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Graph Representation of Engineered Systems

® Graphs can be used as a
model for a variety of
engineered systems

® Here we consider labeled
graphs denoted by G

* We seek to determine ,
whether this is a useful graph S gt
or not e
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Design Situation of Interest

¢ Often, the performance (or value or utility) of a given graph J(G:;) can be
determined through analysis
¢ Consider the following three types of graph-centric design problems' with 7 is
the amount of time allocated to complete the graph design study:
Type 0 All desired graphs can be generated, and so can their performance metric
J(G;) within time T
Type 1 All desired graphs can be generated, but only some of the performance
metrics J(G;) can be evaluated within time T; the analysis is too expensive
Type 2 All desired graphs cannot be generated within time T
® This work focuses on methods for Type 1 problems (using data from a large
Type 0 study)

" Guo, Herber, and Allison 2018
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Case Study: Aircraft Thermal Management System (TMS)

® The design case study here seeks to identify the top set of TMSs (each
represented by graph G;) assessed by the value J(G;) of:

minimize: J = wiJi + wats + wiJs + wads + wsJs (1 a)
= wi(Tur — 343K) + wo(Tuir — 300K) + w3 Crorar + Waritgss + wsritgsy (1D)
where an aircraft TMS is tasked with controlling the temperatures of two loads:
flight control heat load Ty.r, and radar heat load Tz’

e |t is feasible to generate all unique graphs up to a specific size by utilizing
previously developed efficient graph enumeration methods?

® 32,612 potential architectures were generated

® But, evaluating this many graphs using physics-based Modelica models is
extremely expensive, making this a suitable dataset to explore posed on Slide 3

" Herber et al. 2020 2 Buettner et al. 2021
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Case Study (2)

@ Is the graph capable of being compiled (i.e., can a physics-based model be
automatically constructed from a given graph)?

@ s the graph capable of being simulated (i.e., given a complied model, are there
valid simulation outcomes)?

e Of the 32,612 potential architectures, only 5,585 successfully compiled
e Qut of the 5,585 compiled graphs, only 2,098 were able to simulate

® Simulatability and best performance J(G;) were determined by attempting to
simulate compiled models using 200 different parameter sets'

* [f at least one set produced any valid results, it is considered simulatable,
and the lowest J value is assigned to its respective graph

" Herber et al. 2020
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Key Questions

e Often the goal is not to narrow the potential graphs down to one particular graph,
but rather a group of “useful”’ graphs that would be analyzed further

® Sometimes at a higher fidelity due to assumptions made in modeling
® To explore trade-offs (e.g., performance vs. complexity)

@ Using a predefined portion of the 32,612 graphs, can a GDL model determine if
the remaining graphs are compilable and simulatable?

@ Given a Type 1 problem, can we provide a reasonable likely set of “useful”
graphs without evaluating each of their performance J(G;)?

@ If so, how should we approach this challenge to reduce overall design study
computational cost?

" Useful is defined as satisfying a specific set of conditions
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Graph Classification

® Graph classification approaches seek to assign graphs to a class based on a
predetermined criteria — optimized assessment J(G;) from Eq. (1)

® Predictive models for classification are less concerned about absolute positioning
than correct class assignment — aligned with the search for the top potential
candidates

* Why not regression? — Facilitates better down-selection in the early stages of
conceptual design
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* We consider Geometric Deep Learning (GDL) as a potential strategy for the
classification goal

e GDL is an umbrella term encompassing a technique that generalizes neural
networks to Euclidean and non-Euclidean domains, such as graphs, manifolds,
meshes, or string representations’

® |In essence, GDL encompasses approaches that incorporate information on the

input variables’ structure space and symmetry properties and leverage it to
improve the quality of the data captured by the model

e GDL uses Graph Neural Networks (GNNs)?, which have convolutional layers to
determine node embeddings and pooling layers to average node embeddings

e GDL has been used in a variety of areas®

" Bronstein, Bruna, Cohen, et al. 2021; Bronstein, Bruna, LeCun, et al. 2017 2 Bengio 2012 g Wong et al.
2022; Pfaff et al. 2021; Park and Park 2019; Zhang, He, and Katabi 2019; Xiao, Ahmed, and Sha 2023; Fer-
rero et al. 2021; Atz, Grisoni, and Schneider 2021; Gainza et al. 2020; Krokos, Bordas, and Kerfriden 2022
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Multi-Label Classification for Compilation and Simulatability

® When there are multiple labels, we can represent them for graph G; as:
L(Gi) =[h, b, ... l—1,1] (2)

where /. represents a different aspect or sub-label
® The answers to these questions gives us four possible categories:

1. Graphs that will not compile
2. Graphs that will compile
3. Graphs that will not simulate
4. Graphs that will simulate

[0,1,0,1] if G; will compile and simulate
L(Gi) =< [0,1,1,0] if G; will compile but not simulate (3)
[1,0,1,0] if G; will not compile
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lterative Classification for Down-Selection

* We aim to select a smaller subset with higher median performance from G.; by
iteratively constructing GDL models, as outlined in the following steps:

Algorithm (Iterative Classification for Down-Selection)

1: k<« 1 > Initialize iteration counter
2: Create initial G o > Create initial set of known graphs
3: whilek < n do > lterate until specified limit

4 Create GDL model m" (G;) using G.own

5: Divide Gfoun into “Known 1” and “Known 0” based on median J using G,
6:  Usem"(G;) to predict classes of G pyrown

7 Form sets “Predicted 1” and “Predicted 0” from these predictions

8  SetGyt. <« “Known 1”

9

: SetGyh .n < “Predicted 17
10: Exclude remaining graphs, assuming them to be less valuable or useful
11: k—k+1 > Increment iteration counter

12: end while
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— Tools and Code Availability

. Code and dataset:

Table: List of Tool . L

able: LIS of 100% S https://github.com/anthonysirico/GDL-
for-Engineering-Design

Tool Version
Python 3.9
PyTorch-Geometric'  2.1.0
PyTorch 1.12.1
Networkx 2.8.7
SciPy  1.9.1
Pandas 1.5.0

' Fey and Lenssen 2019



https://github.com/anthonysirico/GDL-for-Engineering-Design
https://github.com/anthonysirico/GDL-for-Engineering-Design
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A Model for Multi-Label Classification for Compilation and Simulatibility

® Known Set Size and Training Epochs’

© What is an appropriate portion (%) of the dataset is needed to construct a
reasonable GDL model?

Known Size % Mean Accuracy Mean AUC

20 0.915 0.860
10 0.909 0.845
5 0.902 0.845
25 0.881 0.825
1.25 0.866 0.824

Table: The model metrics for different Ny, averaged over the seven independent runs.

" Precision, Recall, and F1 can be found in the paper.
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Multi-Label Classification (2)

® Known Set Size and Epochs continued
® Several sizes of the known dataset (all graphs have J(G;) known) were
selected
® Many epochs were also used to help determine a typical stopping condition

-
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Multi-Label Classification (3): Feature Engineering

e Harmonic Centrality the sum of the reciprocals of the shortest path distances d
from all other nodes to a specific node u
1
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Will the graph simulate?

Will the graph compile?
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Multi-Label Classification (4): ROC & AUC without Feature Engineering
* Receiver Operating Characteristic Curve (ROC)
® Displays the performance of the model at all classification thresholds

e Area Under the Curve (AUC)

® Offers a comprehensive performance assessment over all potential
classification thresholds
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Multi-Label Classification (5): ROC & AUC with Feature Engineering

® Adding harmonic centrality greatly increased the models ability to discern
patterns, leading to more accurate and efficient models
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lterative Classification

¢ Using the approach described on Slide 10, three iterations were performed

® Good separation occurs between the Predicted 1 and Predicted 0 sets at
Iteration 3

r

Iteration 1 Iteration 2 Iteration 3
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Iterative Classification (2)

® Here we show the median values of the “Known 1” and “Predicted 1” sets
averaged over ten runs using the iterative GDL classification approach

® The previous slide is one of the ten runs in this figure
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Conclusions and Future Work

* We presented a Geometric Deep Learning (GDL) approach for classifying and
down-selecting graph-based aircraft Thermal Management Systems (TMSs)
toward sets of better-performing solutions

® Observations were made of intriguing trade-offs between accuracy and
computational cost for this task

¢ Potential future work items include:

® Merging the two main tasks from this study into one main workflow

® Regression approaches for predicting graph performance

® A Pareto set of solutions is employed, where it may include multiple
instances of the same graph, each with varying parameter values
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