
Introduction Methodology Results Conclusions References

Geometric Deep Learning Towards the Iterative Classification
of Graph-Based Aircraft Thermal Management Systems

AIAA-2024-0684

g Anthony Sirico Jr., Daniel R. Herber

� Colorado State University – Department of Systems Engineering
� anthony.sirico@colostate.edu

January 9, 2024; Orlando, FL

1© 2024 Anthony Sirio Jr.. All Rights Reserved.

mailto:eid@colostate.edu


1

Introduction



Introduction Methodology Results Conclusions References

Graph Representation of Engineered Systems

• Graphs can be used as a
model for a variety of
engineered systems

• Here we consider labeled
graphs denoted by G

• We seek to determine
whether this is a useful graph
or not

Equivalent

2



Introduction Methodology Results Conclusions References

Design Situation of Interest

• Often, the performance (or value or utility) of a given graph J(Gi) can be
determined through analysis

• Consider the following three types of graph-centric design problems1 with T is
the amount of time allocated to complete the graph design study:

Type 0 All desired graphs can be generated, and so can their performance metric
J(Gi) within time T

Type 1 All desired graphs can be generated, but only some of the performance
metrics J(Gi) can be evaluated within time T; the analysis is too expensive

Type 2 All desired graphs cannot be generated within time T
• This work focuses on methods for Type 1 problems (using data from a large

Type 0 study)

1 Guo, Herber, and Allison 2018

3



Introduction Methodology Results Conclusions References

Case Study: Aircraft Thermal Management System (TMS)

• The design case study here seeks to identify the top set of TMSs (each
represented by graph Gi) assessed by the value J(Gi) of:

minimize: J = w1J1 + w2J2 + w3J3 + w4J4 + w5J5 (1a)

= w1(T̄HLF − 343K) + w2(T̄HLR − 300K) + w3Ctotal + w4ṁBSI + w5ṁRSI (1b)

where an aircraft TMS is tasked with controlling the temperatures of two loads:
flight control heat load T̄HLF, and radar heat load T̄HLR

1

• It is feasible to generate all unique graphs up to a specific size by utilizing
previously developed efficient graph enumeration methods2

• 32,612 potential architectures were generated
• But, evaluating this many graphs using physics-based Modelica models is

extremely expensive, making this a suitable dataset to explore posed on Slide 3

1 Herber et al. 2020 2 Buettner et al. 2021

4



Introduction Methodology Results Conclusions References

Case Study (2)

? Is the graph capable of being compiled (i.e., can a physics-based model be
automatically constructed from a given graph)?

? Is the graph capable of being simulated (i.e., given a complied model, are there
valid simulation outcomes)?

• Of the 32,612 potential architectures, only 5,585 successfully compiled
• Out of the 5,585 compiled graphs, only 2,098 were able to simulate
• Simulatability and best performance J(Gi) were determined by attempting to

simulate compiled models using 200 different parameter sets1

• If at least one set produced any valid results, it is considered simulatable,
and the lowest J value is assigned to its respective graph

1 Herber et al. 2020

5



Introduction Methodology Results Conclusions References

Key Questions

• Often the goal is not to narrow the potential graphs down to one particular graph,
but rather a group of “useful”1 graphs that would be analyzed further
• Sometimes at a higher fidelity due to assumptions made in modeling
• To explore trade-offs (e.g., performance vs. complexity)

? Using a predefined portion of the 32,612 graphs, can a GDL model determine if
the remaining graphs are compilable and simulatable?

? Given a Type 1 problem, can we provide a reasonable likely set of “useful”
graphs without evaluating each of their performance J(Gi)?

? If so, how should we approach this challenge to reduce overall design study
computational cost?

1 Useful is defined as satisfying a specific set of conditions

6



Introduction Methodology Results Conclusions References

Graph Classification
• Graph classification approaches seek to assign graphs to a class based on a

predetermined criteria — optimized assessment J(Gi) from Eq. (1)
• Predictive models for classification are less concerned about absolute positioning

than correct class assignment — aligned with the search for the top potential
candidates

• Why not regression? — Facilitates better down-selection in the early stages of
conceptual design

Performance Classification

Median Performance

Worse

Better

Good (1)

Bad (0)

7



2

Methodology



Introduction Methodology Results Conclusions References

Geometric Deep Learning (GDL) & Graph Neural Networks (GNNs)

• We consider Geometric Deep Learning (GDL) as a potential strategy for the
classification goal

• GDL is an umbrella term encompassing a technique that generalizes neural
networks to Euclidean and non-Euclidean domains, such as graphs, manifolds,
meshes, or string representations1

• In essence, GDL encompasses approaches that incorporate information on the
input variables’ structure space and symmetry properties and leverage it to
improve the quality of the data captured by the model

• GDL uses Graph Neural Networks (GNNs)2, which have convolutional layers to
determine node embeddings and pooling layers to average node embeddings

• GDL has been used in a variety of areas3

1 Bronstein, Bruna, Cohen, et al. 2021; Bronstein, Bruna, LeCun, et al. 2017 2 Bengio 2012 3 Wong et al.
2022; Pfaff et al. 2021; Park and Park 2019; Zhang, He, and Katabi 2019; Xiao, Ahmed, and Sha 2023; Fer-
rero et al. 2021; Atz, Grisoni, and Schneider 2021; Gainza et al. 2020; Krokos, Bordas, and Kerfriden 2022

8



Introduction Methodology Results Conclusions References

Multi-Label Classification for Compilation and Simulatability

• When there are multiple labels, we can represent them for graph Gi as:

L(Gi) = [l1, l2, . . . , lc−1, lc] (2)

where lc represents a different aspect or sub-label
• The answers to these questions gives us four possible categories:

1. Graphs that will not compile
2. Graphs that will compile
3. Graphs that will not simulate
4. Graphs that will simulate

L(Gi) =


[0, 1, 0, 1] if Gi will compile and simulate
[0, 1, 1, 0] if Gi will compile but not simulate
[1, 0, 1, 0] if Gi will not compile

(3)

9



Introduction Methodology Results Conclusions References

Iterative Classification for Down-Selection

• We aim to select a smaller subset with higher median performance from Gall by
iteratively constructing GDL models, as outlined in the following steps:

Algorithm (Iterative Classification for Down-Selection)

1: k← 1 ▷ Initialize iteration counter
2: Create initial Gk

known ▷ Create initial set of known graphs
3: while k ≤ n do ▷ Iterate until specified limit
4: Create GDL model mk(Gi) using Gk

known
5: Divide Gk

known into “Known 1” and “Known 0” based on median J using Gk
known

6: Use mk(Gi) to predict classes of Gk
unknown

7: Form sets “Predicted 1” and “Predicted 0” from these predictions
8: Set Gk+1

known ← “Known 1”
9: Set Gk+1

unknown ← “Predicted 1”
10: Exclude remaining graphs, assuming them to be less valuable or useful
11: k← k + 1 ▷ Increment iteration counter
12: end while

10



Introduction Methodology Results Conclusions References

� Tools and Code Availability

Table: List of Tools

Tool Version
Python 3.9

PyTorch-Geometric1 2.1.0
PyTorch 1.12.1

Networkx 2.8.7
SciPy 1.9.1

Pandas 1.5.0

1 Fey and Lenssen 2019

Code and dataset:
® https://github.com/anthonysirico/GDL-

for-Engineering-Design

11

https://github.com/anthonysirico/GDL-for-Engineering-Design
https://github.com/anthonysirico/GDL-for-Engineering-Design
https://github.com/anthonysirico/GDL-for-Engineering-Design


3

Results



Introduction Methodology Results Conclusions References

A Model for Multi-Label Classification for Compilation and Simulatibility

• Known Set Size and Training Epochs1

? What is an appropriate portion (%) of the dataset is needed to construct a
reasonable GDL model?

Known Size % Mean Accuracy Mean AUC
20 0.915 0.860
10 0.909 0.845

5 0.902 0.845
2.5 0.881 0.825
1.25 0.866 0.824

Table: The model metrics for different Nknown averaged over the seven independent runs.

1 Precision, Recall, and F1 can be found in the paper.

12



Introduction Methodology Results Conclusions References

Multi-Label Classification (2)

• Known Set Size and Epochs continued
• Several sizes of the known dataset (all graphs have J(Gi) known) were

selected
• Many epochs were also used to help determine a typical stopping condition

0 100 200 300 400 500 600
Epoch

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
Lo

ss

20% Known
10% Known
5% Known
2% Known
1.25% Known

13



Introduction Methodology Results Conclusions References

Multi-Label Classification (3): Feature Engineering

• Harmonic Centrality the sum of the reciprocals of the shortest path distances d
from all other nodes to a specific node u

C(u) =
∑
v̸=u

1
d(v, u)

(4)

0 1

0

1

Tr
ue

 la
be

l

25011 657

1924 3390

Will the graph compile?

0 1

0

1

28813 178

1015 976

Will the graph simulate?

5000 10000 15000 20000 25000

Predicted label 0 1

0

1

Tr
ue

 la
be

l

25627 41

590 4724

Will the graph compile?

0 1

0

1

28875 116

743 1248

Will the graph simulate?

5000 10000 15000 20000 25000

Predicted label

14



Introduction Methodology Results Conclusions References

Multi-Label Classification (4): ROC & AUC without Feature Engineering
• Receiver Operating Characteristic Curve (ROC)

• Displays the performance of the model at all classification thresholds
• Area Under the Curve (AUC)

• Offers a comprehensive performance assessment over all potential
classification thresholds

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Will Not Compile Class (area = 0.72)
Will Compile Class (area = 0.94)
Will Not Simulate Class (area = 0.87)
Will Simulate Class (area = 0.97)
Random Guessing (area = 0.50)

15



Introduction Methodology Results Conclusions References

Multi-Label Classification (5): ROC & AUC with Feature Engineering

• Adding harmonic centrality greatly increased the models ability to discern
patterns, leading to more accurate and efficient models

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

Will Not Compile Class (area = 0.87)
Will Compile Class (area = 0.99)
Will Not Simulate Class (area = 0.83)
Will Simulate Class (area = 0.99)
Random Guessing (area = 0.50)

16



Introduction Methodology Results Conclusions References

Iterative Classification

• Using the approach described on Slide 10, three iterations were performed
• Good separation occurs between the Predicted 1 and Predicted 0 sets at

Iteration 3

A
ll 

D
at

a 
(2

,0
98

)
K

no
w

n 
1 

(3
14

)
K

no
w

n 
0 

(3
15

)
Pr

ed
ic

te
d 

1 
(6

08
)

Pr
ed

ic
te

d 
0 

(8
61

)
K

no
w

n 
1 

(1
57

)
K

no
w

n 
0 

(1
57

)
Pr

ed
ic

te
d 

1 
(3

38
)

Pr
ed

ic
te

d 
0 

(2
70

)
K

no
w

n 
1 

(7
8)

K
no

w
n 

0 
(7

9)
Pr

ed
ic

te
d 

1 
(2

18
)

Pr
ed

ic
te

d 
0 

(1
20

)

0

1000

2000
R

an
ki

ng
Iteration 1 Iteration 2 Iteration 3

17



Introduction Methodology Results Conclusions References

Iterative Classification (2)

• Here we show the median values of the “Known 1” and “Predicted 1” sets
averaged over ten runs using the iterative GDL classification approach

• The previous slide is one of the ten runs in this figure

1 2 3 4
Iteration

180

160

140

120

100

80
J

Known 1 Median Utility
Predicted 1 Median Utility

18



4

Conclusions & Future Work



Introduction Methodology Results Conclusions References

Conclusions and Future Work

• We presented a Geometric Deep Learning (GDL) approach for classifying and
down-selecting graph-based aircraft Thermal Management Systems (TMSs)
toward sets of better-performing solutions

• Observations were made of intriguing trade-offs between accuracy and
computational cost for this task

• Potential future work items include:
• Merging the two main tasks from this study into one main workflow
• Regression approaches for predicting graph performance
• A Pareto set of solutions is employed, where it may include multiple

instances of the same graph, each with varying parameter values

19



5

References



Introduction Methodology Results Conclusions References

� References

	 K. Atz, F. Grisoni, and G. Schneider (2021). Geometric deep learning on molecular represen-
tations. DOI: 10.48550/arXiv.2107.12375

	 Y. Bengio (2012). Practical recommendations for gradient-based training of deep architec-
tures. preprint v2. arXiv:1206.5533

	 M. M. Bronstein, J. Bruna, T. Cohen, et al. (2021). Geometric deep learning: grids, groups,
graphs, geodesics, and gauges. preprint v2. arXiv:2104.13478

	 M. M. Bronstein, J. Bruna, Y. LeCun, et al. (2017). “Geometric deep learning: going beyond
euclidean data”. IEEE Signal Processing Magazine 34.4. DOI: 10.1109/msp.2017.2693418

	 R. Buettner et al. (2021). “An automated design tool for the generation and selection of opti-
mal aircraft thermal management system architectures”. AIAA Propulsion and Energy 2021
Forum. DOI: 10.2514/6.2021-3718

	 V. Ferrero et al. (2021). “Classifying component function in product assemblies with graph
neural networks”. ASME J. Mech. Design 144.2. DOI: 10.1115/1.4052720

	 M. Fey and J. E. Lenssen (2019). “Fast graph representation learning with PyTorch Geomet-
ric”. ICLR Workshop on Representation Learning on Graphs and Manifolds

	 P. Gainza et al. (2020). “Deciphering interaction fingerprints from protein molecular surfaces
using geometric deep learning”. Nature 17. DOI: 10.1038/s41592-019-0666-6

	 T. Guo, D. R. Herber, and J. T. Allison (2018). “Reducing evaluation cost for circuit synthe-
sis using active learning”. ASME International Design Engineering Technical Conferences.
DETC2018-85654. doi: 10.1115/DETC2018-85654. DOI: 10.1115/DETC2018-85654

20

https://doi.org/10.48550/arXiv.2107.12375
https://arxiv.org/abs/1206.5533
https://arxiv.org/abs/2104.13478
https://doi.org/10.1109/msp.2017.2693418
https://doi.org/10.2514/6.2021-3718
https://doi.org/10.1115/1.4052720
https://doi.org/10.1038/s41592-019-0666-6
http://doi.org/10.1115/DETC2018-85654
https://doi.org/10.1115/DETC2018-85654


Introduction Methodology Results Conclusions References

� References (Continued)

	 D. R. Herber et al. (2020). “Architecture generation and performance evaluation of aircraft
thermal management systems through graph-based techniques”. AIAA 2020 Science and
Technology Forum and Exposition. AIAA 2020-0159. DOI: 10.2514/6.2020-0159

	 V. Krokos, S. P. A. Bordas, and P. Kerfriden (2022). A graph-based probabilistic geometric
deep learning framework with online physics-based corrections to predict the criticality of
defects in porous materials. DOI: 10.48550/arXiv.2205.06562

	 J. Park and J. Park (2019). “Physics-induced graph neural network: an application to wind-
farm power estimation”. Energy 187. DOI: 10.1016/j.energy.2019.115883

	 T. Pfaff et al. (2021). Learning mesh-based simulation with graph networks. DOI: 10.48550/
arXiv.2010.03409

	 J. C. Wong et al. (2022). “Graph neural network based surrogate model of physics simulations
for geometry design”. IEEE Symposium Series on Computational Intelligence. DOI: 10.1109/
SSCI51031.2022.10022022

	 Y. Xiao, F. Ahmed, and Z. Sha (2023). “Graph neural network-based design decision support
for shared mobility systems”. ASME J. Mech. Design 145.9. DOI: 10.1115/1.4062666

	 G. Zhang, H. He, and D. Katabi (2019). “Circuit-GNN: graph neural networks for distributed
circuit design”. International Conference on Machine Learning

21

https://doi.org/10.2514/6.2020-0159
https://doi.org/10.48550/arXiv.2205.06562
https://doi.org/10.1016/j.energy.2019.115883
https://doi.org/10.48550/arXiv.2010.03409
https://doi.org/10.48550/arXiv.2010.03409
https://doi.org/10.1109/SSCI51031.2022.10022022
https://doi.org/10.1109/SSCI51031.2022.10022022
https://doi.org/10.1115/1.4062666


Questions?

Geometric Deep Learning Towards the Iterative Classification of
Graph-Based Aircraft Thermal Management Systems

AIAA-2024-0684

g Anthony Sirico Jr. and g Daniel R. Herber
� Colorado State University

� {anthony.sirico, daniel.herber}@colostate.edu
® www.engr.colostate.edu/∼drherber

�
Links to the code on GitHub:

® https://github.com/anthonysirico/GDL-for-Engineering-Design
® doi: 10.48550/arXiv.2303.09770

mailto:anthony.sirico@colostate.edu
mailto:daniel.herber@colostate.edu
www.engr.colostate.edu/~drherber
https://github.com/anthonysirico/GDL-for-Engineering-Design
http://dx.doi.org/10.48550/arXiv.2303.09770
https://www.engr.colostate.edu/~drherber/publication?key=Sirico2024a

	Introduction
	Methodology
	Results
	Conclusions
	References
	Appendix



