Using High-fidelity Time-Domain Simulation Data to Construct Multi-fidelity State Derivative Function Surrogate Models for use in Control and Optimization

 \clubsuit Athul Krishna Sundarrajan¹ and \clubsuit Daniel Herber²

¹ Graduate Student <u>
<u>
</u> Department of Systems Engineering Colorado State University</u>

 ² Assistant Professor
 Department of Systems Engineering Colorado State University

November 1, 2023, IMECE 2023; New Orleans

Introduction

Introduction

- The goal of this study is to develop surrogate models of dynamic systems that can be used in design optimization studies
- Detailed models of these systems can be computationally expensive
- Numerical programming approaches used to solve the design problem can require several hundred function evaluations
- Using these models directly in design optimization studies can be inefficient

→ Introduction (Continued)

State-Space Representation

$$\frac{d\boldsymbol{\xi}}{dt} = \dot{\boldsymbol{\xi}} = \boldsymbol{f}(\boldsymbol{\xi}(t), \boldsymbol{u}(t), \boldsymbol{p})$$
(1a)

$$\mathbf{y}(t) = \mathbf{g}(\boldsymbol{\xi}(t), \boldsymbol{u}(t), \boldsymbol{p}) \tag{1b}$$

- For dynamic systems, along with input-output relations, the evolution of the states over the given time horizon is an additional consideration
- Open-loop optimal control studies can be used to identify the optimal inputs u_{opt} that represent the best possible performance
- Evaluating the evolution of the state trajectories over the given time horizon is computationally expensive
- Creating a surrogate model of this function can help reduce computational time

→ Introduction (Continued)

DFSM

$$\dot{\boldsymbol{\xi}} = \boldsymbol{f}(\boldsymbol{u}, \boldsymbol{\xi}) \approx \hat{\boldsymbol{f}}(\boldsymbol{u}, \boldsymbol{\xi})$$
 (2a)

$$\mathbf{y} = \mathbf{g}(\mathbf{u}, \boldsymbol{\xi}) \approx \hat{\mathbf{g}}(\mathbf{u}, \boldsymbol{\xi})$$
 (2b)

- Constructing a surrogate model of this system has been studied under the term derivative function surrogate model (DFSM)¹
- The DFSM provides the state derivative $(\dot{\xi})$ values for given inputs (u, ξ)
- The steps involved in the construction are:
 - Create a sampling scheme for the inputs $I = (u, \xi)$
 - Evaluate the derivative function O = f(I)
 - Train a surrogate model that maps I
 ightarrow O

¹ Deshmukh and Allison 2017; Lefebvre, Belie, and Crevecoeur 2018; Zhang, Wu, and Lu 2022

Caveats

- 1. Previous studies have assumed direct access to the derivative function
 - But this is not the case with FOWT simulation tool used in this study called WEIS
- 2. Prior information about linear model structure has not been used in the construction of the model
 - Some state derivatives (*ξ*) can be linear relations of inputs (*u*, *ξ*). For example:

$$\dot{\xi}_3 = \xi_2 - \xi_1$$
 or $\dot{\xi}_1 = \xi_3$

- 3. Limited efforts have been made to validate the model once constructed
 - Model refinement schemes have been used to identify the optimal results
- 4. Key outputs (y) are not captured by the model
 - When designing FOWT, quantities such as tower base force/moment and generated power are important

DFSM Construction

→ Overview

DFSM

$$\boldsymbol{f}(\cdot) \approx \hat{\boldsymbol{f}}_{low}(\cdot) + \boldsymbol{e}(\cdot) \tag{3}$$

- The goal is to construct a multi-fidelity DFSM model with the structure mentioned above
- $\hat{f}_{\mathrm{low}}(\cdot)$ is a low-fidelity linear-fit model
- $\mathbf{e}(\cdot)$ is a higher-fidelity component that attempts to approximate the remaining error
- The derivative function in Eq. (1a) cannot be evaluated directly, but a black box code can be simulated for a given input *u* ∈ ℝ^{nu} to get the corresponding outputs *y* ∈ ℝ^{ny}.
- The states ξ ∈ ℝⁿξ are available from the outputs of the simulation y, and the model does not have any other internal states, such that ξ ⊂ y.

→ Steps Involved

- 1. Run the necessary simulations to obtain the baseline data for state and output trajectories
- 2. Construct at least a C^1 continuous polynomial approximation of the state trajectories $\hat{\xi}(t)$ and then evaluate polynomial approximation derivative $\hat{\xi}(t)$
- 3. Using the input-output data, construct a least-squares linear-fit approximation creating $\hat{f}_{\rm low}$
- 4. Using the input-output data, evaluate the remaining error between the actual state derivatives and the linear-fit model
- 5. Train a nonlinear surrogate model on this error using a selected approach determining e
- 6. Validate the resulting multi-fidelity model

Step (1)

Run the necessary simulations to obtain the baseline data for state and output trajectories

- For a given system we generate total of *n*_{sim} simulations for different control inputs *u* to get the corresponding outputs *y*(*t*)
- From y, the state trajectories ξ can be extracted and organized as:

$$\boldsymbol{T} = \begin{bmatrix} \boldsymbol{t}^{(1)} & \boldsymbol{t}^{(2)} & \cdots & \boldsymbol{t}^{(n_{\text{sim}})} \end{bmatrix}$$
(4a)

$$\boldsymbol{I} = \begin{bmatrix} \boldsymbol{U} \\ \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} \boldsymbol{u}^{(1)} & \boldsymbol{u}^{(2)} & \cdots & \boldsymbol{u}^{(n_{\text{sim}})} \\ \boldsymbol{\xi}^{(1)} & \boldsymbol{\xi}^{(2)} & \cdots & \boldsymbol{\xi}^{(n_{\text{sim}})} \end{bmatrix}$$
(4b)

Step (2)

Construct at least a C^1 continuous polynomial approximation of the state trajectories $\hat{\xi}(t)$ and then evaluate polynomial approximation derivative $\hat{\xi}(t)$

- Construct a cubic-spline interpolation scheme for ξ(t) on t
- Cubic-spline interpolation scheme can provide continuous first and second derivatives

$$\dot{\boldsymbol{X}} = \begin{bmatrix} \dot{\boldsymbol{\xi}}^{(1)} & \dot{\boldsymbol{\xi}}^{(2)} & \cdots & \dot{\boldsymbol{\xi}}^{(n_{\text{sim}})} \end{bmatrix} \quad (5)$$

Step (3)

Using the input-output data, construct a least-squares linear-fit approximation creating \hat{f}_{low}

• The low-fidelity portion is found by constructing a least-squares approximation between the inputs *I* and the state derivatives \dot{X} :

$$\hat{f}_{\text{low}}(I) = \hat{f}_{\text{L}}(I) = LI \tag{6a}$$

$$\boldsymbol{L} = (\boldsymbol{H}^T)^{-1} \boldsymbol{I}^T \dot{\boldsymbol{X}}$$
(6b)

• If the system can be characterized by additional parameters *w*, then a LPV system can be constructed as:

$$\hat{\boldsymbol{f}}_{\mathrm{L}} = \boldsymbol{L}(\boldsymbol{w})\boldsymbol{I} = \begin{bmatrix} \boldsymbol{B}_{\mathrm{L}}(\boldsymbol{w}) & \boldsymbol{A}_{\mathrm{L}}(\boldsymbol{w}) \end{bmatrix} \boldsymbol{I}$$
(7)

Step (4)

Using the input-output data, evaluate the remaining error between the actual state derivatives and the linear-fit model

 Before constructing the corrective function e(·), it is necessary to subsample from the evaluated error:

$$E = \dot{X} - LI \tag{8}$$

- It is computationally expensive to construct a model using all the data
- We use the k-means method to extract the subsamples

Step (5)

Train a nonlinear surrogate model on this error using a selected approach determining \boldsymbol{e}

• Radial basis functions (RBFs) are used to construct the nonlinear error corrective function *e* in this study:

$$F(\mathbf{x}) = \sum_{i=1}^{N} w_i \cdot \phi(\|\mathbf{x} - \mathbf{x}_i\|_2)$$
(9a)
$$\phi(\mathbf{x}) = \exp(-\mathbf{x}^2)$$
(9b)

• The sequence of steps can be repeated to get a surrogate model for the outputs *y*

Step (6) $\dot{\boldsymbol{\xi}} \approx \hat{\boldsymbol{f}} = \boldsymbol{A}\boldsymbol{\xi} + \boldsymbol{B}\boldsymbol{u} + \boldsymbol{e}_{\boldsymbol{f}}(\boldsymbol{\xi}, \boldsymbol{u}) \qquad (10a)$ $\boldsymbol{y} \approx \hat{\boldsymbol{g}} = \boldsymbol{C}\boldsymbol{\xi} + \boldsymbol{D}\boldsymbol{u} + \boldsymbol{e}_{\boldsymbol{g}}(\boldsymbol{\xi}, \boldsymbol{u}) \qquad (10b)$

FOWT Case Study

Intro Construction FOWT Conclusion References Appendix 0000 00000000 0 000

→ FOWT Model

- We use the IEA-15 MW FOWT model with a semi-submersible platform
- The main states are the platform pitch (Θ_p), generator speed (ω_g), and their first time derivatives (Θ_p, ω_g)

$$\boldsymbol{\xi} = \left[\Theta_p, \omega_g, \dot{\Theta}_p, \dot{\omega}_g\right]^T \tag{11}$$

$$\dot{\boldsymbol{\xi}} = [\dot{\boldsymbol{\Theta}}_{p}, \dot{\boldsymbol{\omega}}_{g}, \ddot{\boldsymbol{\Theta}}_{p}, \ddot{\boldsymbol{\omega}}_{g}]^{T}$$
(12)

• The controls are the the generator torque (τ_g) and the blade pitch (β)

$$\boldsymbol{u} = [\tau_g, \beta]^T \tag{13}$$

• The tower base fore-aft shear force (T_F) and side-to-side moment (T_M) are the outputs considered

$$\mathbf{y} = \left[T_F, T_M\right]^T \tag{14}$$

- System simulations are obtained for ten different trajectories from DLC 1.1
- 80% are used to train the DFSM model, and the rest are used for testing

- → Problem Formulation
 - An optimal control problem is formulated to maximize the power produced
 - · Power generation vs. load reduction is a key trade-off in wind turbine design

Problem Formulation

$$\min_{\boldsymbol{u},\boldsymbol{\xi}} \int_{t_0}^{t_f} \left[(-\tau_g \omega_g) + \boldsymbol{u}^T \boldsymbol{W} \boldsymbol{u} \right] \mathrm{d}t$$
(15a)

sub to:
$$\dot{\boldsymbol{\xi}} = \hat{\boldsymbol{f}}(\boldsymbol{u}, \boldsymbol{\xi})$$
 (15b)

$$\mathbf{y} = \hat{\mathbf{g}}(\mathbf{u}, \boldsymbol{\xi}) \tag{15c}$$

$$\boldsymbol{\xi}_{\min} \leq \boldsymbol{\xi} \leq [\Theta_{p,\max}, 7.2]$$
(15d)

$$\Theta_{p,\max} = [5,7]$$
 [deg]

→ Validation Results

WEIS simulation time: 20 minutes, DFSM simulation time: 4 minutes

→ Validation Results (Continued)

→ Validation Results (Continued)

→ Optimal Controls

→ Optimal States

→ Outputs

Conclusion

Intro Construction FOWT Conclusion References Appendix 0000 00000000 00000000 ● 0000

→ FOWT Model

- In this article, we explored the use of a multi-fidelity DFSM approach that can be used to approximate the dynamic model of nonlinear systems.
- We proposed an approach to extract the state derivative information from system simulations
- With the information, the multi-fidelity DFSM consists of a least-squares linear-fit low-fidelity model and an additive nonlinear error corrective function
- The use of the DFSM model to approximate a FOWT is demonstrated
- Application of the DFSM to approximate the response of axial-flow marine tubes has been carried out
- The approach presented here must be extended to include plant variables as inputs to the DFSM
- Scalable nonlinear surrogate modeling approaches can also be explored

→ References

- A. P. Deshmukh and J. T. Allison (2017). "Design of Dynamic Systems Using Surrogate Models of Derivative Functions". J. Mech. Design 139.10
- T. Lefebvre, F. D. Belie, and G. Crevecoeur (2018). "A trajectory-based sampling strategy for sequentially refined metamodel management of metamodel-based dynamic optimization in mechatronics". *Optim. Control Appl. Methods* 39.5
- Q. Zhang, Y. Wu, and L. Lu (2022). "A Novel Surrogate Model-Based Solving Framework for the Black-Box Dynamic Co-Design and Optimization Problem in the Dynamic System". *Mathematics* 10.18

Questions?

Using High-fidelity Time-Domain Simulation Data to Construct Multi-fidelity State Derivative Function Surrogate Models for use in

Control and Optimization IMECE, New Orleans November 1, 2023

Athul Krishna Sundarrajan Daniel R. Herber

% https://github.com/danielrherber/dt-qp-project % WEIS/examples/17_DFSM

Appendix

→ Open-Loop Optimal Control

Two popular direct numerical methods used to solve open-loop optimal control problems are the **direct shooting** and **direct transcription** methods that determine the optimal trajectories $\xi_{opt}(t)$ and $u_{opt}(t)$

→ Additional Results

→ Additional Results (continued)

