Geometric Deep Learning Towards the Iterative Classification of Graph-Based Aircraft Thermal Management Systems AIAA-2024-0684

Anthony Sirico Jr., Daniel R. Herber

▲ Colorado State University – Department of Systems Engineering ▲ anthony.sirico@colostate.edu

January 9, 2024; Orlando, FL

© 2024 Anthony Sirio Jr.. All Rights Reserved.

Introduction

Introduction Methodology Results Conclusions Reference

Graph Representation of Engineered Systems

- **Graphs** can be used as a model for a variety of engineered systems
- Here we consider labeled graphs denoted by *G*
- We seek to determine whether this is a useful graph or not

Design Situation of Interest

- Often, the performance (or value or utility) of a given graph $J(G_i)$ can be determined through analysis
- Consider the following three types of graph-centric design problems¹ with *T* is the amount of time allocated to complete the graph design study:
- *Type 0* All desired graphs can be generated, and so can their performance metric $J(G_i)$ within time T
- *Type 1* All desired graphs can be generated, but only some of the performance metrics $J(G_i)$ can be evaluated within time *T*; the analysis is too expensive
- Type 2 All desired graphs cannot be generated within time T
- This **work focuses on methods for Type 1 problems** (using data from a large Type 0 study)

Case Study: Aircraft Thermal Management System (TMS)

• The design case study here seeks to **identify the top set of TMSs** (each represented by graph *G_i*) assessed by the value *J*(*G_i*) of:

minimize:
$$J = w_1J_1 + w_2J_2 + w_3J_3 + w_4J_4 + w_5J_5$$
 (1a)
= $w_1(\bar{T}_{HLF} - 343K) + w_2(\bar{T}_{HLR} - 300K) + w_3C_{total} + w_4\dot{m}_{BSI} + w_5\dot{m}_{RSI}$ (1b)

where an aircraft TMS is tasked with controlling the temperatures of two loads: flight control heat load \bar{T}_{HLF} , and radar heat load \bar{T}_{HLR}^{1}

- It is feasible to generate all unique graphs up to a specific size by utilizing previously developed efficient graph enumeration methods²
- 32,612 potential architectures were generated
- But, evaluating this many graphs using physics-based Modelica models is extremely expensive, making this a suitable dataset to explore posed on Slide 3

Introduction

Case Study (2)

- Is the graph capable of being compiled (i.e., can a physics-based model be automatically constructed from a given graph)?
- Is the graph capable of being simulated (i.e., given a complied model, are there valid simulation outcomes)?
- Of the 32,612 potential architectures, only 5,585 successfully compiled
- Out of the 5,585 compiled graphs, only 2,098 were able to simulate
- *Simulatability* and best performance *J*(*G_i*) were determined by attempting to simulate *compiled* models using 200 different parameter sets¹
 - If at least one set produced any valid results, it is considered *simulatable*, and the lowest *J* value is assigned to its respective graph

Key Questions

- Often the goal is not to narrow the potential graphs down to *one* particular graph, but rather a *group* of "useful"¹ graphs that would be analyzed further
 - · Sometimes at a higher fidelity due to assumptions made in modeling
 - To explore trade-offs (e.g., performance vs. complexity)
- Using a predefined portion of the 32,612 graphs, can a GDL model determine if the remaining graphs are **compilable** and **simulatable**?
- Given a Type 1 problem, can we provide a reasonable likely set of "useful" graphs without evaluating each of their performance $J(G_i)$?
- If so, how should we approach this challenge to reduce overall design study computational cost?

¹ Useful is defined as satisfying a specific set of conditions

Introduction Methodology Results Conclusions References ○○○○○● ○○○○ ○○○○○○○ ○

Graph Classification

- **Graph classification** approaches seek to assign graphs to a class based on a predetermined criteria optimized assessment *J*(*G_i*) from Eq. (1)
- Predictive models for classification are less concerned about absolute positioning than correct class assignment aligned with the search for the top potential candidates
- Why not regression? Facilitates better down-selection in the early stages of conceptual design

Methodology

Geometric Deep Learning (GDL) & Graph Neural Networks (GNNs)

- We consider **Geometric Deep Learning (GDL)** as a potential strategy for the classification goal
- GDL is an umbrella term encompassing a technique that generalizes neural networks to Euclidean and non-Euclidean domains, such as graphs, manifolds, meshes, or string representations¹
- In essence, GDL encompasses approaches that incorporate information on the input variables' structure space and symmetry properties and leverage it to improve the quality of the data captured by the model
- GDL uses **Graph Neural Networks (GNNs)**², which have convolutional layers to determine node embeddings and pooling layers to average node embeddings
- GDL has been used in a variety of areas³

Methodology

¹ Bronstein, Bruna, Cohen, et al. 2021; Bronstein, Bruna, LeCun, et al. 2017 ² Bengio 2012 ³ Wong et al. 2022; Pfaff et al. 2021; Park and Park 2019; Zhang, He, and Katabi 2019; Xiao, Ahmed, and Sha 2023; Ferrero et al. 2021; Atz, Grisoni, and Schneider 2021; Gainza et al. 2020; Krokos, Bordas, and Kerfriden 2022

Multi-Label Classification for Compilation and Simulatability

• When there are multiple labels, we can represent them for graph G_i as:

$$\mathbf{L}(G_i) = [l_1, l_2, \dots, l_{c-1}, l_c]$$
(2)

where l_c represents a different aspect or sub-label

- The answers to these questions gives us four possible categories:
 - 1. Graphs that will not compile
 - 2. Graphs that will compile

Methodology

- 3. Graphs that will not simulate
- 4. Graphs that will simulate

 $\mathbf{L}(G_i) = \begin{cases} [0, 1, 0, 1] & \text{if } G_i \text{ will compile and simulate} \\ [0, 1, 1, 0] & \text{if } G_i \text{ will compile but not simulate} \\ [1, 0, 1, 0] & \text{if } G_i \text{ will not compile} \end{cases}$

(3)

Methodoloav

Iterative Classification for Down-Selection

• We aim to select a smaller subset with higher median performance from \mathcal{G}_{all} by iteratively constructing GDL models, as outlined in the following steps:

Algorithm (Iterative Classification for Down-Selection)

1: $k \leftarrow 1$

- 2: Create initial \mathcal{G}_{known}^{k}
- 3: while k < n do
- Create GDL model $m^k(G_i)$ using \mathcal{G}^k_{known} 4:
- Divide \mathcal{G}_{known}^{k} into "Known 1" and "Known 0" based on median J using \mathcal{G}_{known}^{k} 5
- Use $m^k(G_i)$ to predict classes of $\mathcal{G}^k_{unknown}$ 6:
- Form sets "Predicted 1" and "Predicted 0" from these predictions 7.
- 8:
- $\begin{array}{l} \textit{Set } \mathcal{G}_{known}^{k+1} \leftarrow \textit{``Known 1''} \\ \textit{Set } \mathcal{G}_{unknown}^{k+1} \leftarrow \textit{``Predicted 1''} \end{array}$ 9:
- Exclude remaining graphs, assuming them to be less valuable or useful 10.
- $k \leftarrow k + 1$ 11:

12: end while

Increment iteration counter

Initialize iteration counter Create initial set of known graphs

▷ Iterate until specified limit

Introduction Methodology Results Conclusions Reference

→ Tools and Code Availability

Table: List of Tools

Tool	Version
Python	3.9
PyTorch-Geometric ¹	2.1.0
PyTorch	1.12.1
Networkx	2.8.7
SciPy	1.9.1
Pandas	1.5.0

¹ Fey and Lenssen 2019

Code and dataset: https://github.com/anthonysirico/GDLfor-Engineering-Design

Results

roduction Methodology Results Conclusions References

A Model for Multi-Label Classification for Compilation and Simulatibility

- Known Set Size and Training Epochs¹
 - What is an appropriate portion (%) of the dataset is needed to construct a *reasonable* GDL model?

Known Size %	Mean Accuracy	Mean AUC
20	0.915	0.860
10	0.909	0.845
5	0.902	0.845
2.5	0.881	0.825
1.25	0.866	0.824

Table: The model metrics for different N_{known} averaged over the seven independent runs.

¹ Precision, Recall, and F1 can be found in the paper.

Introduction Methodology Results Conclusions References

Multi-Label Classification (2)

- Known Set Size and Epochs continued
 - Several sizes of the known dataset (all graphs have $J(G_i)$ known) were selected
 - Many epochs were also used to help determine a typical stopping condition

Multi-Label Classification (3): Feature Engineering

Results

• **Harmonic Centrality** the sum of the reciprocals of the shortest path distances *d* from all other nodes to a specific node *u*

$$C(u) = \sum_{v \neq u} \frac{1}{d(v, u)} \tag{4}$$

Introduction Methodology Results Conclusions References

Multi-Label Classification (4): ROC & AUC without Feature Engineering

- Receiver Operating Characteristic Curve (ROC)
 - · Displays the performance of the model at all classification thresholds
- Area Under the Curve (AUC)
 - Offers a comprehensive performance assessment over all potential classification thresholds

Multi-Label Classification (5): ROC & AUC with Feature Engineering

Results

• Adding *harmonic centrality* greatly increased the models ability to discern patterns, leading to more accurate and efficient models

Introduction Methodology **Results** Conclusions References ○○○○○○ ○○○○○ ○○○○○○○○○○○

Iterative Classification

- Using the approach described on Slide 10, three iterations were performed
- Good separation occurs between the Predicted 1 and Predicted 0 sets at Iteration 3

Iterative Classification (2)

- Here we show the median values of the "Known 1" and "Predicted 1" sets averaged over ten runs using the iterative GDL classification approach
- The previous slide is one of the ten runs in this figure

Conclusions & Future Work

Introduction Methodology Results Conclusions Reference ○○○○○○ ○○○○ ○

Conclusions and Future Work

- We presented a Geometric Deep Learning (GDL) approach for classifying and down-selecting graph-based aircraft Thermal Management Systems (TMSs) toward sets of better-performing solutions
- Observations were made of intriguing trade-offs between accuracy and computational cost for this task
- Potential future work items include:
 - · Merging the two main tasks from this study into one main workflow
 - Regression approaches for predicting graph performance
 - A Pareto set of solutions is employed, where it may include multiple instances of the same graph, each with varying parameter values

References

→ References

- K. Atz, F. Grisoni, and G. Schneider (2021). Geometric deep learning on molecular representations. DOI: 10.48550/arXiv.2107.12375
- ▼. Bengio (2012). Practical recommendations for gradient-based training of deep architectures. preprint v2. arXiv:1206.5533
- M. M. Bronstein, J. Bruna, T. Cohen, et al. (2021). Geometric deep learning: grids, groups, graphs, geodesics, and gauges. preprint v2. arXiv:2104.13478
- M. M. Bronstein, J. Bruna, Y. LeCun, et al. (2017). "Geometric deep learning: going beyond euclidean data". IEEE Signal Processing Magazine 34.4. DOI: 10.1109/msp.2017.2693418
- R. Buettner et al. (2021). "An automated design tool for the generation and selection of optimal aircraft thermal management system architectures". AIAA Propulsion and Energy 2021 Forum. DOI: 10.2514/6.2021-3718
- ▼ V. Ferrero et al. (2021). "Classifying component function in product assemblies with graph neural networks". ASME J. Mech. Design 144.2. DOI: 10.1115/1.4052720
- M. Fey and J. E. Lenssen (2019). "Fast graph representation learning with PyTorch Geometric". ICLR Workshop on Representation Learning on Graphs and Manifolds
- P. Gainza et al. (2020). "Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning". *Nature* 17. DOI: 10.1038/s41592-019-0666-6
- T. Guo, D. R. Herber, and J. T. Allison (2018). "Reducing evaluation cost for circuit synthesis using active learning". ASME International Design Engineering Technical Conferences. DETC2018-85654. doi: 10.1115/DETC2018-85654. DOI: 10.1115/DETC2018-85654

Introduction Methodology Results Conclusions References

→ References (Continued)

- D. R. Herber et al. (2020). "Architecture generation and performance evaluation of aircraft thermal management systems through graph-based techniques". AIAA 2020 Science and Technology Forum and Exposition. AIAA 2020-0159. DOI: 10.2514/6.2020-0159
- V. Krokos, S. P. A. Bordas, and P. Kerfriden (2022). A graph-based probabilistic geometric deep learning framework with online physics-based corrections to predict the criticality of defects in porous materials. DOI: 10.48550/arXiv.2205.06562
- J. Park and J. Park (2019). "Physics-induced graph neural network: an application to windfarm power estimation". *Energy* 187. DOI: 10.1016/j.energy.2019.115883
- T. Pfaff et al. (2021). Learning mesh-based simulation with graph networks. DOI: 10.48550/ arXiv.2010.03409
- J. C. Wong et al. (2022). "Graph neural network based surrogate model of physics simulations for geometry design". *IEEE Symposium Series on Computational Intelligence*. DOI: 10.1109/ SSCI51031.2022.10022022
- Y. Xiao, F. Ahmed, and Z. Sha (2023). "Graph neural network-based design decision support for shared mobility systems". ASME J. Mech. Design 145.9. DOI: 10.1115/1.4062666
- G. Zhang, H. He, and D. Katabi (2019). "Circuit-GNN: graph neural networks for distributed circuit design". *International Conference on Machine Learning*

Questions?

Geometric Deep Learning Towards the Iterative Classification of Graph-Based Aircraft Thermal Management Systems AIAA-2024-0684

Links to the code on GitHub:

% https://github.com/anthonysirico/GDL-for-Engineering-Design **%** doi: 10.48550/arXiv.2303.09770

