse Salient
The reverse salient is a set of critical problems1 whereby system components
“fail to deliver the necessary level of technological performance thereby inhibiting
the performance delivery of the system as a whole”:2

• WIMP applications paradigm — essential functions are outsourced
• false dichotomy of user / developer
• inscrutable binary executable vs. sprawling source code
• physical centralization + lack of isolation, e.g. CPU
• sequential-first processing, e.g. CPU
• lack of integrated program documentation, test, and verification facilities
• plethora of ill-defined languages/formats
• security-by-obscurity

1 Hughes 1993 2 Dedehayir and Mäkineif 2008
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� Looking for the Escape Hatch
The systemic problem of trustworthy cyber-systems has been known for 2̃5 years.1
Recent research efforts have attacked the mess from different perspectives:

• Fully Countering Trusting Trust through Diverse Double-Compiling2

• DARPA Cyber-Assured Systems Engineering (CASE)3

• DARPA Clean-slate design of Resilient, Adapative, Secure Hosts (CRASH)4

• DARPA META-II5

• DARPA Circuit Realization At Faster Timescales (CRAFT)6

• Deep Specification7

• Formally-verified stack from assembly language to CPU8

1 McLean 1997; Council et al. 1999; Mundie et al. 2002; Spafford 2004 2 Wheeler 2009
3 Cofer 2021 4 Clean-slate design of Resilient, Adapative, Secure Hosts (CRASH) 2010;
Chiricescu et al. 2013 5 META-II 2010 6 Circuit Realization At Faster Timescales (CRAFT)
2015 7 Appel et al. 2017 8 Moore 2003; Moore 2007
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� Research Questions

RQ1 What are the gaps, barriers and cost drivers of engineering provably-correct
cyber-systems?

RQ2 Can these gaps be adequately addressed with today’s computing ecosystem?
RQ3 What would a clean-slate digital engineering system that addresses the gaps

and barriers look like?
RQ4 Can we prove that such an architecture is seamless and trustworthy?

9
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� DE Meta-Model
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Figure: The Boeing MBSE Diamond: Continuity of the system’s ‘Digital Thread’
(Adapted from Seal 2018)
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� DE Essential Functionality

DE practitioners need a predictable set of affordances for doing their work:
• Mathematics: matrices, equation solving, calculus, optimization, probability

and statistics, discrete math, theorem proving
• Science: physical constants & models, simulations, experimental design,

properties of matter
• Engineering: 3D geometry, finite-element analysis, fluid dynamics,

thermodynamics, materials, reliability, systems modeling, units
• Knowledge Engineering: ontologies, authoritative data, rich media, process

meta-models, query capabilities
• Project & Program Management: PERT, critical path method, EVM, Gantt

charts, project economics and accounting
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� Human-Computer Interaction

We need to re-think HCI for human factors:
• WIMP breaks down at scale
• Applications enforce costly context switches, data incommensurability
• Everything-is-an-object with Capabilities is a simpler formalism
• Coherence of textual & graphical representations aids efficient, diverse uses
• Localization and accessibility must be designed-in from the beginning
• AI augmentation is an option, powerful in some contexts
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� Quality Attributes
• seamless: consistent and coherent interfaces throughout
• trustworthy: provenance of components is known, auditable and traceable;

components reliably implement their specifications and carry proof
certificates

• elegant: “a system that is robust in application, fully meeting specified and
adumbrated intent, is well-structured, and is graceful in operation”1

• efficacy
• efficiency
• robustness
• minimizing unintended consequences

• convivial: serve the operator and their community for creative and
autonomous use, with the power to develop mastery2

1 M. D. Watson, Mesmer, and P. Farrington 2019; M. Watson, Mesmer, and P. Farrington
2020; Madni 2012; M. D. Watson, Griffin, et al. 2014; M. D. Watson 2017 2 Voinea 2018
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� Understanding Tool Integration

TOOL

Appearance and behavior
To what extent do two tools use similar screen 

appearance and interaction behavior?

Interaction paradigm
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PRESENTATION
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Figure: Tool Integration Entity-Relationship Diagram (Adapted from Thomas and
Nejmeh 1992)
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� LISP the Meta-Language
Language-oriented programming has “advantages for domain analysis, rapid pro-
totyping, maintenance, portability, user-enhanceable systems, reuse of develop-
ment work, while also providing high development productivity” 1

One of the guidelines of language-oriented programming is that it “enables cre-
ators of languages to enforce its variants. …When a program consists of pieces of
different languages, values flow from one context into another and need protec-
tion from operations that might violate their integrity.”2

Programming paradigms depending on need: imperative, functional/declarative,
symbolic, constraint/logic, array and stack, dataflow, query, metaprogramming.
Gradual typing supports different phases of the system development lifecycle.

1 Ward 1994 2 Felleisen et al. 2018
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� Defining Seamless Architecture

• Are Interfaces everywhere fully
defined and satisfied at every
connection endpoint (Port)?

• Do Parts refine their imported
types?

• Do Part Specifications prove out
Ports are derivations of internal
Parts and in Ports and Item
Flows?

• Disparate interfaces are not
exposed to the operator (“islands of
functionality”)

wheelHub_IF : WheeltoHub_IF

lugNugCompositePort :
LugNutCompositePort

shankCompositePort :
ShankCompositePort

lugNutPort1 : LugNutPort shankPort1 : ShankPort

lugNutPort2 : LugNutPort shankPort2 : ShankPort

lugNutPort3 : LugNutPort shankPort3 : ShankPort

wheelFastener_IF1 : WheelFastener_IF

wheelFastener_IF2 : WheelFastener_IF

wheelFastener_IF3 : WheelFastener_IF

Figure: Interfaces in SysML v2
demonstrating seamlessness (Adapted from
Friedenthal 2023)
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� Defining Trustworthy

Trustworthiness is a Quality Attribute related to reliability and security, and based
on a set of measurable factors:

• Behavior is well-defined
• Side-channels are explicitly guarded where feasible
• Object Capabilities are ubiquitous for fine-grained security1

• Components carry proof certificates, with traceability
• System must be independently verifiable against their specifications
• Bootstrappable, defended against Trusting Trust attacks

1 Rees 1995; Richardson, Carey, and Schuh 1993
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� Sketching the Bootstrap Process
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Figure: Simplified view of HACK bootstrap process
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� Formal Proof Strategy
Goal: A trustworthy system is constructible from untrustworthy components.1

• Untrustworthy components are diverse
• Untrustworthy components produce the same output for a given input
• Trustworthy components carry proof certificates
• Trustworthy components are auditable
• Untrustworthy components are replaceable by trustworthy components
• Trustworthy system has an independently-verifiable root-of-trust

Build from Wheeler 2009’s Diverse Double-Compiling formal proof to include
more of the system components.

1 Rajendran, Sinanoglu, and Karri 2016; Cui et al. 2022; Sethumadhavan et al. 2015
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� HACK Specification Tree

Figure: HACK Specification Tree
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� HACK Language Stack
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� HALISP Language Design

(def:function hello-world   ;; name of the pure function
  :doc      (document "A complete DocBook object or AsciiDoc string")
  :type     [ String :-> String ]
  :params   [ name ]
  :requires [(> (length name) 0)]
  :ensures  (= (length out)  ;; Hoare triple post-condition

        (+ (length "Hello, ")
         (length name)
         (length "!")))

 :satisfies [ :FR/001 ]   ;; SysML Block "satisfies" Relationship
 :tests     [(test trivial-example
               :doc "Test that the name is inserted into the greeting."
               :verifies [ :FR/009 ]  ;; SysML Functional Requirement
        (= "Hello, World!"
           (hello-world "World")))

              (ref:test :T/HW-002)]
  :version  { :major 0 :minor 1 :patch 0 })  ;; enforceable semantic versioning

;; Separation of specification and implementation
(def:function-body hello-world
  (str "Hello, " name "!"))  ;; function body usually starts on a newline

Figure: HALISP integrates formal verification, systems eng. & project mgmt.
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� HACK HCI (1)
prelude : Object Editor

(defn and
  "Logical AND"
  [a b]
  (if (not a)
      false
      (if b true false)))

(defn second
  "Select the second element in a sequence"
  [lst]
  (nth lst 2))

(defn third
  "Select the third element in a sequence"
  [lst]
  (nth lst 3))

(defn fourth
  "Select the fourth element in a sequence"
  [lst]
  (nth lst 4))

Interactive Session:

⦊ (+ 2 2 2 2 2)
⤷ 10 (Integer)
⦊

Group Chat:

Bob B.:What is the prelude module? never heard of it.
James W.:The prelude module has some basic functions like first, second, third
James W.:They are defined in HALISP instead of being primitives
Bob B.:OK - what's a primitive?
James W.:It's a function implemented in the virtual machine, written in the

host language.
Bob B.:I need to read more of the documentation. hold on Р

12:05 PMActivities Project HALISP : Development

prelude : Object Graph

prelude

:type Module

:doc 'Standard module of common functions...'

:version { :M 0 :m 1 :p 0 }

HALISP

Figure: Team collaboration with text/voice chat and screenshare is built-in
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� HACK HCI (2)
Where do I start modeling the system architecture?: Document

Need Understanding

Designing a System that satisfies needs requires that the Systems Engineers
first elicit and define Stakeholder Needs. This process is not always that straight-
forward, and part of the importance is being explicit and formal in the defini-
tions of Stakeholder Needs and Goals. These clear statements are stored in the

Figure 1. ARCADIA system architecture illustrative model³

Document Object Graph

System

Architecture

Model
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Viewpoint

Logical
Viewpoint

Physical
Viewpoint

My Annotations:

【 120-223 】A capabilities database stores the requirements and reference models
【 236-250 】A requirement is a necessary capability of the system
【 360-418 】For more details check the SEBoK wiki

Bookmarks:
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Logical Architecture

Physical Architecture
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Hardware Requirements

Safety Requirements

Security Requirements

Performance Requirements

Interface Requirements
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12:05 PMActivities Document Examiner

Figure: Knowledgebase is browseable, annotatable, with transclusion & object graph
views
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� HACK HCI (3)
HACK Requirements Specification Tree : Object Editor

(require 'macro-cad/diagrams/tree)

(tree-diagram { :auto-layout :vertical-tree

:title "HACK Requirements Specification Tree"

                :version { :major 0 :minor 1 :patch 0 } }

(node { :rid :macro-cad-system-requirements

          :root true

:background-color "#000000"

          :text-color "#ffffff"

:inputs [ (node { :rid :stakeholder-needs

                            :background-color "#ececec" })

(node { :rid :engineering-standards

                            :background-color "#ececec" }) ] }

(node { :rid :knowledgebase-requirements }

      (node { :rid :knowledgebase/database-requirements })

(node { :rid :knowledgebase/memex-requirements })

      (node { :rid :knowledgebase/metalibrary-requirements }))

(node { :rid :systems-modeling-metalanguage-requirements }

      (node { :rid :metalanguage/HALISP-requirements })

(node { :rid :metalanguage/MDE-library-requirements })

      (node { :rid :metalanguage/math-library-requirements }))

(node { :rid :macro-cad-machine-requirements }

      (node { :rid :machine/VM-requirements })

(node { :rid :machine/hardware-requirements })

      (node { :rid :machine/UI-requirements }))))

HACK Requirements Specification Tree : Object Graph

Interactive Session:

⦊ (ref :macro-cad-system-requirements)
⤷ SysML Package(showing metadata)

⦊ (help :metri█

{

:type SysML/Package

:name "HACK System Requirements"

:description "A Package of categorized Packages of Requirements"

:version { :major 0 :minor 1 :patch 1 }

:date-created (date 2022 5 1)

:metrics { :use-in-diagrams 4, :number-of-all-children 1088 }

}

Actions Available:

Run Simulation

Run Impact Assessment

Show All Children

Show Direct Relationships

Show Uses in SysML Diagrams

Verify System Properties

Modify Object Metadata

Configure Diagram

Configure Auto-Layout

View History

Edit Tabular Data

Add Block/Part

Add Requirement

Add Package

Add Relationship

Add Comment

Annotate

Control Versions

Find in Model Tree

Validate

Ask AI Advisor

Publish

12:05 PMActivities Project HALISP : Development

Figure: Textual and graphical representations are coherent; interactive programming
session; contextual actions are listed

25



Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� HACK Prototype

The HACK prototype is being developed with the capabilities to model the HACK
system. Current functionality is testing the LISP meta-language approach:

• Small LISP implementation with REPL in Ada 2012
• Programmable graphics with SVG for diagrams and presentation slides
• Use of DocBook standard to define systems engineering document

templates
• Website generation from given templates and source files
• SysML and project definitions
• Knowledgebase entry definitions

26
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� A Grand Challenge in Systems Engineering

• Digital Engineering requires a
Transdisciplinary Systems
Engineering approach!1

• We need the right framing and goal
to build support

• End-to-end formal verification
enables certification of system and
components’ correctness so they
can be deemed finished or safely
refactored

. . .

. . .

. . .

Boolean Interpretation

Natural Number

Interpretation

Integer Interpretation

C V N Z

reg file
16 x 32-bit

Four-valued level

Two-valued level

Netlist level

User level

C V N Z

reg file
16 x 32-bitmemory

2 x 32-bit32
memory

2 x 32-bit32

Figure: The FM9001 gate-level model
corresponds to the high-level functional
model (Moore 2003; Moore 2007)

1 Mesmer et al. 2022
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� Research Contributions

1 Operational concept of a trustworthy & seamless digital engineering system
2 Formal definitions of ‘trustworthy’ and ‘seamless’ within this context
3 Formal proof of soundness of the approach of bootstrapping a trustworthy

system from untrustworthy components
4 An open-source SysML v2 model of the proposed system architecture with

prototype for demonstrating key functionality
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� Papers In-Progress

1 “Seamless Digital Engineering: Motivating a Grand Challenge”
• 80% complete
• Target conference: INCOSE Western States Regional Conference 2023

2 “Digital Engineering Modeling Languages as LISP-Embedded
Domain-Specific Languages”

• 20% complete
• Target conference: INCOSE Western States Regional Conference 2023

3 “Architecture Essentials of a Seamless Digital Engineering System”
• 50% complete
• Target conference: INCOSE IS 2024
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Timeline to Completion

Summer 2023 JPL internship at half-time; continue HACK architecture modeling
and prototype development; theory development, setup and
testing of formal definitions and proofs; notification of acceptance
for 2 conference papers

Fall 2023 Develop proofs, test and interpret results; architecture model
completeness assessment; attend conference, and submit 1-2
papers to INCOSE IS conference or SE journal

Spring 2024 Final editing and presentation of results in dissertation; defense
and graduation planned near end of semester
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� Future Work

• Continue architecture design and prototyping
• Reference model and reference architecture of DE lifecycle with product-line

architecture instantiations for particular types of systems
• Computational type theory view and investigations of system architecture

building from SysML v2 semantics
• Proving an architecture seamless and trustworthy at the type level
• Analysis of system bootstrap paths, size and effort
• Comparison and type-level analysis of extant computer system architectures
• Working out details of computational design of HACK systems
• Characterize ‘architectural ossification’ or intransigence
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� Thank you!

Figure: Places to intervene in a system (Adapted from Meadows 2008)
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