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Graph Representations of Engineered Systems
• Graphs can be used as a model for a variety of engineered systems
• Here we consider labeled graphs denoted by G

Equivalent
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Design Situation of Interest

• Often, the performance (or value or utility) of a given graph J(Gi) can be
determined through analysis

• Consider the following three types of graph-centric design problems1 with T is
the amount of time allocated to complete the graph design study:

Type 0 All desired graphs can be generated, and so can their performance metric
J(Gi) within time T

Type 1 All desired graphs can be generated, but only some of the performance
metrics J(Gi) can be evaluated within time T; the analysis is too expensive

Type 2 All desired graphs cannot be generated within time T
• This work focuses on methods for Type 1 problems (using data from a large

Type 0 study)

1 Guo, Herber, and Allison 2018
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Case Study Dataset (1): Analog Electric Circuit Synthesis
• The design case study here seeks to identify the top set of best performing

circuits (each represented by graph Gi) assessed by the optimal value J(Gi) of:

minimize:
zi={Ri,Ci}

J =
∑

k

(log |Hi(jωk, zi)| − log |F(jωk)|)2 (1a)

subject to: 10−2 ≤ Rj ≤ 100 for all Rj in Gi (1b)

10−2 ≤ Cj ≤ 100 for all Cj in Gi (1c)

where: |F(jω)| =
√

2π/10ω 0.2 ≤ ω/2π ≤ 5 (1d)

which represents minimizing the error between the desired frequency response
|F(jω)| and the one a candidate circuit Gi provides1

• Generating of all unique (nonisomorphic) graphs up to a certain size is possible
using previous efficient graph enumeration techniques2

• However, the solving of Eq. (1) for all 43,249 graphs is expensive
• Previous work has incurred this expense3 making this one suitable dataset for

exploring case posed on Slide 3
1 Grimbleby 1995; Herber 2017 2 Herber 2020; Herber, Guo, and Allison 2017 3 Herber 2017
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Case Study Dataset (2): Performance vs. Complexity
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Key Questions

• Often the goal is not to narrow the potential graphs down to one particular graph,
but rather a group of “good” or promising graphs that would be analyzed further

• Sometimes at a higher fidelity due to assumptions made in modeling
• To explore trade-offs (e.g., performance vs. complexity)

? Given a Type 1 problem, can we provide a reasonable likely set of “good” graphs
without evaluating each of their performance J(Gi)?

? If so, how should we approach this challenge to reduce overall design study
computational cost?
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Graph Classification
• Graph classification approaches seek to assign graphs to a class based on a

predetermined criteria — optimized assessment J(Gi) from Eq. (1)
• Predictive models for classification are less concerned about absolute positioning

than correct class assignment — aligned with the search for the top potential
candidates

Performance Classification

Median Performance

Worse

Better

Good (1)

Bad (0)
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� Geometric Deep Learning (GDL) and Graph Neural Networks (GNNs)

• We consider Geometric Deep Learning (GDL) as a potential strategy for the
classification goal

• GDL is an umbrella term encompassing a technique that generalizes neural
networks to Euclidean and non-Euclidean domains, such as graphs, manifolds,
meshes, or string representations1

• In essence, GDL encompasses approaches that incorporate information on the
input variables’ structure space and symmetry properties and leverage it to
improve the quality of the data captured by the model

• GDL uses Graph Neural Networks (GNNs)2, which have convolutional layers to
determine node embeddings and pooling layers to average node embeddings

• GDL has been used in a variety of areas3

1 Bronstein, Bruna, Cohen, et al. 2021; Bronstein, Bruna, LeCun, et al. 2017 2 Lecun et al. 1998 3 Wong
et al. 2022; Pfaff et al. 2021; Park and Park 2019; Zhang, He, and Katabi 2019; Xiao, Ahmed, and Sha 2023;
Ferrero et al. 2021; Atz, Grisoni, and Schneider 2021; Gainza et al. 2020; Krokos, Bordas, and Kerfriden 2022
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� Known and Unknown Graphs

• Based on the Type 1 problem clas-
sification, we will consider the case
when only some of the performance
values J(Gi) for Gi ⊂ G are known

• This will divide the graphs into two
sets as follows:

G ≡ Gall = Gknown ∪ Gunknown (2)

• Gknown is the set of graphs with
known values for J(Gi)

• Gunknown represents graphs with
unknown J(Gi) values (and this is
what the GDL model is for)
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� Iterative Classification for Downselection
• Even if with perfect classification, the approach outlined so far would only result

in determining the top 50% performing graphs in Gall

• We seek a smaller, better median performance set of graphs from Gall by
iteratively constructing GDL models with these steps:

Algorithm (Iterative Classification for Downselection)

1. Set k = 1 and create an initial Gk
known.

2. Create a GDL model mk(Gi) using Gk
known, which is naturally broken

into sets “Known 1” and “Known 0” based on the median J value of
Gk

known.

3. Predict the classes of the Gk
unknown using mk(Gi), creating “Predicted

1” and “Predicted 0”, which are sets of graphs predicted to be good
(1) or bad (0), respectively.

4. The goal is to identify good graphs, so we set Gk+1
known equal to

“Known 1” and Gk+1
unknown equal to “Predicted 1” (and the remaining

graphs are removed under the assumption that they are bad).

5. Set k → k + 1 and repeat Step 2 until k = n.
10
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� Tools and Code Availability

Table: List of Tools

Tool Version
Python 3.9

PyTorch-Geometric1 2.1.0
PyTorch 1.12.1

Networkx 2.8.7
SciPy 1.9.1

Pandas 1.5.0

1 Fey and Lenssen 2019

Code and dataset:
® https://github.com/anthonysirico/GDL-

for-Engineering-Design
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� Experiments 1 & 2: Baseline and Additional Features
• Experiment 1: Baseline model had 79% accuracy and 77% precision on test set
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• Experiment 2: Model using two additional features of eigenvector centrality
and betweenness centrality had 85% accuracy and 90% precision on test set
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� Experiment 3 (1): Require Epochs Determination

? What is an appropriate portion (%) of the dataset is needed to construct a
reasonable GDL model?

• Several sizes of the known dataset (all graphs have J(Gi) known) were selected
• Many epochs were also used to help determine a typical stopping condition
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� Experiment 3 (2): Total Set Accuracy vs. Known Set Size
• Since we are considering problems with a fixed number of graphs, we consider a

total set accuracy metric
• Allows comparisons to the worst-case random model and total enumeration

• Variability explored using 5 randomized runs for each known set size
• It was determined that 10–20% known set size was a reasonable balance

between the cost of evaluating J(G) and total set accuracy
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� Experiment 4 (1): Iterative Classification Results

• Using the approach described on Slide 10, five iterations were performed
• Good separation occurs between the Predicted 1 and Predicted 0 sets until
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� Experiment 4 (2): Average Performance Change per Iteration

• Here we show the median values of the “Known 1” and “Predicted 1” sets
averaged over six runs using the iterative GDL classification approach

• The previous slide is one of the six runs in this figure
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� Experiment 4 (3): Top X Graph Results

? Are the best-performing graphs still in our final set (after four iterations)?

� Important

For the top 100 graphs, 88.2 (2.5) remained compared to an expected value of 22.96.
Finally, for the top 1000 graphs, 751.2 (39.5) remained compared to an expected value
of 229.6.

• Over these runs, the average number of graphs that would be known (i.e.,
optimized) was 11282.2 graphs (492.8)

• Therefore, these outcomes are with about 25% of the computational cost of
complete enumeration

• In another study with about 19% of the total potential cost, 9.2 (0.4) of the top 10
graphs remained and 85.2 (6.3) of the top 100 graphs remained
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� Conclusions and Future Work

• We presented a Geometric Deep Learning (GDL) approach for classifying and
down-selecting graph-based analog circuits toward sets of better-performing
solutions

• Interesting, if not immediately valuable, trade-offs in accuracy and computational
cost for this task were observed

• Potential future work items include:
• Iteratively and intelligently adding new graphs to “Known” to combat model

accuracy decreases
• Transfer learning to similar problems
• Explore this approach in other Type 1 problems, including ones with directed

graphs and multiple graph-level performance metrics
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� Confusion Matrix

• A Confusion Matrix (CM), the key metric representation used for a classification
model, where the columns contain the samples of the model output, and the
rows contain the samples true class

• True Positives (TP) — top left box
• False Positives (FP) — top right box
• False Negatives (FN) — bottom left box
• True Negatives (TN) — bottom right box
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� Performance Metrics

Metric Definition Equation

Accuracy Overall accuracy of the model
based on correct predictions

Acc = TP+TN
N

b

Precision The proportion of positive classifi-
cation predicted correctly

Precision = TP
TP+FP

Recall The proportion of actual positive
classifications identified correctly

Recall = TP
TP+FN

F1 Score The harmonic mean between Pre-
cision and Recall

F1 = 2 · Precision·Recall
Precision+Recall

MCCa Ranged from -1 to 1, takes into
account all data from the CM

MCC = TP·TN−FP·FN√
(TP+FP)(TP+FN)(TN+FP)

Total Set Acc. Accuracy of Nall using known and
unknown when compared to N

Total Set Accuracy =
T(u)

P +T(u)
N +T(k)

P +T(k)
N

Nall

a Matthews Correlation Coefficient1
b N is the total set size

1 Jurman, Riccadonna, and Furlanello 2012
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