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Graph Representation of Engineered Systems

• Graphs can be used as a
model for a variety of
engineered systems

• Here we consider labeled
graphs denoted by G

• We seek to determine
whether this is a useful graph
or not

Equivalent

2



Introduction Methodology Results Conclusions References

Design Situation of Interest

• Often, the performance (or value or utility) of a given graph J(Gi) can be
determined through analysis

• Consider the following three types of graph-centric design problems1 with T is
the amount of time allocated to complete the graph design study:

Type 0 All desired graphs can be generated, and so can their performance metric
J(Gi) within time T

Type 1 All desired graphs can be generated, but only some of the performance
metrics J(Gi) can be evaluated within time T; the analysis is too expensive

Type 2 All desired graphs cannot be generated within time T
• This work focuses on methods for Type 1 problems (using data from a large

Type 0 study)

1 Guo, Herber, and Allison 2018
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Case Study: Aircraft Thermal Management System (TMS)

• The design case study here seeks to identify the top set of TMSs (each
represented by graph Gi) assessed by the value J(Gi) of:

minimize: J = w1J1 + w2J2 + w3J3 + w4J4 + w5J5 (1a)

= w1(T̄HLF − 343K) + w2(T̄HLR − 300K) + w3Ctotal + w4ṁBSI + w5ṁRSI (1b)

where an aircraft TMS is tasked with controlling the temperatures of two loads:
flight control heat load T̄HLF, and radar heat load T̄HLR

1

• It is feasible to generate all unique graphs up to a specific size by utilizing
previously developed efficient graph enumeration methods2

• 32,612 potential architectures were generated
• But, evaluating this many graphs using physics-based Modelica models is

extremely expensive, making this a suitable dataset to explore posed on Slide 3

1 Herber et al. 2020 2 Buettner et al. 2021
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Case Study (2)

? Is the graph capable of being compiled (i.e., can a physics-based model be
automatically constructed from a given graph)?

? Is the graph capable of being simulated (i.e., given a complied model, are there
valid simulation outcomes)?

• Of the 32,612 potential architectures, only 5,585 successfully compiled
• Out of the 5,585 compiled graphs, only 2,098 were able to simulate
• Simulatability and best performance J(Gi) were determined by attempting to

simulate compiled models using 200 different parameter sets1

• If at least one set produced any valid results, it is considered simulatable,
and the lowest J value is assigned to its respective graph

1 Herber et al. 2020
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Key Questions

• Often the goal is not to narrow the potential graphs down to one particular graph,
but rather a group of “useful”1 graphs that would be analyzed further
• Sometimes at a higher fidelity due to assumptions made in modeling
• To explore trade-offs (e.g., performance vs. complexity)

? Using a predefined portion of the 32,612 graphs, can a GDL model determine if
the remaining graphs are compilable and simulatable?

? Given a Type 1 problem, can we provide a reasonable likely set of “useful”
graphs without evaluating each of their performance J(Gi)?

? If so, how should we approach this challenge to reduce overall design study
computational cost?

1 Useful is defined as satisfying a specific set of conditions
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Graph Classification
• Graph classification approaches seek to assign graphs to a class based on a

predetermined criteria — optimized assessment J(Gi) from Eq. (1)
• Predictive models for classification are less concerned about absolute positioning

than correct class assignment — aligned with the search for the top potential
candidates

• Why not regression? — Facilitates better down-selection in the early stages of
conceptual design

Performance Classification

Median Performance

Worse

Better

Good (1)

Bad (0)
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Geometric Deep Learning (GDL) & Graph Neural Networks (GNNs)

• We consider Geometric Deep Learning (GDL) as a potential strategy for the
classification goal

• GDL is an umbrella term encompassing a technique that generalizes neural
networks to Euclidean and non-Euclidean domains, such as graphs, manifolds,
meshes, or string representations1

• In essence, GDL encompasses approaches that incorporate information on the
input variables’ structure space and symmetry properties and leverage it to
improve the quality of the data captured by the model

• GDL uses Graph Neural Networks (GNNs)2, which have convolutional layers to
determine node embeddings and pooling layers to average node embeddings

• GDL has been used in a variety of areas3

1 Bronstein, Bruna, Cohen, et al. 2021; Bronstein, Bruna, LeCun, et al. 2017 2 Bengio 2012 3 Wong et al.
2022; Pfaff et al. 2021; Park and Park 2019; Zhang, He, and Katabi 2019; Xiao, Ahmed, and Sha 2023; Fer-
rero et al. 2021; Atz, Grisoni, and Schneider 2021; Gainza et al. 2020; Krokos, Bordas, and Kerfriden 2022
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Multi-Label Classification for Compilation and Simulatability

• When there are multiple labels, we can represent them for graph Gi as:

L(Gi) = [l1, l2, . . . , lc−1, lc] (2)

where lc represents a different aspect or sub-label
• The answers to these questions gives us four possible categories:

1. Graphs that will not compile
2. Graphs that will compile
3. Graphs that will not simulate
4. Graphs that will simulate

L(Gi) =


[0, 1, 0, 1] if Gi will compile and simulate
[0, 1, 1, 0] if Gi will compile but not simulate
[1, 0, 1, 0] if Gi will not compile

(3)
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Iterative Classification for Down-Selection

• We aim to select a smaller subset with higher median performance from Gall by
iteratively constructing GDL models, as outlined in the following steps:

Algorithm (Iterative Classification for Down-Selection)

1: k← 1 ▷ Initialize iteration counter
2: Create initial Gk

known ▷ Create initial set of known graphs
3: while k ≤ n do ▷ Iterate until specified limit
4: Create GDL model mk(Gi) using Gk

known
5: Divide Gk

known into “Known 1” and “Known 0” based on median J using Gk
known

6: Use mk(Gi) to predict classes of Gk
unknown

7: Form sets “Predicted 1” and “Predicted 0” from these predictions
8: Set Gk+1

known ← “Known 1”
9: Set Gk+1

unknown ← “Predicted 1”
10: Exclude remaining graphs, assuming them to be less valuable or useful
11: k← k + 1 ▷ Increment iteration counter
12: end while
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 Tools and Code Availability

Table: List of Tools

Tool Version
Python 3.9

PyTorch-Geometric1 2.1.0
PyTorch 1.12.1

Networkx 2.8.7
SciPy 1.9.1

Pandas 1.5.0

1 Fey and Lenssen 2019

Code and dataset:
® https://github.com/anthonysirico/GDL-

for-Engineering-Design

11

https://github.com/anthonysirico/GDL-for-Engineering-Design
https://github.com/anthonysirico/GDL-for-Engineering-Design
https://github.com/anthonysirico/GDL-for-Engineering-Design


3

Results



Introduction Methodology Results Conclusions References

A Model for Multi-Label Classification for Compilation and Simulatibility

• Known Set Size and Training Epochs1

? What is an appropriate portion (%) of the dataset is needed to construct a
reasonable GDL model?

Known Size % Mean Accuracy Mean AUC
20 0.915 0.860
10 0.909 0.845

5 0.902 0.845
2.5 0.881 0.825
1.25 0.866 0.824

Table: The model metrics for different Nknown averaged over the seven independent runs.

1 Precision, Recall, and F1 can be found in the paper.
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Multi-Label Classification (2)

• Known Set Size and Epochs continued
• Several sizes of the known dataset (all graphs have J(Gi) known) were

selected
• Many epochs were also used to help determine a typical stopping condition
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Multi-Label Classification (3): Feature Engineering

• Harmonic Centrality the sum of the reciprocals of the shortest path distances d
from all other nodes to a specific node u

C(u) =
∑
v̸=u

1
d(v, u)

(4)
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Multi-Label Classification (4): ROC & AUC without Feature Engineering
• Receiver Operating Characteristic Curve (ROC)

• Displays the performance of the model at all classification thresholds
• Area Under the Curve (AUC)

• Offers a comprehensive performance assessment over all potential
classification thresholds
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Multi-Label Classification (5): ROC & AUC with Feature Engineering

• Adding harmonic centrality greatly increased the models ability to discern
patterns, leading to more accurate and efficient models
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Iterative Classification

• Using the approach described on Slide 10, three iterations were performed
• Good separation occurs between the Predicted 1 and Predicted 0 sets at

Iteration 3
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Iterative Classification (2)

• Here we show the median values of the “Known 1” and “Predicted 1” sets
averaged over ten runs using the iterative GDL classification approach

• The previous slide is one of the ten runs in this figure
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Conclusions and Future Work

• We presented a Geometric Deep Learning (GDL) approach for classifying and
down-selecting graph-based aircraft Thermal Management Systems (TMSs)
toward sets of better-performing solutions

• Observations were made of intriguing trade-offs between accuracy and
computational cost for this task

• Potential future work items include:
• Merging the two main tasks from this study into one main workflow
• Regression approaches for predicting graph performance
• A Pareto set of solutions is employed, where it may include multiple

instances of the same graph, each with varying parameter values

19
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