On the Use of Geometric Deep Learning Towards the Evaluation of Graph-Centric Engineering Systems

IDETC2023-114592
© Anthony Sirico Jr. and Daniel R. Herber

益 Colorado State University — Department of Systems Engineering
- \{anthony.sirico, daniel.herber\}@colostate.edu

(1)

Introduction

Graph Representations of Engineered Systems

- Graphs can be used as a model for a variety of engineered systems
- Here we consider labeled graphs denoted by G

Design Situation of Interest

- Often, the performance (or value or utility) of a given graph $J\left(G_{i}\right)$ can be determined through analysis
- Consider the following three types of graph-centric design problems ${ }^{1}$ with T is the amount of time allocated to complete the graph design study:
Type 0 All desired graphs can be generated, and so can their performance metric $J\left(G_{i}\right)$ within time T
Type 1 All desired graphs can be generated, but only some of the performance metrics $J\left(G_{i}\right)$ can be evaluated within time T; the analysis is too expensive
Type 2 All desired graphs cannot be generated within time T
- This work focuses on methods for Type 1 problems (using data from a large Type 0 study)
${ }^{1}$ Guo, Herber, and Allison 2018

Case Study Dataset (1): Analog Electric Circuit Synthesis

- The design case study here seeks to identify the top set of best performing circuits (each represented by graph G_{i}) assessed by the optimal value $J\left(G_{i}\right)$ of:

$$
\begin{align*}
\left.\underset{\mathbf{z}_{i}=\left\{\mathbf{R}_{i}, \mathbf{C}_{i}\right\}}{ }\right\} & J=\sum_{k}\left(\log \left|H_{i}\left(j \omega_{k}, \mathbf{z}_{i}\right)\right|-\log \left|F\left(j \omega_{k}\right)\right|\right)^{2} \tag{1a}\\
\text { subject to: } & 10^{-2} \leq R_{j} \leq 10^{0} \quad \text { for all } R_{j} \text { in } G_{i} \tag{1b}\\
& 10^{-2} \leq C_{j} \leq 10^{0} \quad \text { for all } C_{j} \text { in } G_{i} \tag{1c}\\
\text { where: } & |F(j \omega)|=\sqrt{2 \pi / 10 \omega} \quad 0.2 \leq \omega / 2 \pi \leq 5 \tag{1d}
\end{align*}
$$

which represents minimizing the error between the desired frequency response $|F(j \omega)|$ and the one a candidate circuit G_{i} provides ${ }^{1}$

- Generating of all unique (nonisomorphic) graphs up to a certain size is possible using previous efficient graph enumeration techniques ${ }^{2}$
- However, the solving of Eq. (1) for all 43,249 graphs is expensive
- Previous work has incurred this expense ${ }^{3}$ making this one suitable dataset for exploring case posed on Slide 3

[^0]
Case Study Dataset (2): Performance vs. Complexity

Key Questions

- Often the goal is not to narrow the potential graphs down to one particular graph, but rather a group of "good" or promising graphs that would be analyzed further
- Sometimes at a higher fidelity due to assumptions made in modeling
- To explore trade-offs (e.g., performance vs. complexity)
(3) Given a Type 1 problem, can we provide a reasonable likely set of "good" graphs without evaluating each of their performance $J\left(G_{i}\right)$?
(2) If so, how should we approach this challenge to reduce overall design study computational cost?

Graph Classification

- Graph classification approaches seek to assign graphs to a class based on a predetermined criteria - optimized assessment $J\left(G_{i}\right)$ from Eq. (1)
- Predictive models for classification are less concerned about absolute positioning than correct class assignment - aligned with the search for the top potential candidates

(2)

Methodology

\rightarrow Geometric Deep Learning (GDL) and Graph Neural Networks (GNNs)

- We consider Geometric Deep Learning (GDL) as a potential strategy for the classification goal
- GDL is an umbrella term encompassing a technique that generalizes neural networks to Euclidean and non-Euclidean domains, such as graphs, manifolds, meshes, or string representations ${ }^{1}$
- In essence, GDL encompasses approaches that incorporate information on the input variables' structure space and symmetry properties and leverage it to improve the quality of the data captured by the model
- GDL uses Graph Neural Networks (GNNs) ${ }^{2}$, which have convolutional layers to determine node embeddings and pooling layers to average node embeddings
- GDL has been used in a variety of areas ${ }^{3}$

[^1]
\rightarrow Known and Unknown Graphs

- Based on the Type 1 problem classification, we will consider the case when only some of the performance values $J\left(G_{i}\right)$ for $G_{i} \subset \mathcal{G}$ are known
- This will divide the graphs into two sets as follows:

$$
\begin{equation*}
\mathcal{G} \equiv \mathcal{G}_{\text {all }}=\mathcal{G}_{\text {known }} \cup \mathcal{G}_{\text {unknown }} \tag{2}
\end{equation*}
$$

- $\mathcal{G}_{\text {known }}$ is the set of graphs with known values for $J\left(G_{i}\right)$
- $\mathcal{G}_{\text {unknown }}$ represents graphs with unknown $J\left(G_{i}\right)$ values (and this is what the GDL model is for)

\rightarrow Iterative Classification for Downselection

- Even if with perfect classification, the approach outlined so far would only result in determining the top 50% performing graphs in $\mathcal{G}_{\text {all }}$
- We seek a smaller, better median performance set of graphs from $\mathcal{G}_{\text {all }}$ by iteratively constructing GDL models with these steps:

Algorithm (Iterative Classification for Downselection)

1. Set $k=1$ and create an initial $\mathcal{G}_{\text {known }}^{k}$.
2. Create a GDL model $m^{k}\left(G_{i}\right)$ using $\mathcal{G}_{\text {known }}^{k}$, which is naturally broken into sets "Known 1" and "Known 0" based on the median J value of $\mathcal{G}_{\text {known }}^{k}$.
3. Predict the classes of the $\mathcal{G}_{\text {unknown }}^{k}$ using $m^{k}\left(G_{i}\right)$, creating "Predicted 1 " and "Predicted 0", which are sets of graphs predicted to be good (1) or bad (0), respectively.
4. The goal is to identify good graphs, so we set $\mathcal{G}_{\text {known }}^{k+1}$ equal to "Known 1" and $\mathcal{G}_{\text {unknown }}^{k+1}$ equal to "Predicted 1" (and the remaining graphs are removed under the assumption that they are bad).
5. Set $k \rightarrow k+1$ and repeat Step 2 until $k=n$.
\rightarrow Tools and Code Availability

Code and dataset:
Table: List of Tools

Tool	Version
Python 2	3.9
PyTorch-Geometric 1	2.1 .0
PyTorch	1.12 .1
Networkx	2.8 .7
SciPy	1.9 .1
Pandas	1.5 .0

${ }^{1}$ Fey and Lenssen 2019
O https://github.com/anthonysirico/GDL-for-Engineering-Design

3
Results

\rightarrow Experiments 1 \& 2: Baseline and Additional Features

- Experiment 1: Baseline model had 79\% accuracy and 77\% precision on test set

		Data	
		Actually Positive (1)	Actually Negative (0)
\%	Predicted Positive (1)	1,667	487
$\stackrel{1}{2}$	Predicted Negative (0)	419	1,751

- Experiment 2: Model using two additional features of eigenvector centrality and betweenness centrality had 85% accuracy and 90% precision on test set

		Data	
		Actually Positive (1)	
		Actually Negative (0)	
	Predicted Positive (1)	1,901	
	Predicted Negative (0)	451	

\rightarrow Experiment 3 (1): Require Epochs Determination

(2) What is an appropriate portion (\%) of the dataset is needed to construct a reasonable GDL model?

- Several sizes of the known dataset (all graphs have $J\left(G_{i}\right)$ known) were selected
- Many epochs were also used to help determine a typical stopping condition

\rightarrow Experiment 3 (2): Total Set Accuracy vs. Known Set Size

- Since we are considering problems with a fixed number of graphs, we consider a total set accuracy metric
- Allows comparisons to the worst-case random model and total enumeration
- Variability explored using 5 randomized runs for each known set size
- It was determined that 10-20\% known set size was a reasonable balance between the cost of evaluating $J(G)$ and total set accuracy

\rightarrow Experiment 4 (1): Iterative Classification Results

- Using the approach described on Slide 10, five iterations were performed
- Good separation occurs between the Predicted 1 and Predicted 0 sets until Iteration 5

\rightarrow Experiment 4 (2): Average Performance Change per Iteration

- Here we show the median values of the "Known 1" and "Predicted 1" sets averaged over six runs using the iterative GDL classification approach
- The previous slide is one of the six runs in this figure

\rightarrow Experiment 4 (3): Top X Graph Results

(2) Are the best-performing graphs still in our final set (after four iterations)?

> | O Important |
| :--- |
| For the top 100 graphs, $88.2(2.5)$ remained compared to an expected value of 22.96 . |
| Finally, for the top 1000 graphs, 751.2 (39.5) remained compared to an expected value |
| of 229.6 . |

- Over these runs, the average number of graphs that would be known (i.e., optimized) was 11282.2 graphs (492.8)
- Therefore, these outcomes are with about 25% of the computational cost of complete enumeration
- In another study with about 19% of the total potential cost, 9.2 (0.4) of the top 10 graphs remained and 85.2 (6.3) of the top 100 graphs remained
(4)

Conclusions \& Future Work

\rightarrow Conclusions and Future Work

- We presented a Geometric Deep Learning (GDL) approach for classifying and down-selecting graph-based analog circuits toward sets of better-performing solutions
- Interesting, if not immediately valuable, trade-offs in accuracy and computational cost for this task were observed
- Potential future work items include:
- Iteratively and intelligently adding new graphs to "Known" to combat model accuracy decreases
- Transfer learning to similar problems
- Explore this approach in other Type 1 problems, including ones with directed graphs and multiple graph-level performance metrics

\rightarrow References

П K. Atz, F. Grisoni, and G. Schneider (2021). Geometric deep learning on molecular representations. DOI: 10.48550/arXiv.2107.12375
■ M. M. Bronstein, J. Bruna, T. Cohen, et al. (2021). Geometric deep learning: grids, groups, graphs, geodesics, and gauges. DOI: 10.48550/arXiv.2104.13478
■ M. M. Bronstein, J. Bruna, Y. LeCun, et al. (2017). "Geometric deep learning: going beyond euclidean data". IEEE Signal Process Mag. 34.4. DOI: 10.1109/msp.2017.2693418
W V. Ferrero et al. (2021). "Classifying component function in product assemblies with graph neural networks". ASME J. Mech. Design 144.2. DOI: 10.1115/1.4052720
■ M. Fey and J. E. Lenssen (2019). "Fast graph representation learning with PyTorch Geometric". ICLR Workshop on Representation Learning on Graphs and Manifolds

- P. Gainza et al. (2020). "Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning". Nature 17. DOI: 10.1038/s41592-019-0666-6
■ J. B. Grimbleby (1995). "Automatic analogue network synthesis using genetic algorithms". First International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications. DOI: 10.1049/cp:19951024
ద T. Guo, D. R. Herber, and J. T. Allison (2018). "Reducing evaluation cost for circuit synthesis using active learning". ASME International Design Engineering Technical Conferences. DETC2018-85654. DOI: 10.1115/DETC2018-85654

\rightarrow References (Continued)

■ D. R. Herber (2017). "Advances in combined architecture, plant, and control design". Ph.D. Dissertation. University of Illinois at Urbana-Champaign. URL: http://hdl.handle.net/2142/ 99394
ద - (2020). "Enhancements to the perfect matching approach for graph enumeration-based engineering challenges". ASME International Design Engineering Technical Conferences. DOI: 10.1115/DETC2020-22774
■ D. R. Herber, T. Guo, and J. T. Allison (2017). "Enumeration of architectures with perfect matchings". ASME J. Mech. Design 139.5. DOI: 10.1115/1.4036132
Q G. Jurman, S. Riccadonna, and C. Furlanello (2012). "A comparison of MCC and CEN error measures in multi-class prediction". PLOS One 7.8. DOI: 10.1371/journal.pone. 0041882
W V. Krokos, S. P. A. Bordas, and P. Kerfriden (2022). A graph-based probabilistic geometric deep learning framework with online physics-based corrections to predict the criticality of defects in porous materials. DOI: 10.48550/arXiv.2205.06562
■ Y. Lecun et al. (1998). "Gradient-based learning applied to document recognition". Proc. IEEE 86.11. DOI: 10.1109/5.726791

■ J. Park and J. Park (2019). "Physics-induced graph neural network: an application to windfarm power estimation". Energy 187. DOI: 10.1016/j.energy.2019.115883
П T. Pfaff et al. (2021). Learning mesh-based simulation with graph networks. DOI: 10.48550/ arXiv.2010.03409

\rightarrow References (Continued)

П J. C. Wong et al. (2022). "Graph neural network based surrogate model of physics simulations for geometry design". IEEE Symposium Series on Computational Intelligence. DOI: 10.1109/ SSCI51031.2022.10022022
W Y. Xiao, F. Ahmed, and Z. Sha (2023). "Graph neural network-based design decision support for shared mobility systems". ASME J. Mech. Design 145.9. DOI: 10.1115/1.4062666
わ G. Zhang, H. He, and D. Katabi (2019). "Circuit-GNN: graph neural networks for distributed circuit design". International Conference on Machine Learning

Questions?

On the Use of Geometric Deep Learning Towards the Evaluation of Graph-Centric Engineering Systems

IDETC2023-114592

9 Anthony Sirico Jr. and © Daniel R. Herber
IIII Colorado State University
D \{anthony.sirico, daniel.herber\}@colostate.edu

© www.engr.colostate.edu/~drherber

©

Links to the code on GitHub: © https://github.com/anthonysirico/GDL-for-Engineering-Design
G_{0} doi: 10.48550/arXiv.2303.09770

\rightarrow Confusion Matrix

- A Confusion Matrix (CM), the key metric representation used for a classification model, where the columns contain the samples of the model output, and the rows contain the samples true class
- True Positives $\left(T_{P}\right)$ - top left box
- False Positives $\left(F_{P}\right)$ - top right box
- False Negatives $\left(F_{N}\right)$ - bottom left box
- True Negatives $\left(T_{N}\right)$ - bottom right box

\rightarrow Performance Metrics

Metric	Definition	Equation
Accuracy	Overall accuracy of the model based on correct predictions	Acc $=\frac{T_{p+}+T_{N} \mathrm{~b}}{N}$
Precision	The proportion of positive classification predicted correctly	Precision $=\frac{T_{P}}{T_{P}+F_{P}}$
Recall	The proportion of actual positive classifications identified correctly	$\text { Recall }=\frac{T_{P}}{T_{P}+F_{N}}$
F1 Score	The harmonic mean between Precision and Recall	$F 1=2 \cdot \frac{\text { Precision } \text { Recall }}{\text { Precision }+ \text { Recall }}$
MCC ${ }^{\text {a }}$	Ranged from -1 to 1, takes into account all data from the CM	$M C C=\frac{T_{P} \cdot T_{N}-F_{P} \cdot F_{N}}{\sqrt{\left(T_{P}+F_{P}\right)\left(T_{P}+F_{N}\right)\left(T_{N}+F_{P}\right)}}$
Total Set Acc.	Accuracy of $N_{\text {all }}$ using known and unknown when compared to N	$\text { Total Set Accuracy }=\frac{T_{P}^{(k)}+T_{N}^{(u)}+T_{p}^{(k)}+T_{N}^{(k)}}{N_{\text {all }}}$

[^2]
[^0]: ${ }^{1}$ Grimbleby 1995; Herber $2017{ }^{2}$ Herber 2020; Herber, Guo, and Allison $2017{ }^{3}$ Herber 2017

[^1]: ${ }^{1}$ Bronstein, Bruna, Cohen, et al. 2021; Bronstein, Bruna, LeCun, et al. $2017{ }^{2}$ Lecun et al. $1998 \quad{ }^{3}$ Wong et al. 2022; Pfaff et al. 2021; Park and Park 2019; Zhang, He, and Katabi 2019; Xiao, Ahmed, and Sha 2023; Ferrero et al. 2021; Atz, Grisoni, and Schneider 2021; Gainza et al. 2020; Krokos, Bordas, and Kerfriden 2022

[^2]: ${ }^{\text {a }}$ Matthews Correlation Coefficient ${ }^{1}$
 ${ }^{\mathrm{b}} N$ is the total set size
 ${ }^{1}$ Jurman, Riccadonna, and Furlanello 2012

