
Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

Bootstrapping a Trustworthy and Seamless
Digital Engineering System

Ph.D. Preliminary Exam

James S. Wheaton
Advised by: Dr. Daniel Herber

Department of Systems Engineering
Walter Scott, Jr. College of Engineering

Colorado State University

April 17, 2023

1

Committee Members:
Dr. Erika Miller

Dr. Steve Simske
Dr. Vinayak Prabhu

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� Outline

1. Introduction

2. Operational Concept

3. Theory Development

4. HACK Design

5. Summary & Research Plan

2

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� James S. Wheaton

• B.S. Mechanical Engineering, Purdue University
(2011)

• Former software engineer and consultant in
ecommerce, big data, and blockchain

• Started Systems Engineering Ph.D. @ CSU in 2017,
part-time remote

• Completing coursework Spring 2023 in the
72-credit-hour Ph.D. degree program

• Computer hobbyist since age 5
• Likes to study programming languages of all kinds
• Builds all software from source with hardened

toolchains, whereever possible

3

1

Introduction

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� Digital Engineering Is an Integration Challenge
Digital Engineering currently relies on interoperability as the primary mechanism
for constructing the Authoritative Source of Truth, e.g. with APIs and format
interchange standards1.

Web Services

NX/EPDM

View Editor

XL Release

Phoenix

ModelCenter

Mathematica

MATLAB

MagicDraw +

MDK

MapleMBSE

Syndeia

DOORS
NG

Helix

App

Tom
Sawyer

Maple

Sys
te

m
s
To

ol
 K

it

Web Services

Python

ModelCenter
Cloud

Analyses

MPS

Timelines

Artifactory

Artifacts

Teamwork
Cloud

Models

Syndeia
Cloud
Maps

Analysis

Orchestrator

Multi-
Machine
Analysis

Web Services

DIY Web

JIRA

MMS

Search

Figure: Depiction of NASA JPL OpenCAE Environment (Adapted from Delp 2019)

1 Bajaj, Friedenthal, and Seidewitz 2022

4

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� We Build Our Computer Systems Like Cities

Figure: xkcd: Dependency (Munroe 2020)

Figure: The Error Avalanche (Adapted from
Claxton, Cavoli, and C. Johnson 2005)

5

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� Cybersecurity is a “Mess” or Wicked Problem
US CISA Director has recently highlighted a “normalization of deviance” in the
computing industry and called on vendors to provide systems that are secure-by-
default and secure-by-design.1 The situation is untenable:
• Pervasive use of memory-unsafe languages, including in OS, compilers,

security-critical components and theorem provers2

• Common Vulnerabilities and Exposures are on the rise
• CPU microarchitecture side-channel vulnerabilities are unpatchable3

• Internet architecture vulnerabilities & protocol ossification4

• Trusting Trust attack remains ignored after 50 years5

• Cyber-infrastructure is inherently insecure 6

1 Easterly 2023 2 Chisnall 2018; Du, Wu, and Mao 2023; Winterer, Zhang, and Su 2020;
Bringolf, Winterer, and Su 2022 3 Porras and Lindell 1995; Lipp et al. 2020; Kocher et al.
2020; Schwarz, Weiser, Gruss, et al. 2017; Van Bulck et al. 2018; Weisse et al. 2018; Schwarz,
Weiser, and Gruss 2019; Skarlatos et al. 2019; Murdock et al. 2020; Schaik, Minkin, et al.
2021; Schaik, Kwong, et al. 2020; Borrello et al. 2022 4 Ammar 2018; Papastergiou et al. 2016
5 Karger and Schell 2002; Thompson 1984; Wheeler 2009 6 Massacci, Jaeger, and Peisert
2021; Smith and Mulrain 2018; Dawson et al. 2021; Algarni 2021; Hobbs 2021

6

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� Digital Engineering Has a Reverse Salient
The reverse salient is a set of critical problems1 whereby system components
“fail to deliver the necessary level of technological performance thereby inhibiting
the performance delivery of the system as a whole”:2

• WIMP applications paradigm — essential functions are outsourced
• false dichotomy of user / developer
• inscrutable binary executable vs. sprawling source code
• physical centralization + lack of isolation, e.g. CPU
• sequential-first processing, e.g. CPU
• lack of integrated program documentation, test, and verification facilities
• plethora of ill-defined languages/formats
• security-by-obscurity

1 Hughes 1993 2 Dedehayir and Mäkineif 2008

7

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� Looking for the Escape Hatch
The systemic problem of trustworthy cyber-systems has been known for 2̃5 years.1
Recent research efforts have attacked the mess from different perspectives:

• Fully Countering Trusting Trust through Diverse Double-Compiling2

• DARPA Cyber-Assured Systems Engineering (CASE)3

• DARPA Clean-slate design of Resilient, Adapative, Secure Hosts (CRASH)4

• DARPA META-II5

• DARPA Circuit Realization At Faster Timescales (CRAFT)6

• Deep Specification7

• Formally-verified stack from assembly language to CPU8

1 McLean 1997; Council et al. 1999; Mundie et al. 2002; Spafford 2004 2 Wheeler 2009
3 Cofer 2021 4 Clean-slate design of Resilient, Adapative, Secure Hosts (CRASH) 2010;
Chiricescu et al. 2013 5 META-II 2010 6 Circuit Realization At Faster Timescales (CRAFT)
2015 7 Appel et al. 2017 8 Moore 2003; Moore 2007

8

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� Research Questions

RQ1 What are the gaps, barriers and cost drivers of engineering provably-correct
cyber-systems?

RQ2 Can these gaps be adequately addressed with today’s computing ecosystem?
RQ3 What would a clean-slate digital engineering system that addresses the gaps

and barriers look like?
RQ4 Can we prove that such an architecture is seamless and trustworthy?

9

2

Operational Concept of
Clean-slate DE System

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� DE Meta-Model

Needs

Model Virtual

Design Physical

Solutions

Digital Twins

Physical Systems

As-Needed

Market (Mission) Model

Virtual
Qualification

Business Model

Virtual Certification

Virtual Operations

Model-Based
Systems Engineering

Model-Based
Definition

Model-Based
Production Planning

Virtual Production
System

As-Offered

As-Specified

As-Designed

As-Planned As-Built

As-Tested

As-Certified

As-Delivered

As-Supported

Virtual Ecosystem

∙
PL

AT
FO

RM
 PRODUCT ∙ PRODUCTIO

N
 SYSTEM

 ∙ S
ERVICES & SUPPORT

Digital
Thread

DESIGN

M
OD
EL
IN
G

SIM
ULATION

DE
LI
VE
RY

Figure: The Boeing MBSE Diamond: Continuity of the system’s ‘Digital Thread’
(Adapted from Seal 2018)

10

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� DE Essential Functionality

DE practitioners need a predictable set of affordances for doing their work:
• Mathematics: matrices, equation solving, calculus, optimization, probability

and statistics, discrete math, theorem proving
• Science: physical constants & models, simulations, experimental design,

properties of matter
• Engineering: 3D geometry, finite-element analysis, fluid dynamics,

thermodynamics, materials, reliability, systems modeling, units
• Knowledge Engineering: ontologies, authoritative data, rich media, process

meta-models, query capabilities
• Project & Program Management: PERT, critical path method, EVM, Gantt

charts, project economics and accounting

11

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� Human-Computer Interaction

We need to re-think HCI for human factors:
• WIMP breaks down at scale
• Applications enforce costly context switches, data incommensurability
• Everything-is-an-object with Capabilities is a simpler formalism
• Coherence of textual & graphical representations aids efficient, diverse uses
• Localization and accessibility must be designed-in from the beginning
• AI augmentation is an option, powerful in some contexts

12

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� Quality Attributes
• seamless: consistent and coherent interfaces throughout
• trustworthy: provenance of components is known, auditable and traceable;

components reliably implement their specifications and carry proof
certificates

• elegant: “a system that is robust in application, fully meeting specified and
adumbrated intent, is well-structured, and is graceful in operation”1

• efficacy
• efficiency
• robustness
• minimizing unintended consequences

• convivial: serve the operator and their community for creative and
autonomous use, with the power to develop mastery2

1 M. D. Watson, Mesmer, and P. Farrington 2019; M. Watson, Mesmer, and P. Farrington
2020; Madni 2012; M. D. Watson, Griffin, et al. 2014; M. D. Watson 2017 2 Voinea 2018

13

3

Theory Development

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� Understanding Tool Integration

TOOL

Appearance and behavior
To what extent do two tools use similar screen

appearance and interaction behavior?

Interaction paradigm
To what extent do two tools use similar

metaphors and mental models?

Provision
To what extent are a tool's services used by

other tools in the environment?

Use
To what extent does a tool use the services
provided by other tools in the environment?

Process step
How well do relevant tools combine to support

the performance of a process step?

Event
How well do relevant tools agree on the events

required to support a process?

Constraint
How well do relevant tools cooperate to

enforce a constraint?

Synchronization
How well does a tool communicate changes it

makes to the values of nonpersistent, common data?

Interoperability
How much work must be done for a tool to

manipulate data produced by another?

Nonredundancy
How much data managed by a tool is

duplicated in or can be derived from the data
managed by the other?

Data exchange
How much work must be done to make the
nonpersistent data generated by one tool

usable by the other?

Data consistency
How well do two tools cooperate to maintain the

semantic constraints on the data they manipulate?

CONTROL INTEGRATION

PROCESS INTEGRATION

DATA INTEGRATION

PRESENTATION
INTEGRATION

Figure: Tool Integration Entity-Relationship Diagram (Adapted from Thomas and
Nejmeh 1992)

14

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� LISP the Meta-Language
Language-oriented programming has “advantages for domain analysis, rapid pro-
totyping, maintenance, portability, user-enhanceable systems, reuse of develop-
ment work, while also providing high development productivity” 1

One of the guidelines of language-oriented programming is that it “enables cre-
ators of languages to enforce its variants. …When a program consists of pieces of
different languages, values flow from one context into another and need protec-
tion from operations that might violate their integrity.”2

Programming paradigms depending on need: imperative, functional/declarative,
symbolic, constraint/logic, array and stack, dataflow, query, metaprogramming.
Gradual typing supports different phases of the system development lifecycle.

1 Ward 1994 2 Felleisen et al. 2018

15

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� Defining Seamless Architecture

• Are Interfaces everywhere fully
defined and satisfied at every
connection endpoint (Port)?

• Do Parts refine their imported
types?

• Do Part Specifications prove out
Ports are derivations of internal
Parts and in Ports and Item
Flows?

• Disparate interfaces are not
exposed to the operator (“islands of
functionality”)

wheelHub_IF : WheeltoHub_IF

lugNugCompositePort :
LugNutCompositePort

shankCompositePort :
ShankCompositePort

lugNutPort1 : LugNutPort shankPort1 : ShankPort

lugNutPort2 : LugNutPort shankPort2 : ShankPort

lugNutPort3 : LugNutPort shankPort3 : ShankPort

wheelFastener_IF1 : WheelFastener_IF

wheelFastener_IF2 : WheelFastener_IF

wheelFastener_IF3 : WheelFastener_IF

Figure: Interfaces in SysML v2
demonstrating seamlessness (Adapted from
Friedenthal 2023)

16

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� Defining Trustworthy

Trustworthiness is a Quality Attribute related to reliability and security, and based
on a set of measurable factors:

• Behavior is well-defined
• Side-channels are explicitly guarded where feasible
• Object Capabilities are ubiquitous for fine-grained security1

• Components carry proof certificates, with traceability
• System must be independently verifiable against their specifications
• Bootstrappable, defended against Trusting Trust attacks

1 Rees 1995; Richardson, Carey, and Schuh 1993

17

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� Sketching the Bootstrap Process

PC

HACK
digital twin

HACK
SDES

full source
bootstrap

improves
assurance of

compiles &
executes

self-specifies
& self-verifies self-hosts

specifies,
models,

simulates &
analyzes

implements
& validates

extends &
improves

Figure: Simplified view of HACK bootstrap process

18

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� Formal Proof Strategy
Goal: A trustworthy system is constructible from untrustworthy components.1

• Untrustworthy components are diverse
• Untrustworthy components produce the same output for a given input
• Trustworthy components carry proof certificates
• Trustworthy components are auditable
• Untrustworthy components are replaceable by trustworthy components
• Trustworthy system has an independently-verifiable root-of-trust

Build from Wheeler 2009’s Diverse Double-Compiling formal proof to include
more of the system components.

1 Rajendran, Sinanoglu, and Karri 2016; Cui et al. 2022; Sethumadhavan et al. 2015

19

4

Design of High-Assurance
Computing Kit

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� HACK Specification Tree

Figure: HACK Specification Tree

20

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� HACK Language Stack

tiny hex seed

stage1
full-source bootstrap

Interaction Nets
SAT/SMT

solver
(in hardware)

FPGAs
special-purpose

hardware

Kernel LISP

Milawa FOL
theorem prover

miniKanrenmicroKanren egglog

Gradually-Typed
Vau Calculi

UTT theorem
prover

Propagation Nets

(Timed) Abstract
State Machines

HALISP
meta-language

SysML v2quadstore

HALISP
standard library

engineering
eDSLs

standard
knowledgebase

hosted
languages

21

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� HALISP Language Design

(def:function hello-world ;; name of the pure function
 :doc (document "A complete DocBook object or AsciiDoc string")
 :type [String :-> String]
 :params [name]
 :requires [(> (length name) 0)]
 :ensures (= (length out) ;; Hoare triple post-condition

 (+ (length "Hello, ")
 (length name)
 (length "!")))

 :satisfies [:FR/001] ;; SysML Block "satisfies" Relationship
 :tests [(test trivial-example
 :doc "Test that the name is inserted into the greeting."
 :verifies [:FR/009] ;; SysML Functional Requirement
 (= "Hello, World!"
 (hello-world "World")))

 (ref:test :T/HW-002)]
 :version { :major 0 :minor 1 :patch 0 }) ;; enforceable semantic versioning

;; Separation of specification and implementation
(def:function-body hello-world
 (str "Hello, " name "!")) ;; function body usually starts on a newline

Figure: HALISP integrates formal verification, systems eng. & project mgmt.

22

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� HACK HCI (1)
prelude : Object Editor

(defn and
 "Logical AND"
 [a b]
 (if (not a)
 false
 (if b true false)))

(defn second
 "Select the second element in a sequence"
 [lst]
 (nth lst 2))

(defn third
 "Select the third element in a sequence"
 [lst]
 (nth lst 3))

(defn fourth
 "Select the fourth element in a sequence"
 [lst]
 (nth lst 4))

Interactive Session:

⦊ (+ 2 2 2 2 2)
⤷ 10 (Integer)
⦊

Group Chat:

Bob B.:What is the prelude module? never heard of it.
James W.:The prelude module has some basic functions like first, second, third
James W.:They are defined in HALISP instead of being primitives
Bob B.:OK - what's a primitive?
James W.:It's a function implemented in the virtual machine, written in the

host language.
Bob B.:I need to read more of the documentation. hold on Р

12:05 PMActivities Project HALISP : Development

prelude : Object Graph

prelude

:type Module

:doc 'Standard module of common functions...'

:version { :M 0 :m 1 :p 0 }

HALISP

Figure: Team collaboration with text/voice chat and screenshare is built-in

23

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� HACK HCI (2)
Where do I start modeling the system architecture?: Document

Need Understanding

Designing a System that satisfies needs requires that the Systems Engineers
first elicit and define Stakeholder Needs. This process is not always that straight-
forward, and part of the importance is being explicit and formal in the defini-
tions of Stakeholder Needs and Goals. These clear statements are stored in the

Figure 1. ARCADIA system architecture illustrative model³

Document Object Graph

System

Architecture

Model

Operational
Viewpoint

Logical
Viewpoint

Physical
Viewpoint

My Annotations:

【 120-223 】A capabilities database stores the requirements and reference models
【 236-250 】A requirement is a necessary capability of the system
【 360-418 】For more details check the SEBoK wiki

Bookmarks:

Operational Analysis

Functional Needs

Quality Needs

Logical Architecture

Physical Architecture

Model-Based System Architecture Process

Viewpoints

Stakeholder Needs

Requirements Engineering

Functional Requirements

Quality Requirements

Writing Requirements

Necessary and Sufficient

Hardware Requirements

Safety Requirements

Security Requirements

Performance Requirements

Interface Requirements

Reliability Requirements

Packaging Requirements

Training Requirements

Maintenance Requirements

12:05 PMActivities Document Examiner

Figure: Knowledgebase is browseable, annotatable, with transclusion & object graph
views

24

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� HACK HCI (3)
HACK Requirements Specification Tree : Object Editor

(require 'macro-cad/diagrams/tree)

(tree-diagram { :auto-layout :vertical-tree

:title "HACK Requirements Specification Tree"

 :version { :major 0 :minor 1 :patch 0 } }

(node { :rid :macro-cad-system-requirements

 :root true

:background-color "#000000"

 :text-color "#ffffff"

:inputs [(node { :rid :stakeholder-needs

 :background-color "#ececec" })

(node { :rid :engineering-standards

 :background-color "#ececec" })] }

(node { :rid :knowledgebase-requirements }

 (node { :rid :knowledgebase/database-requirements })

(node { :rid :knowledgebase/memex-requirements })

 (node { :rid :knowledgebase/metalibrary-requirements }))

(node { :rid :systems-modeling-metalanguage-requirements }

 (node { :rid :metalanguage/HALISP-requirements })

(node { :rid :metalanguage/MDE-library-requirements })

 (node { :rid :metalanguage/math-library-requirements }))

(node { :rid :macro-cad-machine-requirements }

 (node { :rid :machine/VM-requirements })

(node { :rid :machine/hardware-requirements })

 (node { :rid :machine/UI-requirements }))))

HACK Requirements Specification Tree : Object Graph

Interactive Session:

⦊ (ref :macro-cad-system-requirements)
⤷ SysML Package(showing metadata)

⦊ (help :metri█

{

:type SysML/Package

:name "HACK System Requirements"

:description "A Package of categorized Packages of Requirements"

:version { :major 0 :minor 1 :patch 1 }

:date-created (date 2022 5 1)

:metrics { :use-in-diagrams 4, :number-of-all-children 1088 }

}

Actions Available:

Run Simulation

Run Impact Assessment

Show All Children

Show Direct Relationships

Show Uses in SysML Diagrams

Verify System Properties

Modify Object Metadata

Configure Diagram

Configure Auto-Layout

View History

Edit Tabular Data

Add Block/Part

Add Requirement

Add Package

Add Relationship

Add Comment

Annotate

Control Versions

Find in Model Tree

Validate

Ask AI Advisor

Publish

12:05 PMActivities Project HALISP : Development

Figure: Textual and graphical representations are coherent; interactive programming
session; contextual actions are listed

25

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� HACK Prototype

The HACK prototype is being developed with the capabilities to model the HACK
system. Current functionality is testing the LISP meta-language approach:

• Small LISP implementation with REPL in Ada 2012
• Programmable graphics with SVG for diagrams and presentation slides
• Use of DocBook standard to define systems engineering document

templates
• Website generation from given templates and source files
• SysML and project definitions
• Knowledgebase entry definitions

26

5

Summary & Research Plan

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� A Grand Challenge in Systems Engineering

• Digital Engineering requires a
Transdisciplinary Systems
Engineering approach!1

• We need the right framing and goal
to build support

• End-to-end formal verification
enables certification of system and
components’ correctness so they
can be deemed finished or safely
refactored

. . .

. . .

. . .

Boolean Interpretation

Natural Number

Interpretation

Integer Interpretation

C V N Z

reg file
16 x 32-bit

Four-valued level

Two-valued level

Netlist level

User level

C V N Z

reg file
16 x 32-bitmemory

2 x 32-bit32
memory

2 x 32-bit32

Figure: The FM9001 gate-level model
corresponds to the high-level functional
model (Moore 2003; Moore 2007)

1 Mesmer et al. 2022

27

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� Research Contributions

1 Operational concept of a trustworthy & seamless digital engineering system
2 Formal definitions of ‘trustworthy’ and ‘seamless’ within this context
3 Formal proof of soundness of the approach of bootstrapping a trustworthy

system from untrustworthy components
4 An open-source SysML v2 model of the proposed system architecture with

prototype for demonstrating key functionality

28

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� Papers In-Progress

1 “Seamless Digital Engineering: Motivating a Grand Challenge”
• 80% complete
• Target conference: INCOSE Western States Regional Conference 2023

2 “Digital Engineering Modeling Languages as LISP-Embedded
Domain-Specific Languages”

• 20% complete
• Target conference: INCOSE Western States Regional Conference 2023

3 “Architecture Essentials of a Seamless Digital Engineering System”
• 50% complete
• Target conference: INCOSE IS 2024

29

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

Timeline to Completion

Summer 2023 JPL internship at half-time; continue HACK architecture modeling
and prototype development; theory development, setup and
testing of formal definitions and proofs; notification of acceptance
for 2 conference papers

Fall 2023 Develop proofs, test and interpret results; architecture model
completeness assessment; attend conference, and submit 1-2
papers to INCOSE IS conference or SE journal

Spring 2024 Final editing and presentation of results in dissertation; defense
and graduation planned near end of semester

30

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� Future Work

• Continue architecture design and prototyping
• Reference model and reference architecture of DE lifecycle with product-line

architecture instantiations for particular types of systems
• Computational type theory view and investigations of system architecture

building from SysML v2 semantics
• Proving an architecture seamless and trustworthy at the type level
• Analysis of system bootstrap paths, size and effort
• Comparison and type-level analysis of extant computer system architectures
• Working out details of computational design of HACK systems
• Characterize ‘architectural ossification’ or intransigence

31

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� Thank you!

Figure: Places to intervene in a system (Adapted from Meadows 2008)

32

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� References
S. Algarni (2021). “Cybersecurity Attacks: Analysis of “WannaCry” Attack and

Proposing Methods for Reducing or Preventing Such Attacks in Future”. ICT Sys-
tems and Sustainability. Ed. by M. Tuba, S. Akashe, and A. Joshi. Springer Singa-
pore. isbn: 978-981-15-8289-9. DOI: 10.1007/978-981-15-8289-9_73
M. Ammar (2018). “ex uno pluria: The Service-Infrastructure Cycle, Ossification,

and the Fragmentation of the Internet”. ACM SIGCOMM Computer Communica-
tion Review 48.1. DOI: 10.1145/3211852.3211861
A. W. Appel et al. (2017). “Position paper: the science of deep specification”.

Philosophical Transactions of the Royal Society A: Mathematical, Physical and En-
gineering Sciences 375.2104. DOI: 10.1098/rsta.2016.0331
M. Bajaj, S. Friedenthal, and E. Seidewitz (2022). “Systems modeling language

(SysML v2) support for digital engineering”. Insight 25.1. DOI: 10.1002/inst.12367
P. Borrello et al. (2022). “ÆPIC Leak: Architecturally Leaking Uninitialized Data

from the Microarchitecture”. 31st USENIX Security Symposium (USENIX Security
22). USENIX Association. isbn: 978-1-939133-31-1. URL: https://www.usenix.org/
conference/usenixsecurity22/presentation/borrello

33

https://doi.org/10.1007/978-981-15-8289-9_73
https://doi.org/10.1145/3211852.3211861
https://doi.org/10.1098/rsta.2016.0331
https://doi.org/10.1002/inst.12367
https://www.usenix.org/conference/usenixsecurity22/presentation/borrello
https://www.usenix.org/conference/usenixsecurity22/presentation/borrello

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� References (continued)
M. Bringolf, D. Winterer, and Z. Su (2022). “Finding and Understanding Incom-

pleteness Bugs in SMT Solvers”. 37th IEEE/ACM International Conference on Au-
tomated Software Engineering. DOI: 10.1145/3551349.3560435
S. Chiricescu et al. (2013). “SAFE: A clean-slate architecture for secure systems”.

2013 IEEE International Conference on Technologies for Homeland Security (HST).
DOI: 10.1109/THS.2013.6699066
D. Chisnall (2018). “C Is Not a Low-level Language: Your computer is not a fast

PDP-11.”. Queue 16.2. issn: 15427730. DOI: 10.1145/3212477.3212479
J. D. Claxton, C. Cavoli, and C. Johnson (2005). Test and Evaluation Manage-

ment Guide. Tech. rep. Defence Acquisition University, Fort Belvoir, VA. URL:
https://apps.dtic.mil/sti/pdfs/ADA436591.pdf
D. Cofer (2021). “Cyber-assured systems engineering with AADL”. Retrieved June

27. URL: https://apps.dtic.mil/sti/pdfs/AD1147940.pdf
N. R. Council et al. (1999). Trust in cyberspace. National Academies Press. URL:

http://people.eecs.berkeley.edu/~tygar/papers/Trust_in_Cyberspace.pdf

34

https://doi.org/10.1145/3551349.3560435
https://doi.org/10.1109/THS.2013.6699066
https://doi.org/10.1145/3212477.3212479
https://apps.dtic.mil/sti/pdfs/ADA436591.pdf
https://apps.dtic.mil/sti/pdfs/AD1147940.pdf
http://people.eecs.berkeley.edu/~tygar/papers/Trust_in_Cyberspace.pdf

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� References (continued)

X. Cui et al. (2022). “Toward Building and Optimizing Trustworthy Systems Us-
ing Untrusted Components: A Graph-Theoretic Perspective”. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 41.5. issn: 1937-4151.
DOI: 10.1109/TCAD.2021.3086765
META-II (2010). Broad Agency Announcement. Defense Advanced Research Projects

Agency
Clean-slate design of Resilient, Adapative, Secure Hosts (CRASH) (2010). Broad

Agency Announcement. Defense Advanced Research Projects Agency
Circuit Realization At Faster Timescales (CRAFT) (2015). Broad Agency An-

nouncement. Defense Advanced Research Projects Agency
M. Dawson et al. (2021). “Understanding the Challenge of Cybersecurity in Critical

Infrastructure Sectors”. Land Forces Academy Review 26.1. DOI: 10 .2478/ raft -
2021-0011. URL: https://doi.org/10.2478/raft-2021-0011

35

https://doi.org/10.1109/TCAD.2021.3086765
https://doi.org/10.2478/raft-2021-0011
https://doi.org/10.2478/raft-2021-0011
https://doi.org/10.2478/raft-2021-0011

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� References (continued)

O. Dedehayir and S. J. Mäkineif (2008). “Dynamics of Reverse Salience As Tech-
nological Performance Gap: an Empirical Study of the Personal Computertechnol-
ogy System”. Journal of technology management & innovation 3.3. DOI: 10.4067/
S0718-27242008000100006
C. Delp (2019). Open Model-Based Engineering Environments. Presentation. URL:

https://www.nist.gov/system/files/documents/2019/04/05/14_delp.pdf
J. X. K. L. Z. Du, Z. D. L. L. Q. Wu, and M. P. B. Mao (2023). “Silent Bugs

Matter: A Study of Compiler-Introduced Security Bugs”. (preprint). URL: http :
//hexhive.epfl.ch/publications/files/23SEC4.pdf
J. Easterly (2023). CISA Director Easterly Remarks at Carnegie Mellon University.

URL: https ://www.cisa .gov/cisa -director -easterly - remarks -carnegie -mellon-
university
M. Felleisen et al. (2018). “A programmable programming language”. Communica-

tions of the ACM 61.3. DOI: 10.1145/3127323

36

https://doi.org/10.4067/S0718-27242008000100006
https://doi.org/10.4067/S0718-27242008000100006
https://www.nist.gov/system/files/documents/2019/04/05/14_delp.pdf
http://hexhive.epfl.ch/publications/files/23SEC4.pdf
http://hexhive.epfl.ch/publications/files/23SEC4.pdf
https://www.cisa.gov/cisa-director-easterly-remarks-carnegie-mellon-university
https://www.cisa.gov/cisa-director-easterly-remarks-carnegie-mellon-university
https://doi.org/10.1145/3127323

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� References (continued)
S. Friedenthal (2023). SysML v2 Language Intro to Structure and Behavior Mod-

eling. SysML v2 Submission Team. URL: https://github.com/Systems-Modeling/
SysML-v2-Release
A. Hobbs (2021). “The colonial pipeline hack: Exposing vulnerabilities in us cyber-

security”. SAGE Business Cases. SAGE Publications: SAGE Business Cases Origi-
nals. isbn: 9781529789768. DOI: 10.4135/9781529789768
T. P. Hughes (1993). Networks of power: electrification in Western society, 1880-

1930. JHU press
P. A. Karger and R. R. Schell (2002). “Multics security evaluation: Vulnerability

analysis”. 18th Annual Computer Security Applications Conference, 2002. Proceed-
ings. IEEE. isbn: 0-7695-1828-1. DOI: 10.1109/CSAC.2002.1176286
P. Kocher et al. (2020). “Spectre attacks: Exploiting speculative execution”. Com-

munications of the ACM 63.7
M. Lipp et al. (2020). “Meltdown: Reading kernel memory from user space”. Com-

munications of the ACM 63.6

37

https://github.com/Systems-Modeling/SysML-v2-Release
https://github.com/Systems-Modeling/SysML-v2-Release
https://doi.org/10.4135/9781529789768
https://doi.org/10.1109/CSAC.2002.1176286

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� References (continued)

A. M. Madni (2012). “Elegant systems design: Creative fusion of simplicity and
power”. Systems Engineering 15.3. DOI: 10.1002/sys.21209
F. Massacci, T. Jaeger, and S. Peisert (2021). “Solarwinds and the challenges of

patching: Can we ever stop dancing with the devil?” IEEE security & privacy 19.2.
DOI: 10.1109/MSEC.2021.3050433
J. McLean (1997). “Is the trusted computing base concept fundamentally flawed?”

IEEE Symposium on Security and Privacy. IEEE Computer Society
D. H. Meadows (2008). Thinking in systems: A primer. Chelsea Green Publishing.

isbn: 9781603580557. URL: https://books.google.com/books?id=CpbLAgAAQBAJ
B. Mesmer et al. (2022). “Transdisciplinary Systems Engineering Approaches”.

Recent Trends and Advances in Model Based Systems Engineering. Ed. by A. M.
Madni et al. Springer International Publishing. isbn: 978-3-030-82083-1. DOI: 10.
1007/978-3-030-82083-1_49

38

https://doi.org/10.1002/sys.21209
https://doi.org/10.1109/MSEC.2021.3050433
https://books.google.com/books?id=CpbLAgAAQBAJ
https://doi.org/10.1007/978-3-030-82083-1_49
https://doi.org/10.1007/978-3-030-82083-1_49

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� References (continued)
J. S. Moore (2003). “A grand challenge proposal for formal methods: A verified

stack”. Formal methods at the crossroads. From panacea to foundational support.
Ed. by B. Aichernig, T. Maibaum, and A. Haeberer. Lecture Notes in Computer
Science. Springer. isbn: 9783540205272. DOI: 10.1007/978-3-540-40007-3_11
— (2007). Piton: a mechanically verified assembly-level language. Vol. 3. Springer.

isbn: 9780585336541
C. Mundie et al. (2002). Trustworthy computing. Tech. rep. Microsoft
R. Munroe (2020). Dependency. URL: https://xkcd.com/2347/
K. Murdock et al. (2020). “Plundervolt: Software-based Fault Injection Attacks

against Intel SGX”. 2020 IEEE Symposium on Security and Privacy (SP). DOI: 10.
1109/SP40000.2020.00057
M. Watson, B. Mesmer, and P. Farrington (2020). Engineering Elegant Systems:

The Practice of Systems Engineering. Tech. rep. National Aeronautics and Space
Administration. URL: https://ntrs.nasa.gov/api/citations/20205003646/downloads/
NASA_TP_20205003646_interactive.pdf

39

https://doi.org/10.1007/978-3-540-40007-3_11
https://xkcd.com/2347/
https://doi.org/10.1109/SP40000.2020.00057
https://doi.org/10.1109/SP40000.2020.00057
https://ntrs.nasa.gov/api/citations/20205003646/downloads/NASA_TP_20205003646_interactive.pdf
https://ntrs.nasa.gov/api/citations/20205003646/downloads/NASA_TP_20205003646_interactive.pdf

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� References (continued)
G. Papastergiou et al. (2016). “De-ossifying the internet transport layer: A survey

and future perspectives”. IEEE Communications Surveys & Tutorials 19.1. DOI:
10.1109/COMST.2016.2626780
O. S. P. Porras and R. Lindell (1995). “The Intel 80×86 Processor Architecture:

Pitfalls for Secure Systems”. Proc. IEEE Symp. Security and Privacy. isbn: 9780818670152.
DOI: 10.1109/SECPRI.1995.398934
J. J. Rajendran, O. Sinanoglu, and R. Karri (2016). “Building Trustworthy Systems

Using Untrusted Components: A High-Level Synthesis Approach”. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems 24.9. issn: 1557-9999. DOI:
10.1109/TVLSI.2016.2530092
J. A. Rees (1995). “A security kernel based on the lambda-calculus”. PhD thesis.

Massachusetts Institute of Technology. URL: http://hdl.handle.net/1721.1/5944
J. E. Richardson, M. J. Carey, and D. T. Schuh (1993). “The design of the E pro-

gramming language”. ACM Transactions on Programming Languages and Systems
(TOPLAS) 15.3. DOI: 10.1145/169683.174157

40

https://doi.org/10.1109/COMST.2016.2626780
https://doi.org/10.1109/SECPRI.1995.398934
https://doi.org/10.1109/TVLSI.2016.2530092
http://hdl.handle.net/1721.1/5944
https://doi.org/10.1145/169683.174157

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� References (continued)
S. van Schaik, A. Kwong, et al. (2020). SGAxe: How SGX Fails in Practice. https:

//sgaxeattack.com/
S. van Schaik, M. Minkin, et al. (2021). “CacheOut: Leaking Data on Intel CPUs

via Cache Evictions”. 2021 IEEE Symposium on Security and Privacy (SP). DOI:
10.1109/SP40001.2021.00064
M. Schwarz, S. Weiser, and D. Gruss (2019). “Practical Enclave Malware with

Intel SGX”. Detection of Intrusions and Malware, and Vulnerability Assessment. Ed.
by R. Perdisci et al. Springer International Publishing. isbn: 978-3-030-22038-9.
DOI: 10.1007/978-3-030-22038-9_9
M. Schwarz, S. Weiser, D. Gruss, et al. (2017). “Malware Guard Extension: Using

SGX to Conceal Cache Attacks”. Detection of Intrusions and Malware, and Vulner-
ability Assessment. Ed. by M. Polychronakis and M. Meier. Springer International
Publishing. isbn: 978-3-319-60876-1. DOI: 10.1007/978-3-319-60876-1_1
D. Seal (2018). “The System Engineering ‘V’–Is it Still Relevant in the Digital

Age?” Boeing Company, Global Product Data Interoperability Summit, Presenta-
tion

41

https://sgaxeattack.com/
https://sgaxeattack.com/
https://doi.org/10.1109/SP40001.2021.00064
https://doi.org/10.1007/978-3-030-22038-9_9
https://doi.org/10.1007/978-3-319-60876-1_1

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� References (continued)
S. Sethumadhavan et al. (2015). “Trustworthy hardware from untrusted compo-

nents”. eng. Communications of the ACM 58.9. issn: 0001-0782. DOI: 10.1145/
2699412
D. Skarlatos et al. (2019). “MicroScope: Enabling Microarchitectural Replay At-

tacks”. Proceedings of the 46th International Symposium on Computer Architec-
ture. ISCA ’19. Association for Computing Machinery. isbn: 9781450366694. DOI:
10.1145/3307650.3322228. URL: https://doi.org/10.1145/3307650.3322228
M. Smith and G. Mulrain (2018). “Equi-Failure: The National Security Implications

of the Equifax Hack and a Critical Proposal for Reform”. Journal of National Secu-
rity Law & Policy 9. URL: https://ssrn.com/abstract=3253116
E. Spafford (2004). Exploring Grand Challenges in Trustworthy Computing. URL:

https://nitrd.gov/Subcommittee/lsn/material/20040316_lsn_spafford.pdf
I. Thomas and B. A. Nejmeh (1992). “Definitions of tool integration for environ-

ments”. IEEE software 9.2. DOI: 10.1109/52.120599
K. Thompson (1984). “Reflections on trusting trust”. Communications of the ACM

27.8. DOI: 10.1145/358198.358210

42

https://doi.org/10.1145/2699412
https://doi.org/10.1145/2699412
https://doi.org/10.1145/3307650.3322228
https://doi.org/10.1145/3307650.3322228
https://ssrn.com/abstract=3253116
https://nitrd.gov/Subcommittee/lsn/material/20040316_lsn_spafford.pdf
https://doi.org/10.1109/52.120599
https://doi.org/10.1145/358198.358210

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� References (continued)
J. Van Bulck et al. (2018). “Foreshadow: Extracting the Keys to the Intel SGX

Kingdom with Transient Out-of-Order Execution”. Proceedings of the 27th USENIX
Security Symposium. See also technical report Foreshadow-NG Weisse et al. 2018.
USENIX Association
C. Voinea (2018). “Designing for conviviality”. Technology in Society 52. Technol-

ogy and the Good Society. issn: 0160-791X. DOI: 10.1016/j.techsoc.2017.07.002
M. P. Ward (1994). “Language Oriented Programming”. Software – Concepts &

Tools 15. URL: http://www.gkc.org.uk/martin/papers/middle-out-t.pdf
M. D. Watson (2017). “Engineering Elegant Systems: Design at the System Level”.

Penn State University Graduate Seminar. M17-6300
M. D. Watson, M. Griffin, et al. (2014). “Building a path to elegant design”. Pro-

ceedings of the International Annual Conference of the American Society for En-
gineering Management. American Society for Engineering Management (ASEM).
isbn: 9781634399890. URL: https://www.nasa.gov/sites/default/files/atoms/files/
28_watson_building_a_path_to_elegant_design_0.pdf

43

https://doi.org/10.1016/j.techsoc.2017.07.002
http://www.gkc.org.uk/martin/papers/middle-out-t.pdf
https://www.nasa.gov/sites/default/files/atoms/files/28_watson_building_a_path_to_elegant_design_0.pdf
https://www.nasa.gov/sites/default/files/atoms/files/28_watson_building_a_path_to_elegant_design_0.pdf

Introduction Operational Concept Theory Development HACK Design Summary & Research Plan References

� References (continued)

M. D. Watson, B. Mesmer, and P. Farrington (2019). “Engineering Elegant Sys-
tems: Postulates, Principles, and Hypotheses of Systems Engineering”. Systems
Engineering in Context. Ed. by S. Adams et al. Springer International Publishing.
isbn: 978-3-030-00114-8. DOI: 10.1007/978-3-030-00114-8_40
O. Weisse et al. (2018). “Foreshadow-NG: Breaking the Virtual Memory Abstrac-

tion with Transient Out-of-Order Execution”. Technical report. See also USENIX
Security paper Foreshadow Van Bulck et al. 2018
D. A. Wheeler (2009). “Fully countering trusting trust through diverse double-

compiling”. PhD thesis. George Mason University
D. Winterer, C. Zhang, and Z. Su (2020). “Validating SMT solvers via semantic

fusion”. Proceedings of the 41st ACM SIGPLAN Conference on programming lan-
guage design and implementation. DOI: 10.1145/3385412.3385985

44

https://doi.org/10.1007/978-3-030-00114-8_40
https://doi.org/10.1145/3385412.3385985

	Introduction
	Operational Concept
	Theory Development
	HACK Design
	Summary & Research Plan
	References

