
Introduction Methodology Results Conclusions References

On the Use of Geometric Deep Learning Towards the
Evaluation of Graph-Centric Engineering Systems

IDETC2023-114592

g Anthony Sirico Jr. and g Daniel R. Herber

� Colorado State University — Department of Systems Engineering
� {anthony.sirico, daniel.herber}@colostate.edu

August 21, 2023
Boston, MA, USA

1

mailto:anthony.sirico@colostate.edu
mailto:daniel.herber@colostate.edu

1

Introduction

Introduction Methodology Results Conclusions References

Graph Representations of Engineered Systems
• Graphs can be used as a model for a variety of engineered systems
• Here we consider labeled graphs denoted by G

Equivalent

2

Introduction Methodology Results Conclusions References

Design Situation of Interest

• Often, the performance (or value or utility) of a given graph J(Gi) can be
determined through analysis

• Consider the following three types of graph-centric design problems1 with T is
the amount of time allocated to complete the graph design study:

Type 0 All desired graphs can be generated, and so can their performance metric
J(Gi) within time T

Type 1 All desired graphs can be generated, but only some of the performance
metrics J(Gi) can be evaluated within time T; the analysis is too expensive

Type 2 All desired graphs cannot be generated within time T
• This work focuses on methods for Type 1 problems (using data from a large

Type 0 study)

1 Guo, Herber, and Allison 2018

3

Introduction Methodology Results Conclusions References

Case Study Dataset (1): Analog Electric Circuit Synthesis
• The design case study here seeks to identify the top set of best performing

circuits (each represented by graph Gi) assessed by the optimal value J(Gi) of:

minimize:
zi={Ri,Ci}

J =
∑

k

(log |Hi(jωk, zi)| − log |F(jωk)|)2 (1a)

subject to: 10−2 ≤ Rj ≤ 100 for all Rj in Gi (1b)

10−2 ≤ Cj ≤ 100 for all Cj in Gi (1c)

where: |F(jω)| =
√

2π/10ω 0.2 ≤ ω/2π ≤ 5 (1d)

which represents minimizing the error between the desired frequency response
|F(jω)| and the one a candidate circuit Gi provides1

• Generating of all unique (nonisomorphic) graphs up to a certain size is possible
using previous efficient graph enumeration techniques2

• However, the solving of Eq. (1) for all 43,249 graphs is expensive
• Previous work has incurred this expense3 making this one suitable dataset for

exploring case posed on Slide 3
1 Grimbleby 1995; Herber 2017 2 Herber 2020; Herber, Guo, and Allison 2017 3 Herber 2017

4

Introduction Methodology Results Conclusions References

Case Study Dataset (2): Performance vs. Complexity

2 3 4 5 6 7 8 9 10 11 12
Number of RC Nodes (Complexity)

10-4

10-3

10-2

10-1

100

101

102

P
er

fo
rm

an
ce

5

Introduction Methodology Results Conclusions References

Key Questions

• Often the goal is not to narrow the potential graphs down to one particular graph,
but rather a group of “good” or promising graphs that would be analyzed further

• Sometimes at a higher fidelity due to assumptions made in modeling
• To explore trade-offs (e.g., performance vs. complexity)

? Given a Type 1 problem, can we provide a reasonable likely set of “good” graphs
without evaluating each of their performance J(Gi)?

? If so, how should we approach this challenge to reduce overall design study
computational cost?

6

Introduction Methodology Results Conclusions References

Graph Classification
• Graph classification approaches seek to assign graphs to a class based on a

predetermined criteria — optimized assessment J(Gi) from Eq. (1)
• Predictive models for classification are less concerned about absolute positioning

than correct class assignment — aligned with the search for the top potential
candidates

Performance Classification

Median Performance

Worse

Better

Good (1)

Bad (0)

7

2

Methodology

Introduction Methodology Results Conclusions References

� Geometric Deep Learning (GDL) and Graph Neural Networks (GNNs)

• We consider Geometric Deep Learning (GDL) as a potential strategy for the
classification goal

• GDL is an umbrella term encompassing a technique that generalizes neural
networks to Euclidean and non-Euclidean domains, such as graphs, manifolds,
meshes, or string representations1

• In essence, GDL encompasses approaches that incorporate information on the
input variables’ structure space and symmetry properties and leverage it to
improve the quality of the data captured by the model

• GDL uses Graph Neural Networks (GNNs)2, which have convolutional layers to
determine node embeddings and pooling layers to average node embeddings

• GDL has been used in a variety of areas3

1 Bronstein, Bruna, Cohen, et al. 2021; Bronstein, Bruna, LeCun, et al. 2017 2 Lecun et al. 1998 3 Wong
et al. 2022; Pfaff et al. 2021; Park and Park 2019; Zhang, He, and Katabi 2019; Xiao, Ahmed, and Sha 2023;
Ferrero et al. 2021; Atz, Grisoni, and Schneider 2021; Gainza et al. 2020; Krokos, Bordas, and Kerfriden 2022

8

Introduction Methodology Results Conclusions References

� Known and Unknown Graphs

• Based on the Type 1 problem clas-
sification, we will consider the case
when only some of the performance
values J(Gi) for Gi ⊂ G are known

• This will divide the graphs into two
sets as follows:

G ≡ Gall = Gknown ∪ Gunknown (2)

• Gknown is the set of graphs with
known values for J(Gi)

• Gunknown represents graphs with
unknown J(Gi) values (and this is
what the GDL model is for)

0 20 40 60 80 100
Best A Percentile Ranking [%] ! Worst

10-4

10-2

100

Pe
rf

or
m

an
ce

All data All median
Known good (1) Known bad (0)
Known median

9

Introduction Methodology Results Conclusions References

� Iterative Classification for Downselection
• Even if with perfect classification, the approach outlined so far would only result

in determining the top 50% performing graphs in Gall

• We seek a smaller, better median performance set of graphs from Gall by
iteratively constructing GDL models with these steps:

Algorithm (Iterative Classification for Downselection)

1. Set k = 1 and create an initial Gk
known.

2. Create a GDL model mk(Gi) using Gk
known, which is naturally broken

into sets “Known 1” and “Known 0” based on the median J value of
Gk

known.

3. Predict the classes of the Gk
unknown using mk(Gi), creating “Predicted

1” and “Predicted 0”, which are sets of graphs predicted to be good
(1) or bad (0), respectively.

4. The goal is to identify good graphs, so we set Gk+1
known equal to

“Known 1” and Gk+1
unknown equal to “Predicted 1” (and the remaining

graphs are removed under the assumption that they are bad).

5. Set k → k + 1 and repeat Step 2 until k = n.
10

Introduction Methodology Results Conclusions References

� Tools and Code Availability

Table: List of Tools

Tool Version
Python 3.9

PyTorch-Geometric1 2.1.0
PyTorch 1.12.1

Networkx 2.8.7
SciPy 1.9.1

Pandas 1.5.0

1 Fey and Lenssen 2019

Code and dataset:
® https://github.com/anthonysirico/GDL-

for-Engineering-Design

11

https://github.com/anthonysirico/GDL-for-Engineering-Design
https://github.com/anthonysirico/GDL-for-Engineering-Design

3

Results

Introduction Methodology Results Conclusions References

� Experiments 1 & 2: Baseline and Additional Features
• Experiment 1: Baseline model had 79% accuracy and 77% precision on test set

Data
Actually

Positive (1)
Actually

Negative (0)

M
od

el

Predicted
Positive (1)

1,667 487

Predicted
Negative (0)

419 1,751

• Experiment 2: Model using two additional features of eigenvector centrality
and betweenness centrality had 85% accuracy and 90% precision on test set

Data
Actually

Positive (1)
Actually

Negative (0)

M
od

el

Predicted
Positive (1)

1,901 213

Predicted
Negative (0)

451 1,759

12

Introduction Methodology Results Conclusions References

� Experiment 3 (1): Require Epochs Determination

? What is an appropriate portion (%) of the dataset is needed to construct a
reasonable GDL model?

• Several sizes of the known dataset (all graphs have J(Gi) known) were selected
• Many epochs were also used to help determine a typical stopping condition

0 200 400 600 800 1000
Epoch

50

60

70

80

90
A

cc
ur

ac
y

[%
]

80%
40%
20%
10%
5%
2.5%
1.25%

13

Introduction Methodology Results Conclusions References

� Experiment 3 (2): Total Set Accuracy vs. Known Set Size
• Since we are considering problems with a fixed number of graphs, we consider a

total set accuracy metric
• Allows comparisons to the worst-case random model and total enumeration

• Variability explored using 5 randomized runs for each known set size
• It was determined that 10–20% known set size was a reasonable balance

between the cost of evaluating J(G) and total set accuracy

0 20 40 60 80 100

Known Set Size [% of Entire Dataset]

50

60

70

80

90

100

T
ot
al

S
et

A
cc
u
ra
cy

[%
]

GDL Model
Random "Model"
Enumeration

14

Introduction Methodology Results Conclusions References

� Experiment 4 (1): Iterative Classification Results

• Using the approach described on Slide 10, five iterations were performed
• Good separation occurs between the Predicted 1 and Predicted 0 sets until

Iteration 5

All Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

All D
ata

Kno
wn 1

 (4
32

4)

Kno
wn 0

 (4
32

5)

Pred
ict

ed
 1

(17
63

3)

Pred
ict

ed
 0

(16
96

6)

Kno
wn 1

 (2
16

1)

Kno
wn 0

 (2
16

3)

Pred
ict

ed
 1

(99
61

)

Pred
ict

ed
 0

(76
72

)

Kno
wn 1

 (1
08

0)

Kno
wn 0

 (1
08

1)

Pred
ict

ed
 1

(45
44

)

Pred
ict

ed
 0

(54
17

)

Kno
wn 1

 (5
40

)

Kno
wn 0

 (5
40

)

Pred
ict

ed
 1

(23
80

)

Pred
ict

ed
 0

(21
64

)

Kno
wn 1

 (2
70

)

Kno
wn 0

 (2
70

)

Pred
ict

ed
 1

(14
27

)

Pred
ict

ed
 0

(95
3)

10-4

10-2

100

102

Pe
rf

or
m

an
ce

15

Introduction Methodology Results Conclusions References

� Experiment 4 (2): Average Performance Change per Iteration

• Here we show the median values of the “Known 1” and “Predicted 1” sets
averaged over six runs using the iterative GDL classification approach

• The previous slide is one of the six runs in this figure

1 2 3 4 5
Iteration

10-5

10-4

10-3

10-2

10-1

100
Pe

rf
or

m
an

ce
50th

75th

90th

99th

100th

Known 1 Median (Average)
Predicted 1 Median (Average)

16

Introduction Methodology Results Conclusions References

� Experiment 4 (3): Top X Graph Results

? Are the best-performing graphs still in our final set (after four iterations)?

� Important

For the top 100 graphs, 88.2 (2.5) remained compared to an expected value of 22.96.
Finally, for the top 1000 graphs, 751.2 (39.5) remained compared to an expected value
of 229.6.

• Over these runs, the average number of graphs that would be known (i.e.,
optimized) was 11282.2 graphs (492.8)

• Therefore, these outcomes are with about 25% of the computational cost of
complete enumeration

• In another study with about 19% of the total potential cost, 9.2 (0.4) of the top 10
graphs remained and 85.2 (6.3) of the top 100 graphs remained

17

4

Conclusions & Future Work

Introduction Methodology Results Conclusions References

� Conclusions and Future Work

• We presented a Geometric Deep Learning (GDL) approach for classifying and
down-selecting graph-based analog circuits toward sets of better-performing
solutions

• Interesting, if not immediately valuable, trade-offs in accuracy and computational
cost for this task were observed

• Potential future work items include:
• Iteratively and intelligently adding new graphs to “Known” to combat model

accuracy decreases
• Transfer learning to similar problems
• Explore this approach in other Type 1 problems, including ones with directed

graphs and multiple graph-level performance metrics

18

Introduction Methodology Results Conclusions References

� References

	 K. Atz, F. Grisoni, and G. Schneider (2021). Geometric deep learning on molecular represen-
tations. DOI: 10.48550/arXiv.2107.12375

	 M. M. Bronstein, J. Bruna, T. Cohen, et al. (2021). Geometric deep learning: grids, groups,
graphs, geodesics, and gauges. DOI: 10.48550/arXiv.2104.13478

	 M. M. Bronstein, J. Bruna, Y. LeCun, et al. (2017). “Geometric deep learning: going beyond
euclidean data”. IEEE Signal Process Mag. 34.4. DOI: 10.1109/msp.2017.2693418

	 V. Ferrero et al. (2021). “Classifying component function in product assemblies with graph
neural networks”. ASME J. Mech. Design 144.2. DOI: 10.1115/1.4052720

	 M. Fey and J. E. Lenssen (2019). “Fast graph representation learning with PyTorch Geomet-
ric”. ICLR Workshop on Representation Learning on Graphs and Manifolds

	 P. Gainza et al. (2020). “Deciphering interaction fingerprints from protein molecular surfaces
using geometric deep learning”. Nature 17. DOI: 10.1038/s41592-019-0666-6

	 J. B. Grimbleby (1995). “Automatic analogue network synthesis using genetic algorithms”.
First International Conference on Genetic Algorithms in Engineering Systems: Innovations
and Applications. DOI: 10.1049/cp:19951024

	 T. Guo, D. R. Herber, and J. T. Allison (2018). “Reducing evaluation cost for circuit synthe-
sis using active learning”. ASME International Design Engineering Technical Conferences.
DETC2018-85654. DOI: 10.1115/DETC2018-85654

19

https://doi.org/10.48550/arXiv.2107.12375
https://doi.org/10.48550/arXiv.2104.13478
https://doi.org/10.1109/msp.2017.2693418
https://doi.org/10.1115/1.4052720
https://doi.org/10.1038/s41592-019-0666-6
https://doi.org/10.1049/cp:19951024
https://doi.org/10.1115/DETC2018-85654

Introduction Methodology Results Conclusions References

� References (Continued)

	 D. R. Herber (2017). “Advances in combined architecture, plant, and control design”. Ph.D.
Dissertation. University of Illinois at Urbana-Champaign. URL: http://hdl.handle.net/2142/
99394

	 — (2020). “Enhancements to the perfect matching approach for graph enumeration-based
engineering challenges”. ASME International Design Engineering Technical Conferences.
DOI: 10.1115/DETC2020-22774

	 D. R. Herber, T. Guo, and J. T. Allison (2017). “Enumeration of architectures with perfect
matchings”. ASME J. Mech. Design 139.5. DOI: 10.1115/1.4036132

	 G. Jurman, S. Riccadonna, and C. Furlanello (2012). “A comparison of MCC and CEN error
measures in multi-class prediction”. PLOS One 7.8. DOI: 10.1371/journal.pone.0041882

	 V. Krokos, S. P. A. Bordas, and P. Kerfriden (2022). A graph-based probabilistic geometric
deep learning framework with online physics-based corrections to predict the criticality of
defects in porous materials. DOI: 10.48550/arXiv.2205.06562

	 Y. Lecun et al. (1998). “Gradient-based learning applied to document recognition”. Proc. IEEE
86.11. DOI: 10.1109/5.726791

	 J. Park and J. Park (2019). “Physics-induced graph neural network: an application to wind-
farm power estimation”. Energy 187. DOI: 10.1016/j.energy.2019.115883

	 T. Pfaff et al. (2021). Learning mesh-based simulation with graph networks. DOI: 10.48550/
arXiv.2010.03409

20

http://hdl.handle.net/2142/99394
http://hdl.handle.net/2142/99394
https://doi.org/10.1115/DETC2020-22774
https://doi.org/10.1115/1.4036132
https://doi.org/10.1371/journal.pone.0041882
https://doi.org/10.48550/arXiv.2205.06562
https://doi.org/10.1109/5.726791
https://doi.org/10.1016/j.energy.2019.115883
https://doi.org/10.48550/arXiv.2010.03409
https://doi.org/10.48550/arXiv.2010.03409

Introduction Methodology Results Conclusions References

� References (Continued)

	 J. C. Wong et al. (2022). “Graph neural network based surrogate model of physics simulations
for geometry design”. IEEE Symposium Series on Computational Intelligence. DOI: 10.1109/
SSCI51031.2022.10022022

	 Y. Xiao, F. Ahmed, and Z. Sha (2023). “Graph neural network-based design decision support
for shared mobility systems”. ASME J. Mech. Design 145.9. DOI: 10.1115/1.4062666

	 G. Zhang, H. He, and D. Katabi (2019). “Circuit-GNN: graph neural networks for distributed
circuit design”. International Conference on Machine Learning

21

https://doi.org/10.1109/SSCI51031.2022.10022022
https://doi.org/10.1109/SSCI51031.2022.10022022
https://doi.org/10.1115/1.4062666

Questions?

On the Use of Geometric Deep Learning Towards the Evaluation of
Graph-Centric Engineering Systems

IDETC2023-114592

g Anthony Sirico Jr. and g Daniel R. Herber
� Colorado State University

� {anthony.sirico, daniel.herber}@colostate.edu
® www.engr.colostate.edu/∼drherber

�
Links to the code on GitHub:

® https://github.com/anthonysirico/GDL-for-Engineering-Design
® doi: 10.48550/arXiv.2303.09770

mailto:anthony.sirico@colostate.edu
mailto:daniel.herber@colostate.edu
www.engr.colostate.edu/~drherber
https://github.com/anthonysirico/GDL-for-Engineering-Design
http://dx.doi.org/10.48550/arXiv.2303.09770

� Confusion Matrix

• A Confusion Matrix (CM), the key metric representation used for a classification
model, where the columns contain the samples of the model output, and the
rows contain the samples true class

• True Positives (TP) — top left box
• False Positives (FP) — top right box
• False Negatives (FN) — bottom left box
• True Negatives (TN) — bottom right box

Data
Actually

Positive (1)
Actually

Negative (0)

M
od

el

Predicted
Positive (1)

TP FP

Predicted
Negative (0)

FN TN

23

� Performance Metrics

Metric Definition Equation

Accuracy Overall accuracy of the model
based on correct predictions

Acc = TP+TN
N

b

Precision The proportion of positive classifi-
cation predicted correctly

Precision = TP
TP+FP

Recall The proportion of actual positive
classifications identified correctly

Recall = TP
TP+FN

F1 Score The harmonic mean between Pre-
cision and Recall

F1 = 2 · Precision·Recall
Precision+Recall

MCCa Ranged from -1 to 1, takes into
account all data from the CM

MCC = TP·TN−FP·FN√
(TP+FP)(TP+FN)(TN+FP)

Total Set Acc. Accuracy of Nall using known and
unknown when compared to N

Total Set Accuracy =
T(u)

P +T(u)
N +T(k)

P +T(k)
N

Nall

a Matthews Correlation Coefficient1
b N is the total set size

1 Jurman, Riccadonna, and Furlanello 2012

24

	Introduction
	Methodology
	Results
	Conclusions & Future Work
	References
	Appendix

